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Abstract
Background: The identification of specific gene expression signature for distinguishing sample
groups is a dominant field in cancer research. Although a number of tools have been developed to
identify optimal gene expression signatures, the number of signature genes obtained is often overly
large to be applied clinically. Furthermore, experimental verification is sometimes limited by the
availability of wet-lab materials such as antibodies and reagents. A tool to evaluate the
discrimination power of candidate genes is therefore in high demand by clinical researchers.

Results: Signature Evaluation Tool (SET) is a Java-based tool adopting the Golub's weighted voting
algorithm as well as incorporating the visual presentation of prediction strength for each array
sample. SET provides a flexible and easy-to-follow platform to evaluate the discrimination power
of a gene signature. Here, we demonstrated the application of SET for several purposes: (1) for
signatures consisting of a large number of genes, SET offers the ability to rapidly narrow down the
number of genes; (2) for a given signature (from third party analyses or user-defined), SET can re-
evaluate and re-adjust its discrimination power by selecting/de-selecting genes repeatedly; (3) for
multiple microarray datasets, SET can evaluate the classification capability of a signature among
datasets; and (4) by providing a module to visualize the prediction strength for each sample, SET
allows users to re-evaluate the discrimination power on mis-grouped or less-certain samples.
Information obtained from the above applications could be useful in prognostic analyses or clinical
management decisions.

Conclusion: Here we present SET to evaluate and visualize the sample-discrimination ability of a
given gene expression signature. This tool provides a filtration function for signature identification
and lies between clinical analyses and class prediction (or feature selection) tools. The simplicity,
flexibility and brevity of SET could make it an invaluable tool for marker identification in clinical
research.
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Background
Gene expression profiling based on microarray technol-
ogy has been applied widely on monitoring global tran-
scriptome changes in biological samples. In cancer
research, one of the major microarray applications is to
identify genes, or features, whose expression patterns can
discriminate samples with distinct states (usually defined
by the phenotype of samples such as primary or metastatic
tumour). These identified genes form an expression signa-
ture that can be used to assist clinical management deci-
sions such as clinical trail risk assessment, treatment
selection, or cancer prognosis [1-5].

To acquire a good expression signature, supervised meth-
ods are more appropriate than unsupervised approaches.
Basically, a supervised prediction method consists of three
common processes: 1) feature selection, 2) computation
of weights for selected features, 3) creation of a prediction
rule [6]. By using the cross-validation method such as n-
fold or leave-one-out cross-validation (LOOCV), the dis-
crimination capability of a signature can be evaluated.
Recently, many classification algorithms (such as SVM,
evolutionary algorithm and I-RELIEF) combining cross-
validation and heuristic searching to acquire an optimal
expression signature have been proposed [7-9]. Further-
more, those algorithms have been incorporated into has-
sle-free tools to aid the acquisition of an optimal
signature. For example, M@CBETH [10] is a web-based
tool aimed at finding the best prediction among different
classification methods. Prophet [11], another web-based
tool, can automatically build classifiers using a strategy
that renders unbiased cross-validated errors. The class pre-
diction modules in GenePattern [12] also supports several
supervised learning methods. Moreover, for improving
the efficiency and the accuracy of an acquired signature,
several feature selection tools based on statistical analysis
have been developed: RankGene is a feature selection
suite based on statistical ranking analyses [13], HykGene
[14] and mRMR [15] are tools to minimise redundancy of
genes.

Although the aforementioned feature selection and classi-
fication tools are quite useful for acquiring an optimal sig-
nature, a tool assisting signature evaluation is still in high
demand. In clinical practice, the ability to distinguish a
patient group from others based on a smaller number of
specific genes is of tremendous value and, thus, tools that
assist to narrow down on candidate genes (see Figure 1 as
an example) is central to the identification of unique sig-
natures. On the other hand, it is sometimes desired to
investigate the discriminative power of genes of interest,
such as those deduced from biological experiments or,
perhaps, based on other consideration such as the availa-
bility of antibodies and reagents. Bearing these in mind,
we developed a simple and flexible Java standalone tool,

the Signature Evaluation Tool (SET), to fulfill the needs of
clinical evaluations. SET both accepts and creates a "user-
defined" signature and then utilize a visualization module
to present the classification consequences. SET not only
accelerates the feature evaluation process but can also pre-
dict the groups of unknown samples.

In SET, we adopted the weighted voting algorithm pub-
lished by Ramaswamy et al. and LOOCV [3,16,17] to eval-
uate the discrimination power of features. The signal-to-
noise score was used:

Sx= (μGI - μGII)/(σGI + σGII)

Sx: the weighted value for the each feature x

μ: mean of expression in group I (GI) or group II (GII)

σ: standard deviation of expression in group I (GI) or
group II (GII)

The signal-to-noise statistics reflects how well a feature
correlates with a particular group distinction (numerator).
Also, it penalises features which have higher variance in
both groups more than those having high variance in one
group but low variance in another (denominator). This
bias is useful for biological samples: for example, in can-
cer research, genes in normal tissues work normally and
the regulation of which are strict. However, in tumours,
genes are dysregulated and the levels of gene expression
vary widely [18]. The weighted voting algorithm has been
compared with other class prediction methods (standard
and diagonal discriminant analysis, classification trees
with or without aggregation, and nearest neighbour clas-
sification) using three microarray datasets (adult lym-
phoma, leukaemia, and sixty human tumour cell lines),
and it was the one with the best performance [19].

In order to avoid over-interpretation of the error rate value
produced by weighted voting algorithm, there is a visual-
ization module in SET to present the prediction strength
(PS) information for all samples [3,16,17,20]:

PS = (VGI - VGII)/(VGI + VGII)

VGI and VGII represent the total votes for GI and GII
respectively

The PS value ranges from -1 to +1, with higher absolute
values reflecting stronger prediction. The prediction
strength for each sample shows the margin of victory in
either direction of two supervised groups. The visualiza-
tion of uncertainty will provide important information
about prognosis, such as the progression of tumour
metastasis or the estimated survival time [3].
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Implementation
SET is a standalone Java application that deploys Java Web
Start technology, providing a flexible platform for
researchers to evaluate gene signatures based on expres-
sion datasets. It enables users to analyze unpublished pro-
files locally with the most up-to-date version of the
program. Results are visualized by JFreeChart, an open-
sourced Java chart library, which displays the line chart of
error rate distribution and the scatter plot of prediction
strength analysis. This software exhibits several unique
presentations and user-friendly elements by following
four simple steps:

Step1: Grouping arrays by supervised knowledge
First, the user prepares and uploads two tab-delimited text
files, one containing a gene expression matrix that has
been normalised, filtered or transformed; and another
containing a list of genes that are potential classification
markers. In both files, individual genes (or probe IDs) are
represented in rows while array samples or user-defined
attributes are displayed in columns. To increase flexibility

SET implements parsers to recognize a variety of popular
data formats including normalised outputs from Expres-
sion Console™, BioConductor or dChip; and accepts pub-
lished analytical results as gene list input or it can be user-
defined. Upon uploading the files, array samples are
assigned into two groups ("Supervised" groups) under the
"Sample Grouping" panel. Samples of unknown identity
can be assigned to the "Testing" group and their identities
can be predicted in the latter step of prediction strength
analysis. Samples to be excluded in latter analyses can be
assigned to the "Ignore" group (Figure 2A).

Step 2: Error rate distribution
By default, the uploaded genes are ranked according to the
absolute values of corresponding signal-to-noise scores in
a descending order, but can be user-defined to be ranked
by other attributes such as p-values. Genes are included
into a signature one at a time based on the order of rank-
ing. The error rate for each new signature is estimated by
the weighted voting algorithm and LOOCV [3] and can be
monitored by an error rate distribution plot (Figure 2B).

Narrowing down existing gene signature to few genesFigure 1
Narrowing down existing gene signature to few genes. 23 human medulloblastoma expression profiles implemented by 
Affymetrix G110 cancer arrays were used [16]. Among them, 10 were metastatic tumours and 13 were non-metastatic 
tumours. This plot illustrates how users can filtrate out a handful of genes for diagnostic purpose by applying SET. The left 
panel is the heat map of the original signature [16], and arrows indicate mis-grouped samples. The middle panel shows two fig-
ures produced by SET (see Figure 2 for more details). The right panel is the heat map of the filtrated 4 new diagnostic mark-
ers.
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Implementation of SETFigure 2
Implementation of SET.(A)(see Additional file 1) 10 metastatic tumours and 13 non-metastatic tumours were assigned 
into M and P group, respectively. (B)(see Additional file 2) Error rate distribution of expression signature genes. This plot sug-
gested the top 3~4 genes are capable of being the best signature to distinguish samples (error rate 0.087). (C)(see Additional 
file 3) "User-defining" interface allows user to select/de-select features. (D)(see Additional file 4) The plot shows the predic-
tion strength of a user-defined signature (top 4 genes from 2B) in discriminating non-metastatic and metastatic tumours. The 
table above PS plot shows the significance of the error rate (less than 0.001 in this case). (A) – (D) show the relevant sections 
of the original software interface. For the full images please see Additional files 1-4, respectively.
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Subsequently, based on the error rate information, the
user can select an appropriate composition of discriminat-
ing genes, for instance, a composition with the lowest
error rate.

Step 3: Signature evaluation
Genes within the chosen composition are ranked and dis-
played by their signal-to-noise scores and the user can
manually select or de-select genes as appropriate (Figure
2C). Gene titles and gene symbols can be incorporated in
this step if the annotations of an array platform are sup-
ported by our ArrayFusion database, which currently sup-
ports annotations for the majority of Affymetrix arrays
and several Agilent arrays [21]. The potential of selected
genes to distinguish between two supervised groups can
be evaluated by cross-validating error rate information,
where a lower error rate reflects a superior distinguishing
potential. The significance of error rate is estimated by
1,000 times of group permutations to ensure that the error
rate is not a result of random chance [22]. The expression
signature can be arbitrarily modified during the analysis
and the corresponding error rate can be recalculated
repeatedly.

Step 4: Prediction strength
The result of prediction strength (PS) analysis for each
sample is shown once a signature is defined. The PS values
range from -1 to +1, where higher absolute values reflect
stronger predictions [17]. An overview of the results for
samples in both "Supervised" and "Testing" groups is
illustrated by the PS plot for the selected signature, and
the results can be used to evaluate and predict the cer-
tainty of group identity for individual sample (see Figure
2D as an example). To increase the flexibility of evalua-
tion, samples can be re-grouped (for instance, re-allocated
from the "Testing" group to the "Supervised" group) and
signature genes can be re-selected repeatedly (Figures 2A
and 2C). Results of the analysis provide the user candidate
genes for further experimental validation.

Further details are illustrated in the tutorial file on the
website, please see the Availability and requirements sec-
tion.

Results and Discussion
Serial signature evaluation
SET provides a rational way of narrowing down genes
with optimal discriminative power. Unlike other feature
selection tools such as Hykgene [14] or mRMR [15],
which select non-redundant genes based on statistical cal-
culations, SET adopts a speedy signature evaluation
approach that ranks the gene list according to the contri-
bution value (Sx or user-defined attributes) of individual
genes and, additionally, plots the distribution of cross-val-
idated error rate for signatures with increasing number of

genes. Based on the distribution, the user can easily nar-
row down the number of genes with superior discrimina-
tive power; however, the approach is not without
limitations. It is also possible that a subset of genes could
generate lower error rate, albeit bearing lower weights. To
avoid missing crucial genes, the user may commence by
narrowing down the genes to a manageable quantity and
subsequently select/de-select genes to further examine the
power of the individual signature. Here, users are
reminded that SET is a tool for signature evaluation rather
than a machine learning tool for building an optimized
prediction rule; in other words, the estimated error rate is
only applied to the defined signature rather than to the
signature building procedure that includes the feature
selection process [6].

A flexible evaluation platform
As described in Implementation (i) to (iii), SET provides
a signature evaluation platform that can adapt signatures
from a variety of sources including third party analyses or
candidates of interest that are deduced by biological
knowledge. The ability to re-select/de-select genes follow-
ing error rate distribution analysis enables the user to fur-
ther choose genes from the narrowed down list (Figure
2C), and rapidly re-evaluate and re-adjust the discrimina-
tive power of the new signature (Figures 2C and 2D).

With the accumulation of microarray experiments,
researchers nowadays may have more than one gene
expression dataset. To evaluate the applicability of a spe-
cific signature between different datasets, researchers can
import two datasets into SET separately but select the
same signature members to carry out the evaluation step.
Alternatively, researchers can merge two datasets into one
expression matrix, upload it into SET, and then perform a
two-step evaluation procedure proposed by Gloub et al.
[20]. In this case, one dataset can be set up as "Supervised"
groups while the other as "Testing" group. The first step
evaluation tests the selected features by cross-validation
on samples of the "Supervised" group, and the second-
step applies the built signature to assess its accuracy on the
"Testing" group. Both results can be shown in the PS anal-
ysis.

Here, we demonstrate an example of applying SET to
quickly identify diagnostic markers associated with color-
ectal carcinoma (CRC) metastasis. 179 Affymetrix U133
Plus 2.0 microarray data downloaded from the expO
(Expression Project for Ontology) project (GSE2019;
released before December 2006) were subjected to molec-
ular signature analysis according to a pipeline we have
previously used [23]. 287 genes were significantly (false
discovery rate (FDR) q < 0.01) differentially expressed
between primary and metastatic CRC. By further applying
SET, it was found that the top 18 genes had a similar dis-
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criminative power to that of more than 130 genes (error
rate 0.025; p-value < 0.001) (Figure 3A, indicated by a cir-
cle). Among those top 18 genes several were known
metastasis markers, such as osteopontin and nexin
[24,25], supporting the reliability of our result. When
those 18 genes were applied to another dataset from expO
(36 samples from GSE2109; release March 2007) they,
again, had a good discriminative power (error rate 0; p-
value < 0.001) (Figure 3B). By application of the two-step
evaluation procedure on these two datasets, the error rates
were 0.025 and 0.083, respectively (data not shown).

To further validate the reliability of the tool, we further
applied SET to analyse a signature of 70 genes related to
breast cancer metastasis based on the data published by
van de Vijver et al. [26]. Using the same 295 breast cancer
samples SET reduced the gene number to a 49-gene signa-
ture without declination of prediction power (error rate
0.325 and 0.315, respectively; Figure 4A). We further

divided the dataset into two smaller datasets according to
their lymph node status from pathology report: among
the 295 patients, 151 had lymph-node-negative disease
(results of pathological examination) and 144 had
lymph-node-positive disease [26]. For lymph-node-nega-
tive samples, we found the top 12 genes had a similar dis-
criminative power to that of the 70 genes (error rate 0.272
and 0.291. respectively; p-value < 0.001). For lymph-
node-positive samples, we found the top 8 genes had a
similar discriminative power to that of 70 genes (error rate
0.319 and 0.396, respectively; p-value < 0.001). These
results further consolidate the power of SET.

Visualization of prediction strength (PS) for evaluation and 
prediction
Given that the prediction uncertainty is not revealed by
estimation of error rate, the incorporation of the PS index
in the analysis is of importance. The PS presentation
methods used by MacDonald et al. [3,16,17] and Ye et al.

Applying SET on two colon cancer datasetsFigure 3
Applying SET on two colon cancer datasets. (A) Error rate distribution of 287 metastasis signature genes for 179 colon 
cancer arrays. The top 18 genes (indicated by a circle) had same discrimination power to that of over 130 genes. (B) Top 18 
genes can also distinguish primary from metastatic colon cancer samples in another dataset (36 microarray samples) with p-
value < 0.001.
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Error rate distribution analysis for signatures related to breast cancer metastasisFigure 4
Error rate distribution analysis for signatures related to breast cancer metastasis. (A) Using 295 breast cancer 
samples (published by van de Vijver et al.), SET can reduce the gene number from 70 to 49 without losing prediction power 
(error rate 0.325 and 0.315, respectively). (B) For 151 samples with lymph-node-negative pathology status, the top 12 genes 
had a similar discrimination power to that of 70 genes (error rate 0.272 and 0.291, respectively; p value < 0.001). (C) For 144 
samples with lymph-node-positive pathology status, the top 8 genes had a similar discrimination power to that of 70 genes 
(error rate 0.319 and 0.396, respectively; p value < 0.001).

295 breast cancer samples 

151 lymph-node-negative disease samples

144 lymph-node-positive disease samples
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[17] were integrated into SET, but a new way of displaying
the PS information for each sample was devised (Figure
2D). The PS visualization module conveniently enables
the user to trace back samples incorrectly grouped, or sam-
ples that have lower prediction certainty (PS value close to
0). Furthermore, the module would be of substantial
value in clinical research when clinical parameters, such as
disease progression, are taken into consideration. For
example, in Figure 1, some primary tumour samples were
grouped together with metastatic tumours. Not only does
the tool enable re-validating the reliability of the features
used, but also back tracking to the clinical information of
those primary tumours, allowing potential discovery of
patients with inferior clinical outcome or higher meta-
static risk.

As described in Implementation, arrays in the same matrix
can be annotated as "Supervised" or "Testing" samples in
SET. Visualization of their PS information in the same
plot enables the user to re-evaluate the discriminative
power and validate the prediction power of a signature
simultaneously.

Application on multi-class datasets
For datasets containing multiple phenotypes, one-versus-
all comparisons can be performed to filter associated
markers. This strategy has been proven successful in sev-
eral high-quality microarray experiments [27], and the
incorporation of algorithms designed for multivariate
issues into the next version of SET is currently in progress.

SET and biological relevance analysis
Albeit it is of logic to assume biological correlation of sig-
nature genes between one another (for instance, the
involvement in common pathways or genetic networks)
the identification of the biological relevance of input or
output genes, however, is not the primary function of SET.
This tool is principally aimed at providing a gene filtration
threshold for gene identification. Upon identification of a
gene set of interest, the candidate genes can be applied to
other biologically/clinically relevant analyses (such as
Gene Ontology or Gene Set Enrichment Analysis) to
determine the biological significance of those genes.

Conclusion
SET provides a gene filtration threshold for gene identifi-
cation between biological/clinical analyses and typical
feature selection tools. SET is focused on the "evaluation"
of input/selected genes to suggest their prediction/classifi-
cation power. It rapidly narrows down candidate diagnos-
tic markers from numerous signature genes and offer
prediction information. The application of SET to filter
out a smaller number of diagnostic markers from publi-
cally accessible databases was exemplified in this report.

Taken together, the flexibility and reliability makes SET a
valuable tool for various evaluations in clinical research.

Availability and requirements
Project name: SET

Project home page: http://microarray.ym.edu.tw/tools/
set/

Operating system(s): Platform independent

Programming language: Java and Java Web Start

Other requirements: Java 1.5.1 or higher

License: free
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and manuscript were written by CJ, TY and HW, and all
authors read and approved the final manuscript.

Additional material

Additional file 1
Signature Evaluation Tool: Sample grouping
10 metastatic tumours and 13 non-metastatic tumours were assigned into 
M and P group, respectively. 
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-58-S1.png]

Additional file 2
Signature Evaluation Analysis (Sx, Descending)
Error rate distribution of expression signature genes. This plot suggested 
the top 3~4 genes are capable of being the best signature to distinguish 
samples (error rate 0.087).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-58-S2.png]

Additional file 3
User-defined Combination of Gene Signature
"User-defining" interface allows user to select/de-select features.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-58-S3.png]
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Additional file 4
Prediction Strength Analysis (4 Genes Selected)
The plot shows the prediction strength of a user-defined signature (top 4 
genes from 2B) in discriminating non-metastatic and metastatic tumours. 
The table above PS plot shows the significance of the error rate (less than 
0.001 in this case). (A) – (D) show the relevant sections of the original 
software interface. For the full images please see Additional files 1-4, 
respectively.
Click here for file
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