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Abstract
Background: Multiple sequence alignments are a fundamental tool for the comparative analysis of
proteins and nucleic acids. However, large data sets are no longer manageable for visualization and
investigation using the traditional stacked sequence alignment representation.

Results: We introduce ProfileGrids that represent a multiple sequence alignment as a matrix
color-coded according to the residue frequency occurring at each column position. JProfileGrid is
a Java application for computing and analyzing ProfileGrids. A dynamic interaction with the
alignment information is achieved by changing the ProfileGrid color scheme, by extracting sequence
subsets at selected residues of interest, and by relating alignment information to residue physical
properties. Conserved family motifs can be identified by the overlay of similarity plot calculations
on a ProfileGrid. Figures suitable for publication can be generated from the saved spreadsheet
output of the colored matrices as well as by the export of conservation information for use in the
PyMOL molecular visualization program.

We demonstrate the utility of ProfileGrids on 300 bacterial homologs of the RecA family – a
universally conserved protein involved in DNA recombination and repair. Careful attention was
paid to curating the collected RecA sequences since ProfileGrids allow the easy identification of
rare residues in an alignment. We relate the RecA alignment sequence conservation to the
following three topics: the recently identified DNA binding residues, the unexplored MAW motif,
and a unique Bacillus subtilis RecA homolog sequence feature.

Conclusion: ProfileGrids allow large protein families to be visualized more effectively than the
traditional stacked sequence alignment form. This new graphical representation facilitates the
determination of the sequence conservation at residue positions of interest, enables the
examination of structural patterns by using residue physical properties, and permits the display of
rare sequence features within the context of an entire alignment. JProfileGrid is free for non-
commercial use and is available from http://www.profilegrid.org. Furthermore, we present a
curated RecA protein collection that is more diverse than previous data sets; and, therefore, this
RecA ProfileGrid is a rich source of information for nanoanatomy analysis.
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Background
Comparative nanoanatomy and phylogenetic studies of
macromolecules depend upon multiple sequence align-
ments (MSAs). However, the traditional stacked sequence
representation of an alignment proves cumbersome for
large numbers of homologs as is prevalent with the prolif-
eration of genome sequences. Early MSA formatting pro-
grams facilitated analysis by emphasizing residues with
boxes, colors, and shading [1-3]. However, these pro-
grams (and many subsequent different implementations)
still represent a MSA as stacked sequences. Regular expres-
sions, major components [4], and sequence logos [5] are
solutions to compress the sequence alignment informa-
tion of motifs into a consensus format as reviewed in
2005 [6]. In addition, a graphical view of MSA conserva-
tion can be achieved with an "overview" mode [7,8] or
with plots of similarity values [9]. However, all of these
representations do not convey the details of each charac-
ter's frequency distribution at each homologous position
in the entire alignment. Thus, potentially valuable infor-
mation for the interpretation of macromolecular structure
and function is lost. Clearly there is a need for a new visual
representation paradigm for MSAs.

Here we introduce the JProfileGrid Java software for gen-
erating ProfileGrids – a new graphical, tabular representa-
tion of alignments. Historically, profiles scored by a
distance matrix were used for database searches [10],
although simple frequency profiles have been used to tab-
ulate the amino acid content of linear motifs [11]. By con-
trast, ProfileGrids are color-coded tables of the residue
frequency occurring at every homologous position across
the entire length of an MSA. Therefore, all MSA informa-
tion is represented especially at variable regions and of
rare residues that may yield clues about function. Similar
to ColorGrids [12], the frequency determines color shad-
ing; but, ProfileGrids are specific for MSAs. In particular,
our JProfileGrid software enables a dynamic visualization
of structural patterns by analyzing protein alignments
with respect to amino acid physical properties. Notably,
JProfileGrid provides a unique method for generating
publishable figures of the entire sequence content of an
alignment with many homologs. A ProfileGrid facilitates
the inspection of large MSAs and, thus, solves the problem
of text legibility of traditional MSAs [13]. Below we
describe the features of the JProfileGrid software and dem-
onstrate a ProfileGrid's usefulness by examining the bac-
terial RecA protein family that we introduce next.

The RecA protein is the premier genomic sentinel of
Escherichia coli because of its crucial protective roles in
both recombinational DNA repair [14] and the SOS
response [15]. RecA homologs are present in all domains
of life [16,17] and well distributed among bacteria [18-
21]. As the vanguard of bacterial RecA homologs, the E.
coli RecA protein (352 residues; [GenBank:AAC75741.1])

has been intensively studied starting with its discovery
[22] and the subsequent sequencing of its gene [23,24].
Later, many RecA sequences became available as micro-
biologists cloned recA genes from different culturable bac-
teria to construct knockout derivatives [25]. Furthermore,
the ubiquity of the RecA homolog made it a common
marker for phylogenetic studies [20] using the most con-
served parts of the RecA protein – the adjacent MAW and
P-loop motifs. The precise function of the former is
unknown [17], while the latter motif is the well-character-
ized ATP-binding site [26].

RecA MSAs have been analyzed from a structural perspec-
tive to understand RecA function [17,27]. For example,
molecular genetics approaches have generated over 1400
E. coli RecA missense mutations [28]; and, the phenotypes
are discussed within the context of the sequence conserva-
tion occurring at the mutation location. Furthermore,
conserved residues often have functional roles such as lig-
and binding so such positions are targets for inspection
when studying protein structure. The recent determina-
tion of a RecA-DNA cocrystal structure [29] with the first
clear identification of a DNA binding site provides a new
motivation for RecA MSA information.

As the number of RecA homologs has increased, however,
the visualization and analysis of a MSA becomes unwieldy
using the traditional stacked sequence representation. In
fact, the last complete RecA MSAs available as published
figures comes from the mid-1990's when there were only
about 60 homologs [17,19,30]. More recently, no MSA
figures were included in the data sets of 144 [20] and 113
[21] RecA homologs. Since there are more RecA sequences
available now, this family makes an excellent case study
for showing how ProfileGrids succinctly display the infor-
mation content of a large MSA. The present work
describes a curated data set of 300 RecA protein sequences
from a larger diversity of bacterial species than of previ-
ously reported alignments. The breadth of this sequence
collection creates a robust description of the conserved
sequence motifs of the RecA protein family and, therefore,
may, shed light on unexplored regions of this protein such
as the aforementioned MAW motif.

Implementation
JProfileGrid is a Java program that combines the tasks of
examining amino acid frequencies across an entire MSA,
identifying conserved motif regions, and comparing spe-
cies-specific residues against a sequence family. Both a
command-line and a graphical user interface are available
with the latter allowing interactive ProfileGrid analysis.
The program accepts protein and nucleic acid MSAs in
either MSF or FASTA formats. The former is preferred
because of the inclusion of sequence weight values in the
MSF file header. The similarity plot calculations are based
on the plotcon algorithm [9] with a modification that the
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values are normalized between 0 and 1. The program
saves matrix output as a spreadsheet file using the JExcel
API [31]. The color formatted ProfileGrid and the similar-
ity values are stored in separate worksheets. A third work-
sheet identifies outlier characters (such as "X") in the MSA
that the program flags for verification. JProfileGrid can
also write PyMOL scripts [32] that identify the conserved
regions of the MSA on a protein structure.

Methods
Sequence data set
RecA protein sequences were collected from the following
databases: the National Center for Biotechnology Infor-
mation GenBank database [33], The Institute for Genomic
Research Comprehensive Microbial Resource [34], the
DNA Data Bank of Japan [35], the European Molecular
Biology Laboratory Sequence Database [36], and UniProt
[37]. Keyword searches were used at the aforementioned
database websites especially for annotated genomes
where RecA orthologs had already been identified. In
addition, sequence similarity searches were performed
using the E. coli RecA homolog as the query sequence in
BLASTp and TBLASTN searches [38] with default parame-
ters. After manually verifying the presence of conserved
RecA family motifs, we added the protein sequences from
the keyword search results and significant BLAST search
hits (E-value <10-70) to our previous collection of vali-
dated bacterial RecA orthologs [17]. Since we focused on
fully sequenced homologs from known bacterial species,
no explicit attempt was made to collect RecA homologs
from environmental sequencing projects such as from the
Sargasso Sea collection [39]. In a previous analysis of 64
RecA homologs, 12 sequences were found to contain
errors [17,40,41]. Although some of those have not yet
been updated in GenBank, we used the corrected versions
in all cases. Finally, we limited the RecA data set to unique
sequences for each bacterial species. Specifically, we elim-
inated redundant sequences from duplicate sequencing
efforts (genome versus individual gene projects) and from
strains of the same bacterial species (E. coli CFT073 versus
K12). While these sequences do not appear in our RecA
MSA and ProfileGrid, the redundant sequences serve to
verify any rare residue observations that could be the
result of errors. This underscores the curation that was per-
formed of the individual sequences as described in more
detail below.

Alignment
The multiple sequence alignments were calculated using
the DNASTAR MegAlign program [42] that implements
the ClustalW algorithm [43]. Default parameters were
used except that the gap penalty was increased to 30 to
minimize the introduction of gaps. The resulting align-
ment was manually curated by visual inspection to opti-
mize the position of small gaps. Weight values were
assigned to each protein sequence using the ClustalX pro-

gram [44] to remove any bias from similar sequences
potentially overrepresented in the alignment. The MegA-
lign program was also used to identify alignment posi-
tions that were either invariant or chemically similar
(Additional file 1) according to previously described
amino acid classes [17].

Data curation
In the genomic era, database web interfaces make it easy
for the novice user to find and align many RecA
sequences. However the quality of the sequence data sets
and their subsequent alignment can not be taken for
granted. Instead it is imperative that bioinformatic data be
curated to enable researchers to be confident of the con-
clusions that they draw [45]. This can be particularly
important in the conserved motifs of a protein sequence
alignment. Below, we belabor this point as a caution
about the interpretation of rare residues in MSAs.

Inspection of the MSA (Additional file 1) and ProfileGrid
(Additional file 2) show that the family motifs are very
well conserved among the 300 RecA homologs. However,
there are exceptions where residues occur which do not
follow the consensus patterns for the motifs. These rare
residues are readily visible in ProfileGrid representations.
Such rare amino acids may be interesting exceptions or
just noise in the bioinformatic data. We paid particular
attention to the MAW and P-loop motifs that are the most
conserved parts of the RecA family. For example, a single
serine is observed in the MAW motif at E. coli position 52
where 298 other RecA sequences have glycine at that posi-
tion (Additional file 2). This is not considered a conserva-
tive substitution. By contrast, a single serine in the P-loop
at position 73 could be a conservative substitution when
compared to the 299 other threonine residues. Structure
and function inferences drawn from exceptions to con-
served motifs would be a waste of effort if such exceptions
were based upon faulty data. We also note that phyloge-
netic analyses are greatly affected by sequence errors [46].

Problems in sequence data sets can result from experi-
mental artifacts or data handling mistakes. These issues
are diminishing in the genomic era, but anomalies still
occur. As mentioned above, we have identified errors in
recA gene sequences determined using traditional gel tech-
niques [41]. More importantly, genome projects are intro-
ducing a new problem where the complete determination
of an organism's DNA content yields sequences that may
not be true chromosomal RecA orthologs. For example,
the Salmonella enterica genome project [47] uncovered
both plasmid encoded [GenBank:CAD09875.1] and chro-
mosome encoded [GenBank:CAD05935.1] RecA pro-
teins. Only the latter was included in the work presented
here. In addition, JProfileGrid will flag outliers of one let-
ter characters that do not represent the common amino
acids or gap codes. For example, in the RecA protein align-
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ment reported here, we unexpectedly identified "X" char-
acters in two sequences [GenBank:CAD79373.1,
GenBank:AAN06665.1].

Significantly, this point about data curation is not just a
hypothetical cautionary comment. Attention [48] was
drawn to the observation of a rare tyrosine residue in the
Proteus vulgaris RecA protein [49] where the vast majority
of RecA homologs have serine at E. coli position 70 (Addi-
tional file 2). However the discrepancy was resolved [41]
when it was determined that the tyrosine observation was
actually a simple typographical error in the publication
figure. Compounding this problem, though, was a data
handling error of the P. vulgaris [GenBank:CAB56804.1]
and Pectobacterium carotovorum (formerly Erwinia caro-
tovora) [GenBank:CAB56783.1] RecA protein sequences
both determined by the same group [49]. The sequence
database records for these homologs were apparently
mixed together such that the sequences do not agree with
the protein sequences reported in the reference publica-
tion. The corrected sequences are used in this work. Thus,
we encourage users of ProfileGrids to be cautious of over-
interpreting rare residues identified in motifs. Currently,
the accurate biocuration of sequence and alignment data
sets can only be achieved by slow, tedious, manual efforts
by protein family experts [50].

Results and Discussion
JProfileGrid software
The program is controlled from the parameter settings
window (Figure 1) which is arranged from top-to-bottom
for loading an alignment, customizing the appearance of
a ProfileGrid, calculating the similarity plot values, and
exporting the results. The ProfileGrid viewer (Figure 2)
shows the results of the JProfileGrid calculation after
opening the alignment file (here of the RecA family of 300
sequences). The first 3 rows are a position ruler, a majority
consensus, and a template sequence (here of the E. coli
RecA homolog). The next 21 rows tabulate the frequency
of the amino acid and gap characters at the corresponding
MSA column position. ProfileGrid cells are color shaded
according to the residue frequency value (Figure 3) with
the legend in the lower-left corner of the ProfileGrid
viewer read from left to right as low to high conservation,
respectively. The top-left corner identifies the character
and the frequency of the ProfileGrid cell currently selected
by the cursor. Note that each column total equals the
number of sequences in the alignment. Since the Profi-
leGrid matrix needs only 21 residue rows to represent pro-
tein sequences, there is practically no limit to the number
of homologs that can be visualized.

The parameter settings window (Figure 1) allows the user
to change the template sequence, the position ruler num-
bering, the majority consensus sequence threshold cutoff

(default 70%), and the residue sort order. By default, the
template is the first sequence of the alignment; and, the
amino acids are alphabetized by the one-letter code to
facilitate looking up a residue of interest. JProfileGrid pro-
vides a menu of the following amino acid physical con-
stants for analysis: age [51], flexibility [52], frequency
among E. coli proteins [53], hydropathy [54], hydropho-
bicity [55], helix propensity [56], mutability [57,58], sur-
face area [59], and volume [60]. Many more constants are
available for those coding their own ProfileGrid imple-
mentations [61]. The "Frequency Colors" button opens a
window listing the 6 default frequency color bins (Figure
3). A ProfileGrid cell is colored by the following bin that
has the largest threshold value greater than or equal to a
cell's residue frequency: <10% (white), ≥ 10% (gray), ≥
25% (yellow), ≥ 50% (orange), ≥ 70% (green), and ≥ 90%
(red). This color scheme was chosen to maximize the vis-
ual differences between bins for the inspection of Profi-
leGrids for patterns (see below). By contrast, a color ramp
(i.e., shades of one color) would not facilitate such analy-

A screen shot of the JProfileGrid parameter settings windowFigure 1
A screen shot of the JProfileGrid parameter settings 
window.
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sis. However, the user is able to define their own fre-
quency color scheme by choosing the number, size, and
color of the bins. To assist the inspection of ProfileGrids,
the frequency values can be hidden. This same menu
allows the values to be reported as a percentage.

Two features allow one to visualize other sequences of the
ProfileGrid besides the template sequence. First, the high-
light sequence option allows one to detect and to repre-
sent unique features of one sequence with respect to the
entire information content of a MSA. Such a feature may
indicate specialization with respect to function or activity.
When the highlight menu is used to select a sequence dif-
ferent from the template sequence, then the highlight fea-
ture is turned on (Figure 4). Specifically, the highlight
sequence will appear immediately below the template
sequence in the ProfileGrid. Furthermore, a pairwise com-
parison is made such that the corresponding residue is
boxed if the highlight sequence differs from the template
sequence. The user may choose other colors besides the
default blue selection. Note that in the highlight sequence
figure, the cell value identification feature (top left corner)
reports the current cell frequency even when the Profi-
leGrid colors and values are hidden. The second feature to
visualize MSA sequences is the alignment viewer window
(Figure 5) that displays a traditional alignment represen-

The ProfileGrid viewer showing the RecA protein family resultsFigure 2
The ProfileGrid viewer showing the RecA protein 
family results. The first 3 rows of the ProfileGrid are a 
position ruler (Posn), a majority consensus (Major), and a 
template sequence (here of the E. coli RecA homolog). The 
remaining rows tabulate the frequency of the amino acid and 
gap characters at each position of the alignment. Cells are 
color shaded according to the frequency value (Figure 3). 
The top-left corner identifies the character and the fre-
quency of the ProfileGrid cell currently selected by the cur-
sor.

The frequency settings determining a ProfileGrid cell colorFigure 3
The frequency settings determining a ProfileGrid cell 
color.

B. subtilis RecA highlight sequence example with frequency colors and values turned offFigure 4
B. subtilis RecA highlight sequence example with fre-
quency colors and values turned off.
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tation of sequences from the currently selected ProfileGrid
cell. In this example, the 21 homologs that have glycine in
the third column are shown. For comparison purposes,
the first row in the alignment is the template sequence.

JProfileGrid calculates similarity plot values (Figure 6)
based on the plotcon algorithm [9]. A user-defined sliding
window (default 5 residues) is used to calculate conserva-
tion across the MSA using the BLOSUM62 or EDNAFULL
scoring matrices for proteins and nucleic acids, respec-
tively. Weights for each sequence are taken from MSF
input files to correct for overrepresented sequences. By
contrast, calculations based upon FASTA files will not
have such a correction. The similarity plot results can be
visualized directly within a ProfileGrid. This is accom-
plished by a threshold cutoff value determining the end-
points of similarity boxes outlined in black in the
ProfileGrid (Figure 7). These boxes emphasize conserved
regions in the protein family. The similarity boxes also
serve as landmarks when the ProfileGrid frequency cell
colors are not shown.

JProfileGrid exports output in two formats. ProfileGrid
figures for publication are made from a saved Excel
spreadsheet file where the matrix appearance can be opti-
mized such as the selection of the text font. The user can
specify a subset range of MSA columns as well as the size
of each ProfileGrid tier which in this example was set to
50 (Figure 7). A second output format is a script option for
the PyMOL molecular visualization program (Figure 8)
here showing the E. coli RecA crystal structure [62]. Resi-
dues that are completely conserved, i.e., identical, in the
MSA are saved as a PyMOL selection named "ident" in the
script file. Residues that pass the highest threshold value
in conservation (default bin of ≥90%) are saved as a selec-
tion named "bin90". Finally, the motifs and connecting
variable regions are labeled numerically starting from the
N-terminus.

RecA family data set
We have analyzed a set of bacterial RecA homologs con-
sisting of 300 near full-length protein sequences (Table
1). Approximately 280 of the sequences were full-length.
The rest are missing short sequences at the termini. The
number of unique bacterial species in the 300 sequence
data set is 245. We included sequences from multiple
strains of a single species whenever such sequences were
unique. For example, five strains of Streptococcus pyogenes
provided RecA sequences that differed at a small number
(1 to 8) of residues. The sizes of the full-length sequences
ranged from 318 (Bacteroides fragilis; GenBank:
AAA22918.1) to 447 amino acids (Tropheryma whipplei;
GenBank:AAO44708.1) with an average length of 354 ±
18. The degree of identity to the E. coli RecA protein
sequence ranged from 37% (Ureaplasma parvum; Gen-
Bank:AAF30489.1) to 100% (Shigella flexneri; Gen-

The alignment viewer showing sequences from the currently selected ProfileGrid cellFigure 5
The alignment viewer showing sequences from the 
currently selected ProfileGrid cell.

Similarity plot of the RecA protein familyFigure 6
Similarity plot of the RecA protein family. Similarity 
values over the first 150 residues of the alignment were cal-
culated using the BLOSUM62 scoring matrix and a window 
size of 9. A threshold value of 0.8 is indicated by the dashed 
line. A complete plot using a smaller RecA data set has been 
previously published [17].
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Bank:AAP18040.1) with an average identity of 62% ±
10%. These calculations excluded the intein sequences
found in the Mycobacterium RecA protein homologs [63].

The data sets from the mid-1990's [17,19,30] were biased
toward RecA homologs from the Proteobacteria phyla

(60% of sequences). In the current work, the purple bac-
teria represent only 44% of the sequences (Table 1). Fur-
thermore, we now include homologs from several newly
sequenced bacterial phyla including the Chlororflexi and
the Fusobacteria. The diversity of the current data set per-
mits a robust description of motifs of the RecA protein

ProfileGrid of 300 bacterial RecA protein sequencesFigure 7
ProfileGrid of 300 bacterial RecA protein sequences. The first row is the E. coli RecA protein sequence. The ProfileGrid 
cells are colored according to the following bins: <10% (white), ≥10% (gray), ≥25% (yellow), ≥50% (orange), ≥70% (green), 
≥90% (red). The boxed regions (potential motifs) were drawn by JProfileGrid from the similarity plot calculations using an 80% 
threshold cutoff. For visual clarity, only the first 150 residues of the alignment are shown; and, the frequency values are omit-
ted. Additional File 2 is the entire RecA ProfileGrid including frequency values. This figure was generated from the JProfileGrid 
spreadsheet output.
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family. Additional file 1 shows a summary of the informa-
tion from the RecA MSA.

RecA family ProfileGrid applications
An alignment of 300 bacterial RecA homologs is graphi-
cally represented by a ProfileGrid (Figure 7). This visuali-
zation gives a succinct overview of MSA information
especially when the frequency values are hidden to reduce
clutter. The details of the residue frequency for all col-
umns of the RecA MSA are found in Additional file 2. We
used the sequence conservation denoted by the similarity
boxes to define RecA motifs to serve as a nomenclature
across the full length of the RecA protein family (see Addi-
tional files 1 and 2). The labeling (and subsequent analy-
sis) of every part of the RecA protein is a fundamental
technique adapted from traditional anatomy [64] and
applied to macromolecules, i.e., nanoanatomy.

The detailed RecA ProfileGrid information will allow
researchers to examine conservation at RecA positions of

interest. For example, a new suppressor mutation was
recently [65] reported that ameliorates the effects of an
impaired [KR]x[KR] motif [66]. The suppressor maps to E.
coli RecA position 11 and is a change from alanine to
valine which is a residue that is not observed among any
of the 300 sequences in the MSA (Figure 2, Additional file
2). Since the current sequence data set is larger and more
diverse than previous RecA homolog collections, one can
have more confidence in the lack of an observed residue
change.

The sequence conservation can also be related to RecA
protein structure. For example, most of the 21 invariant
residues (100% identity) are located on the monomer
anterior side (Figure 8) that faces the central axis of the
right-handed helical protein filament. The RecA filament
interior is where the DNA strand exchange activity takes
place. More specifically, a recent crystal structure of a
RecA-DNA complex identifies residues involved in DNA
binding [29]; but, the report did not discuss the sequence

Visualization of PyMOL script outputFigure 8
Visualization of PyMOL script output. JProfileGrid can write a ".pml" file that will define the following named selections 
based upon the ProfileGrid information: identical residues (black sidechains); conserved motifs ("mot#") colored from most 
amino terminal (red) to most carboxyl terminal (green); and connecting variable ("var#") regions (gray). These different selec-
tions are mapped on to the E. coli RecA crystal structure [PDB:2REB]. This orientation is defined as the anterior view of the 
RecA monomer anatomical position. Some of the named selections are indicated by arrows in this PyMOL screen shot.
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conservation of these amino acids. We observe that most
of the positions involved in direct DNA contacts are
almost completely conserved throughout bacterial RecA
evolution (Table 2) as would be expected for ligand bind-
ing residues. However, there are some exceptions. In the
E. coli RecA protein cocrystal structure, 164-met is
involved in making DNA ribose contacts. Surprisingly, at
this position methionine occurs in only 20% of the RecA
homologs in the MSA. Instead valine is the more frequent
(62%) residue found among bacterial RecA proteins. In
addition, two residues involved in DNA base contacts
(197-met and 199-ile) have potentially non-conservative
substitutions with respect to charge (glutamate) or steric
(valine) considerations, respectively. An E. coli RecA
mutant 197-met to glu is defective for in vivo repair activ-
ities [67]. There are conflicting reports on whether a 199-
ile to val RecA mutant is impaired for repair activity
[67,68]. Parenthetically, we also checked these residue
positions in MSAs of the distant RecA homologs such as
eukaryotic Rad51/Dmc1, archaeal RadA, and viral UvsX
proteins [17,69]. In contrast to the bacterial RecA MSA,
only 211-gly and 212-gly are completely conserved
among distant homologs while there is weak sequence
similarity at positions 164, 176, 200, and 213. Models for
the roles of the DNA-interacting positions should account
for this sequence diversity.

ProfileGrid structural pattern analysis of the MAW motif
When combined with different amino acid properties
[61], ProfileGrids are a useful tool for visualizing struc-
tural patterns across the interspecies diversity of a protein
family. We illustrate this on two adjacent motifs (MAW
and P-loop) that comprise the most conserved part of
RecA homologs of bacteria, eukaryotes, and archaea [17].
Of the two, only the function of the P-loop (the cofactor
binding site) has been determined [26]. By contrast, little
[17] is known about the MAW motif (residues 40–65).
From the RecA crystal structures, the MAW motif (or
"motif 1a"; see Additional file 1 for motif and variable
names) consists of a loop, α-helix B, a tight turn, and ends
with β-strand 1. This glycine-rich motif threads through
the RecA hydrophobic core and interacts with motifs (1b,
4a, and 5b) that form part of the ATP binding site; but, the
MAW region itself has not been shown to contact the
cofactor ligand. The MAW motif also connects the P-loop
to a hinge (variable 1) that undergoes a dramatic change
in the transition from the inactive to active RecA confor-
mation [29]. We note that aside from the protein termini,
this hinge region is one of the least conserved parts of the
RecA protein (Figure 6, Additional files 1 and 2).

The ProfileGrid in Figure 9 displays the MAW and P-loop
motifs sorted by the residue properties of helicity and vol-

Table 1: Bacterial RecA Homologs

Phyla 1997 Current Representative Species

Actinobacteria 6 37 Mycobacterium tuberculosis
Aquificae 1 3 Aquifex pyrophilus
Bacteroidetes/Chlorobi 1 8 Bacteroides fragilis
Chlamydiae/Verrucomicrobia 1 8 Chlamydia trachomatis
Chloroflexi 0 2 Dehalococcoides ethenogenes
Cyanobacteria 3 12 Anabaena variabilis
Deinococcus-Thermus 3 5 Deinococcus radiodurans
Dictyoglomi 0 1 Dictyoglomus thermophilum
Fibrobacteres/Acidobacteria 0 2 Fibrobacter succinogenes
Firmicutes 8 73 Bacillus subtilis
Fusobacteria 0 2 Fusobacterium nucleatum
Nitrospirae 0 1 Thermodesulfovibrio yellowstonii
Planctomycetes 0 2 Gemmata obscuriglobus
Proteobacteria (39) (133)
Alpha 11 30 Rhodobacter capsulatus
Beta 6 25 Neisseria gonorrhoeae
Delta/Epsilon 3 20 Campylobacter jejuni
Gamma 19 58 Escherichia coli
Spirochaetes 1 8 Borrelia burgdorferi
Thermodesulfobacteria 0 1 Thermodesulfobacterium commune
Thermotogae 1 2 Thermotoga maritima

Total 64 300

Bacterial phylogenetic classification was taken from the NCBI Taxonomy database [33]. Column "1997" depicts the number of bacterial RecA 
homologs used in the multiple sequence alignment from a previous analysis [17]. The adjacent column shows the number of homologs used in the 
present work. The last column lists a representative species from the corresponding phyla.
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ume. Among RecA homologs, the region separating helix
B and strand 1 is dominated by residues which do not
favor helix formation (Figure 9A). The conserved glycines
are probably necessary for the tight turn that occurs in this
area [70]. Sorting the MAW motif ProfileGrid by amino
acid sidechain volume (Figure 9B) allows the visualiza-
tion of two other structural features. First, the loop from
residues 41 to 44 is composed of small amino acids,
namely threonine or smaller. Intriguingly, an E. coli RecA
mutant with a change of 44-serine to the much larger leu-
cine residue is proficient for in vivo recombination activ-
ity. However, the mutant is resistant to the recombination
inhibitory effect of overexpression of the UmuD'C com-
plex [71]. The second observed volume feature is that
large residues between positions 45 and 58 are, in general,
flanked on either side by small amino acids resulting in an
alternating pattern of small-large-small residues.

When considering distant RecA homologs from all
domains of life, the MAW motif is better conserved than
the recently defined DNA interacting residues (Table 2). It
is curious, then, that no clear function has been attributed
to the MAW motif so here we speculate on possible roles.

Universally conserved residues can be involved in ligand
interactions or in protein folding [72-74]. While a ligand
interacting role is a formal possibility for the MAW motif,
this region of the protein forms part of the RecA hydro-
phobic core. However, one or more residues in the seg-
ment spanning positions 61–72 can be crosslinked to
bound single-stranded DNA [75]. This suggests that parts
of the MAW motif may not remain buried in the protein
core at all times and that the motif may be involved in
DNA binding. With respect to a protein folding role, the
RecA ProfileGrid shows a high prevalence of isoleucine,
leucine, and valine residues among bacterial RecA MAW
motifs (Additional file 2). Specifically, two conserved
leucines are on the same face of helix B (positions 47 and
51). Two properties of leucine may be relevant to this
observation. First, in a study of crystal structures, leucine
was found to have the largest amount of sidechain flexi-
bility when buried [52]. Second, leucine is known to sta-
bilize helices [76] which agrees with a theoretical study of
RecA family helices. The residues from 44 to 51 of helix B
have a near optimal sequence for thermostability when
compared to other central domain helices [77]. Also,
mutation of position 51 from leucine to phenylalanine
results in a RecA mutant that is inactive for activities both
in vivo and in vitro [78,79]. Thus, a role for the MAW motif
may be to initiate protein folding or to stabilize the RecA
protein core mediated by the motif structural features
described above. Perhaps such a protein folding role is sig-
nificant for a motif that connects an ATP binding site to
the hinge region that undergoes conformational changes
upon cofactor binding.

Highlighting unique B. subtilis RecA residues
The JProfileGrid "highlight sequence" feature can draw
attention to any unique residues of a particular sequence
within the context of the entire MSA. Here, we analyze the
B. subtilis RecA protein [GenBank:CAB13567.1]. The Pro-
fileGrid of Figure 10 clearly shows that the characters 85-
gln, 87-gap, 88-arg, and 90-ser are rarely found between
the highly conserved positions 84 and 91. In addition, 88-
arg is significantly larger than the more frequently
observed glycine. Given the aforementioned caution
about overinterpreting rare residues, we do not believe
that the unique B. subtilis RecA feature described here is a
due to a sequence error. We found the same result in two
redundant B. subtilis RecA sequences determined from dif-
ferent research groups [GenBank:CAA36377.1, Gen-
Bank:AAB47709.1]. What could be the functional role for
these residues? We note that there is controversy regarding
the ability of the B. subtilis RecA protein to hydrolyze the
cofactor ATP [80-82]. We suggest that this region of the B.
subtilis RecA protein be targeted for site-directed mutagen-
esis to ascertain if this rare sequence feature influences a
potentially unique biochemical activity.

Table 2: Conservation of DNA binding residues

Residue % Freq. Other residues

162-Ser 59 Ala 14%, Gln 12%
164-Met 20 Val 62%
165-Gly 99
168-Ala 100
169-Arg 99
172-Ser 99
176-Arg 99
196-Arg 99
197-Met 47 Glu 42%
198-Lys 98
199-Ile 74 Val 25%
200-Gly 99
207-Glu* 99
208-Thr 90
211-Gly 100
212-Gly 99
213-Asn 52 Arg 31%
226-Arg* 97
243-Arg* 56 Lys 41%
245-Lys* 96
280-Lys* 30 Glu 32%, Asp 16%
282-Lys* 19 Gly 36%, Asp 29%
286-Lys* 93
302-Lys* 46 Arg 47%

The first column lists E. coli RecA residues directly involved in DNA 
binding and those residues proposed (*) to interact with DNA [29]. 
The "% Freq." column reports the percent frequency of the indicated 
amino acid among 300 RecA homologs. The last column shows the 
percent frequency of other residues at that position of the alignment. 
See text for a description of conservation at these positions among 
eukaryotic and archaeal RecA homologs.
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Conclusion
ProfileGrids serve as a new visual representation of large
sequence alignments where the entire information con-
tent is presented in a concise form. The JProfileGrid Java
software facilitates the creation and analysis of this align-
ment depiction. With the advent of sequence databases
and software programs adopting MSA viewers, the tradi-
tional stacked sequence presentation is burdensome for
large alignments especially for the interactive analysis of
structural patterns and rare features. Thus, we anticipate

that the ProfileGrid paradigm will have widespread appli-
cation in bioinformatics. Finally, we describe and analyze
a curated RecA protein data set whose representation as a
ProfileGrid will serve as a valuable resource for researchers
studying this ubiquitous protein.

Availability and requirements
Project name: JProfileGrid version 1.1.1

Project home page: http://www.profilegrid.org

Structural analysis of MAW and P-loop motif regionsFigure 9
Structural analysis of MAW and P-loop motif regions. The MAW and P-loop motifs are highly conserved parts of the 
RecA protein family found at E. coli homolog positions 40–65 and 66–73, respectively. Labels denote the locations of α-helix B 
and β-strand 1 from the E. coli RecA crystal structure. Sorting the ProfileGrid rows by various amino acid physical constants 
reveals structural patterns within the context of the entire MSA. (A) Sorting by decreasing helical propensity shows that resi-
dues which do not favor helical formation (circled) immediately follow a helix in the MAW motif. (B) Sorting by decreasing vol-
ume displays the pattern (blue lines) that large amino acids are flanked by residues smaller than threonine. Whereas these 
panels were generated from the spreadsheet output, the JProfileGrid software allows an interactive analysis by switching 
between residue properties and color schemes.
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Operating systems: Platform independent

Programming language: Java 1.5 or higher

License: University of California license; see http://
www.profilegrid.org/downloads.shtml#license

Any restrictions to use by non-academics: license
required for commercial use
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Additional file 1
Multiple sequence alignment of bacterial RecA homologs. A subset of 
the 300 sequences is shown representing each of the major bacterial phyla. 
In the alignment, a dash (-) indicates a gap and a period indicates an 
amino acid identical to the E. coli RecA protein. NCBI Protein database 
accession numbers are listed at the end unless the data was taken from the 
TIGR unfinished microbial genomes database. Summary lines above the 
alignment were calculated from all 300 sequences. The "Bioin" line indi-
cates the bioinformatic structural elements (nanoanatomy) across the 
entire RecA protein: 12 motifs and the 10 connecting variable regions. 
"Secon" are the secondary structural elements from the E. coli RecA crys-
tal structure where "a" are  helices, "b" are  strands, "l" are disordered 
loops, and "?" are disordered termini [62]. In each case the letter or 
number name of the element is given in the second position. "Ident" are 
the 21 resides identical in all 300 sequences. "Chemi" are the 39 chemi-
cally conservative substitutions based on the following amino acid classifi-
cation: a = (DE), b = (HKR), f = (AGILV), m = (NQ), o = (FWY), h = 
(ST), i = (P), s = (CM). "Funct" lists the 55 functionally conservative res-
idue substitutions based on the classification: a = (DE), b = (HKR), f = 
(AFILMPVW), p = (CGNQSTY). Finally, "Major" are the 187 residues 
conserved above a 70% majority threshold (210 sequences) with invari-
ant residues shown in uppercase. The numbering of the alignment is based 
upon the E. coli RecA protein sequence.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-554-S1.pdf]

Additional file 2
Detailed ProfileGrid of the RecA protein family. The frequency values 
were calculated from the 300 RecA sequences over the full length (352 
residues) of the E. coli RecA homolog (top sequence) that determines the 
position numbering. The "Major" summary line is the 187 residues con-
served above a 70% majority threshold. The 12 RecA family motifs are 
boxed and labeled (as in Additional file 1) while the connecting variable 
regions are only labeled. Frequency values are shaded in the ranges of 50 
to 69% (light gray), 70 to 89% (dark gray), and 90 to 100% (black). 
Since we anticipate updating the analysis in the future, this is version 1.0 
of the RecA ProfileGrid.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-554-S2.pdf]

Representing a unique B. subtilis RecA sequence featureFigure 10
Representing a unique B. subtilis RecA sequence fea-
ture. In this ProfileGrid where the residues are sorted by 
volume, the B. subtilis RecA homolog is chosen as the "high-
light sequence" and appears in the row immediately under 
the E. coli RecA template sequence. JProfileGrid performs a 
pair-wise comparison and represents any differences 
between the two sequences with blue boxes. It is clear 
within the context of the entire MSA that B. subtilis has a 
rarely occurring sequence from residues 85 to 90 (E. coli 
RecA numbering).
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