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Abstract
Background: Continuous-time Markov models allow flexible, parametrically succinct descriptions
of sequence divergence. Non-reversible forms of these models are more biologically realistic but
are challenging to develop. The instantaneous rate matrices defined for these models are typically
transformed into substitution probability matrices using a matrix exponentiation algorithm that
employs eigendecomposition, but this algorithm has characteristic vulnerabilities that lead to
significant errors when a rate matrix possesses certain 'pathological' properties. Here we tested
whether pathological rate matrices exist in nature, and consider the suitability of different
algorithms to their computation.

Results: We used concatenated protein coding gene alignments from microbial genomes, primate
genomes and independent intron alignments from primate genomes. The Taylor series expansion
and eigendecomposition matrix exponentiation algorithms were compared to the less widely
employed, but more robust, Padé with scaling and squaring algorithm for nucleotide, dinucleotide,
codon and trinucleotide rate matrices. Pathological dinucleotide and trinucleotide matrices were
evident in the microbial data set, affecting the eigendecomposition and Taylor algorithms
respectively. Even using a conservative estimate of matrix error (occurrence of an invalid
probability), both Taylor and eigendecomposition algorithms exhibited substantial error rates:
~100% of all exonic trinucleotide matrices were pathological to the Taylor algorithm while ~10%
of codon positions 1 and 2 dinucleotide matrices and intronic trinucleotide matrices, and ~30% of
codon matrices were pathological to eigendecomposition. The majority of Taylor algorithm errors
derived from occurrence of multiple unobserved states. A small number of negative probabilities
were detected from the Padé algorithm on trinucleotide matrices that were attributable to
machine precision. Although the Padé algorithm does not facilitate caching of intermediate results,
it was up to 3× faster than eigendecomposition on the same matrices.

Conclusion: Development of robust software for computing non-reversible dinucleotide, codon
and higher evolutionary models requires implementation of the Padé with scaling and squaring
algorithm.
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Background
The dynamics of genetic divergence are typically modelled
as a Markov process where the rates of exchange between
discrete sequence states are described by rate matrices.
Discrete- or continuous-time Markov processes employ
different, but related, rate matrices. The former involve a
substitution matrix that specifies the probabilities of sub-
stitution between sequence states in a discrete period of
time (P(t), [1]). The continuous-time Markov process
employs an instantaneous rate matrix (Q), which defines
the instantaneous relative rates of interchange between
sequence states from which the substitution probabilities
for a specified time period are obtained by P(t) = exp(Qt)
where t represents time and exp is the matrix exponential.
The most commonly employed rate matrices impose the
restriction that evolutionary processes are time-reversible
(e.g. [1]). The inaccuracy of this restriction is shown by the
specificity of particular mutagens and repair enzymes [2],
and by the apparent directionality of amelioration of hor-
izontally transferred genes to the background genome
composition [3].

Relaxing the assumption of time-reversibility requires
consideration of non-reversible matrices. Assessments of
time-reversibility, which have largely been restricted to
nucleotide rate matrices, show that non-reversible models
can provide better estimation of important evolutionary
parameters including rates of evolution and, when
employed with the maximum-likelihood phylogenetic
inference framework, phylogenetic tree support [4]. The
development of approaches to identifying both biologi-
cally accurate and parametrically succinct models is there-
fore of considerable interest. Non-reversible forms of
codon substitution models would allow, for instance,
consideration of temporal changes in mutation pressure
on natural selection. However, limitations of matrix expo-
nentiation algorithms have been cited as motivation for
continued development of reversible models (for exam-
ple, [5]). Exploration of statistically efficient (parametri-
cally reduced) forms might be most readily achieved using
continuous time processes, but the accuracy of these
approaches hinges on the properties of exponentiation of
matrices from real biological data.

The most obvious method for computing a matrix expo-
nential is the generalisation of the Taylor series expansion
of a scalar exponential [6]. Instead of a series of scalar
terms, the matrix exponential is expressed as a Taylor
series over terms involving matrix products. The series is
truncated at a sufficiently large finite number of terms
(M).

Convergence of the series expansion depends on the mag-
nitude of the matrix norm ||Q|| (a measure of the size of
the elements in Q, see Methods equation 1) [7]. An
important property of the Taylor series is a reduced rate of
convergence for matrices with large ||Q|| such that achiev-
ing a required accuracy involves increasingly larger M. A
further problem is that the impact of roundoff error
increases with term order so the method becomes imprac-
tical and inaccurate for matrices with large ||Q||.
Although some efficiency improvements can be made to
reduce the number of matrix products required [7], the
essential defect remains. Accordingly, the Taylor series
expansion performs worst on potentially the most biolog-
ically relevant matrices and thus sets a lower bound on
both accuracy and computational performance. We will
subsequently refer to the Taylor series matrices exponenti-
ation algorithm as expTAYL.

Several other algorithms compute the matrix exponential,
but differ substantially in their computational behaviour,
performance, and vulnerability to so called pathological
matrices. For the purposes of this paper, we define a path-
ological matrix as one that results in a substantial discrep-
ancy between the 'true' value of P and the value computed
as exp(Qt) by a given algorithm. It is important to note
that a matrix property responsible for a discrepancy affect-
ing one particular algorithm may not necessarily affect
another algorithm to the same extent.

Of the collection of algorithms, that proposed as most
robust (described below) is seldom adopted in the field of
molecular evolution: instead, the method of matrix expo-
nentiation by eigendecomposition is most widely used by
existing software packages but is far less robust [6]. This
latter algorithm is based on a matrix decomposition
approach involving similarity transformations of the form
Q = SBS-1 so that

exp(Q) = S exp(B)S-1

where the aim is to find an S for which exp(B) is easy to
compute. In the case of eigendecomposition, if Q = UDU-

1 where U are the eigenvectors, D is a diagonal matrix con-
taining the eigenvalues of Q and P(t) the matrix of substi-
tution probabilities for time t, then

P(t) = U exp(Dt)U-1.
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The eigendecomposition approach has an important prac-
tical advantage for molecular evolutionary applications –
the spectral theorem allows the calculation of arbitrary
many values of exp(Qt) from a single decomposition [7].
For a phylogenetic model that assumes a single (global) Q
across the entire tree, for instance, this property means the
decomposition need be performed only once per model
evaluation. The O(n3) complexity of the decomposition is
thus outweighed by its suitability for caching intermediate
results. Eigendecomposition works well for normal matri-
ces (where a normal matrix is defined as one that com-
mutes with its conjugate transpose [7]) but breaks down
when Q does not have a complete set of linearly inde-
pendent eigenvectors (an invertible U does not exist) or
when U is close to singular, i.e. when the condition
number of the matrix of eigenvectors cond(U) = con-
dEV(Q) is large. (We illustrate the analytical conditions
under which the eigendecomposition approach can fail
with an example in Additional file 1.) We will subse-
quently refer to the eigendecomposition matrix exponen-
tiation algorithm as expEIG.

The algorithm advocated by Moler and van Loan [6] com-
putes the matrix exponential using the Padé approxima-
tion in combination with scaling and squaring [8]. Padé
approximants converge if the matrix norm ||Q|| is not too
large. Thus, the idea is to reduce the matrix norm by scal-
ing the matrix and then use Padé approximation (a ratio
of series) to compute the scaled matrix exponential and
then the full matrix exponential by squaring operations.
The scaling and squaring operation reduces the norm of
the matrix ||Q|| to that of a matrix ||Q'||

P(t) = [exp(Qt/m)]m = [exp(Q't)]m

The Padé approximation is a ratio of series where, typi-
cally, the series (denoted p and q) are constrained to be
equal as diagonal Padé approximants are preferred for
numerical efficiency [6]. The Padé approximation with
scaling and squaring is then

The diagonal Padé method with scaling and squaring
requires of the order of O((q + m + 1/3)n3) operations but
is, in general, more efficient than the Taylor series. To
compute single values of exp(Qt) therefore also takes of
the order of O(n3) operations, but does not have interme-
diate results that can be cached. Thus, each tree branch

(and unique value of t) requires an independent exp(Qt).
The robust computational performance of Padé therefore
comes at the cost of requiring an independent exp(Qt)
computation for each value of t. We will subsequently
refer to the diagonal Padé with scaling and squaring
matrix exponentiation algorithm as expPADÉ .

Given the evidence that the algorithms commonly
employed by molecular evolutionary software can signifi-
cantly err in their computation of the exponential [6], a
survey of whether matrices pathological to these algo-
rithms exist in nature is essential for the development of
biologically realistic models of sequence evolution that
are computationally robust. Here we report the results of
a survey for matrices pathological to the exp algorithms in
both protein coding and non-protein coding sequences
from lineages as diverse as microbes and primates.

Results
P matrices were derived from species triads composed of
two ingroups and an outgroup. Knowledge of the out-
group allows determination of the sequence states ances-
tral to the ingroup lineages, thereby enabling a simple
counting procedure for generating the P matrices
(described in the Methods). The outgroup further allows
the resulting matrices to be non-reversible. For the current
comparisons we arbitrarily set the time t to 1.

For each P, the corresponding Q was estimated using a
constrained optimisation procedure. While the relation-
ship between P and Q suggested using the matrix loga-
rithm to estimate Q, doing so resulted in nearly all
dinucleotide and higher matrices having negative off-
diagonal elements. In preliminary analyses, we deter-
mined that this property arose from sampling error
(results not shown). Importantly, because matrices with
negative off-diagonals cannot be readily interpreted we
developed a constrained optimisation procedure for esti-

mation of Q from . This procedure, which we describe
in more detail in the Methods, used a numerical optimi-

sation algorithm to minimise the value of || - exp( )||

subject to the constraint qij, i ≠ j ≥ 0. By default, this proce-

dure employed the expPADÉ algorithm, resulting in a bias

towards this algorithm which we address in detail later.
We note here that as the results were not substantively dif-
ferent when we used the matrix logarithm for estimating
Q and the constrained optimisation approach produces
matrices more likely to be representative of naturally
occurring rate matrices, we only report results from the
latter procedure.
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To measure the magnitude of a matrix we employ the
Frobenius norm [6], the square root of the sum of the
absolute squared elements of a matrix (see Methods equa-
tion 1). The matrix norm is also used as a measurement of

the error, or discrepancy, between  and the results of
expTAYL, expEIG and expPADÉ algorithms and we denote

these error statistics as TAYL, EIG and PADÉ (see Methods

equations 2–4). The additional matrix property of eigen-
vector matrix condition number, the product of the spec-
tral matrix norms of the eigenvector matrix and inverted
eigenvector matrix of Q (Methods equation 5), is also
used as it indicates the suitability for digital computation
of a matrix for eigendecomposition [9-11]. Finally,
because the elements of P are probabilities, we also
defined a matrix as pathological to an algorithm if it con-
tained an invalid probability value (< 0, > 1).

Pathological matrices in microbes
Orthologous protein coding gene sequences were sam-
pled from all species triples in KEGG where neighbours
were 0–2% distant by 16 S rRNA and outgroups were 2–
10% divergent. This procedure resulted in 136 valid spe-
cies triples. Given the large number of genes, and that pre-
liminary work indicated estimating a single trinucleotide
Q required nearly 1 day, we concatenated all alignments
from a triad and estimated separate Q matrices for each
ingroup lineage from these concatenated alignments. As
described in the Methods, aligned codon columns with
non-nucleotide characters (such as indels or ambiguous
bases) were deleted. Nucleotide and trinucleotide samples
were obtained from the unmodified resulting alignments.
Two distinct dinucleotide samples were considered. The
patterns of mutation are typically distinct between the
three different codon positions due to their differing
influence of variation in the encoded amino acid
sequence. We therefore consider dinucleotides sampled
from both the first and second or second and third codon
positions. We refer to these as the dinucleotide 1+2 or 2+3
matrices respectively. The minimum, median and maxi-
mum filtered, concatenated alignment lengths were ~31
Kbp, ~1.5 Mbp and ~3.7 Mbp respectively.

Measures of exponentiation error for nucleotide matrices
were low across all algorithms (Table 1). There were no
exponentiation failures by any algorithm for the nucle-
otide matrices. A small fraction (< 1%) of expEIG failed,

however, for the dinucleotide matrices derived from
codon positions 1+2 or 2+3, with one significant failure
resulting from a large number of zero elements that lead
to a singular eigenvector matrix, and four failures where
the maximum element size resulted in an invalid proba-

bility. Almost all  the trinucleotide matrices were

pathological to expTAYL, but none of these matrices were

pathological to either the expEIG or expPADÉ algorithms.

The other descriptive statistics increased with the dimen-
sion of the matrices: matrix norm and eigenvector matrix
condition numbers systematically increased from the
nucleotide to trinucleotide matrices. The distinct dinucle-
otide positions were predominantly consistent with each
other, with median matrix statistics and error values of
similar order.

Pathological matrices in primates
Intronic alignments were sampled from Ensembl release
46 for 3 primate lineages – human, chimpanzee and
macaque – where the outgroup status of macaque relative
to the great apes is well established [12]. Intronic
sequences were sampled due to increased confidence in
their orthology arising from the relationships between
exonic sequences. Sequences unlikely to evolve by a point
mutation process (such as simple repeat sequence) were
masked and all alignment columns containing non-nucle-
otide characters were removed (see Methods). There were
a total of 1079 alignments with minimum, median and
maximum filtered alignment lengths of ~30 Kbp, ~59 Kbp
and ~438 Kbp respectively.

As for the microbial exonic sequences, no nucleotide
matrices pathological to any of the algorithms were evi-
dent (Table 2). The results from dinucleotide matrices 1+2
and 2+3 were similar – low errors across all algorithms
and no matrices pathological to any algorithm. This result
is distinct from that evident from the microbial exonic

P̂

255
257( )

Table 1: Exponentiation of matrices from microbes.

Data Norm1 Cond1 TAYL
1

EIG
1

PADÉ
1

N3

Nuc (0.062, 0.59) (1.4, 4.6) (7.1e-06, 2e-05) (7.1e-06, 2e-05) (7.1e-06, 2e-05) 0 0 272
Dinuc 1+2 (0.082, 1.9) (4.7, inf) (0.00012, 0.0032) (0.00012, inf) (0.00012, 0.0032) 0 3 272
Dinuc 2+3 (0.19, 3.1) (3, 1e+02) (0.00015, 0.0079) (0.00015, 0.0079) (0.00015, 0.0079) 0 1 272

Trinuc (3.2e+02, 4.4e+02) (19, 3.5e+02) (3.7e+84, 1.5e+136) (0.22, 0.23) (0.22, 0.23) 256 0 257

1 – median and maximum values; 2 – Number of P matrices for the indicated algorithm with an invalid probability; 3 – total number of matrices; inf – 
an infinite difference, typically arising from an exponentiation error.

ETAYL
2 EEIG

2
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data. Also different to the microbial data were an appreci-
able frequency (~10%) of trinucleotide matrices patho-
logical to expEIG while no matrices were pathological to
expTAYL. A moderate number of matrices were also patho-
logical to expPADÉ, but inspection of these revealed a max-
imum negative element size of -1.2e-33, indicating these
as likely deriving from rounding errors. Also consistent
with the results from the microbial analyses, the eigenvec-

tor matrix condition numbers increased from the nucle-
otide to trinucleotide matrices (see Figure 1).

Motivated by the differing frequency of pathological
matrices between microbial exonic and primate intronic
data, we sampled a collection of primate protein coding
gene exons. Specifically, we used exonic sequence from a
subset of the genes from which the introns were obtained.

Table 2: Exponentiation of matrices from primate intron sequences.

Data Norm1 Cond1 TAYL
1

EIG
1

PADÉ
1

N3

Nuc (0.015, 0.047) (1.5, 56) (6.8e-06, 1.7e-05) (6.8e-06, 1.7e-05) (6.8e-06, 1.7e-05) 0 0 2158
Dinuc 1+2 (0.074, 0.21) (10, 3.3e+02) (0.00016, 0.00058) (0.00016, 0.00058) (0.00016, 0.00058) 0 0 2158
Dinuc 2+3 (0.074, 0.2) (11, 1.2e+03) (0.00016, 0.00085) (0.00016, 0.00085) (0.00016, 0.00085) 0 0 2158

Trinuc (0.24, 0.95) (1.8e+02, 1.1e+07) (0.001, 0.017) (0.001, 7.5) (0.001, 0.017) 0 188 2080

1 – median and maximum values; 2 – Number of P matrices for the indicated algorithm with an invalid probability; 3 – total number of matrices.

ETAYL
2 EEIG

2

Eigenvector matrix condition number increases with the dimension of the substitution modelFigure 1
Eigenvector matrix condition number increases with the dimension of the substitution model. Data are from pri-
mate introns.
Page 5 of 10
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:550 http://www.biomedcentral.com/1471-2105/9/550
Given the restriction of pathological matrices to dinucle-
otide or higher alphabets, and high computational
demands of fitting trinucleotide models, we sampled
1028 CDS alignments and combined these into 103 con-
catenated (10 loci each) alignments (see Methods). The
minimum, median and maximum filtered, concatenated
alignment lengths were ~12 Kbp, ~24 Kbp and ~40 Kbp
respectively.

The matrix properties for these data, shown in Table 3,
showed more consistency with those of the microbial
exonic data than primate intronic data. As observed in the
microbial analyses, an appreciable frequency (~8%) of
dinucleotide matrices from codon positions 1+2 were
pathological to expEIG but not to expTAYL. A smaller pro-
portion (~1%) of matrices from codon positions 2+3 were
pathological to expEIG. Also consistent with the microbial
exon analysis results, all trinucleotide matrices were path-
ological to expTAYL. These results establish that the fre-
quency of matrices pathological to expTAYL and expEIG
depends on the class of sequence being sampled.

An important difference between the trinucleotide matri-
ces from the intronic and exonic sequences is the presence
of the trinucleotides encoding stop codons. We assessed
whether inclusion of these states, which are absent from
the in frame exons, contributed to the exponentiation
errors by excluding unobserved states from the trinucle-
otide count matrices. This therefore generates 61 × 61
matrices, as employed by codon substitution models. As
shown in the last row of Table 3, with the removal of
unobserved states the errors from expTAYL were completely
eliminated. We further confirmed that the presence of
unobserved states was responsible for the expTAYL failures
by taking a dinucleotide counts matrix and selecting two
states to be missing (setting the corresponding row/col-
umn counts to all zeros). Exponentiation of this con-
structed matrix also proved pathological to expTAYL.
Interestingly, the frequency of errors from expEIG was sig-
nificantly increased with ~30% of codon matrices proving
pathological (Table 3).

Discussion
Our analyses confirm the numerical qualities of the three
matrix exponentiation algorithms are distinct and that

matrices pathological to both expEIG and expTAYL exist in
nature. The magnitude of errors ranged from the subtle, P
had probabilities close to but outside the interval 0–1, to
extreme cases of algorithmic failure or extremely large ele-
ments. The range of these errors, and the data-type
dependent frequency of matrices pathological to an algo-
rithm indicate that expTAYL and expEIG are ill-suited to eval-
uation of non-reversible evolutionary models or to data
where more than one sequence state is not observed.

An important impact of our study design is a bias towards
expPADÉ which we now partly redress. This bias was inevi-

table because estimates of Q had to be obtained from esti-
mates of P and the prohibitive computational time
required for estimation of trinucleotide Q necessitated a
choice of a single exp algorithm. For the microbial line-
ages in particular, fitting a single trinucleotide Q fre-
quently took ~1 day. We therefore elected to fit the
trinucleotide matrices using the expPADÉ since it was sup-

ported as most robust [6]. Nonetheless, we considered the
bias introduced by estimating Q using one algorithm and
computing exp(Q) with another. The dinucleotide model
failures of expEIG provided an opportunity to efficiently

(with regards to compute time) assess whether con-
strained optimisation of Q using expEIG, instead of exp-

PADÉ, might eliminate the matrices pathological to expEIG.

We therefore modified the constrained fitting of Q to use
expEIG instead of expPADÉ, and applied the algorithm to the

primate dinucleotide matrices derived from codon posi-
tions 1+2 of the concatenated protein coding sequences

and exponentiated the resulting  also using expEIG.

From the resulting matrices there was 1 failure during
optimisation and 6 matrices remained pathological to
expEIG after this procedure. This number is smaller than

the 17 failures (Table 3) for expEIG when applied to Q esti-

mated using expPADÉ . These results indicate that although

using a different algorithm for estimating Q introduces
some bias, expEIG still fails at an appreciable frequency.

We note that for the Q matrices estimated using expEIG,

Q̂

Table 3: Exponentiation of matrices from primate protein coding exons.

Data Norm1 Cond1 TAYL
1

EIG
1

PADÉ
1

N3

Dinuc 1+2 (0.021, 0.16) (42, 1.4e+04) (3.1e-05, 0.00044) (3.1e-05, 0.00044) (3.1e-05, 0.00044) 0 17 206
Dinuc 2+3 (0.051, 0.18) (23, 1.1e+04) (7.1e-05, 0.00041) (7.1e-05, 0.00041) (7.1e-05, 0.00041) 0 3 206

Trinuc (2.7e+02, 3.4e+02) (2.9e+02, 2.3e+04) (6.4e+65, 3.6e+89) (0.22, 0.22) (0.22, 0.22) 206 0 206
Codon (0.15, 0.42) (4.7e+02, inf) (0.00049, 0.0029) (0.0005, 0.087) (0.00049, 0.0029) 0 62 206

1 – median and maximum values; 2 – Number of P matrices for the indicated algorithm with an invalid probability; 3 – total number of matrices.

ETAYL
2 EEIG

2
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neither expPADÉ nor expTAYL exhibited high . However, the

expPADÉ of Q estimated by expEIG returned invalid proba-

bilities from  of the matrices examined in this study

(all matrices considered in Tables 1, 2, 3 and those esti-
mated using expEIG). These failures were all extremely

small negative values, the largest absolute value being
~10-34, likely reflecting rounding errors and thus their
infrequent occurrence and extremely small size support
the robustness of expPADÉ .

The failure on both sequence classes of the eigendecom-
position algorithm can originate from properties of the
eigenvectors and/or eigenvalues. If the eigenvector matrix
of a given Q is near-singular, then spectral expansion of
the matrix exponential expEIG(Q) is ill-defined. The eigen-
values influence on the computations occurs when a Q
has very many almost degenerate (in the examples in the
present study, near zero) elements. In these cases, though
the numerically determined eigenvector matrix has an
inverse, the set of numerically determined eigenvalues
and eigenvectors do not accurately satisfy the eigenvalue
equation [13] that can lead to failure of the spectral repre-
sentation of the matrix exponential expEIG of Q.

There appears to be a connection between these two types
of failures: matrices with ill-conditioned eigenvector
matrices lie close to ones with multiple eigenvalues [14].
Thus, the eigendecomposition can fail (or become inaccu-
rate) due to ill-conditioning of the eigenvectors (becom-
ing parallel) or of the eigenvalues (many degenerate near
zero values) or both [13,15].

The influence of sequence type on the frequency of path-
ological matrices originated in part from absence of some
sequence states and potentially also from the reduced
divergence of protein-coding DNA sequences. The expTAYL
algorithm exhibited the most striking difference between
exonic and intronic sequences. As demonstrated by our
artificial dinucleotide example, where we set multiple
states to being unobserved, these failures arose from mul-
tiple unobserved sequence exchanges. The expTAYL algo-
rithm should therefore not be used on data sets where this
may arise. The expEIG algorithm also exhibited a difference
in failure rates between the two sequence classes – ~10%
trinucleotide matrices on intronic data, ~5% dinucleotide
matrices and ~30% codon matrices on primate exonic
data. Combined with the difference in error rates of dinu-
cleotide matrices for positions 1+2 and 2+3 on exonic
data, these results suggest that the ultimate biological
cause of these failures is the suppressing influence of nat-
ural selection on substitution rates. Of the three codon
positions, positions 1+2 are subjected to greater scrutiny
by natural selection than positions 2+3. The result is that

many of the dinucleotides exhibit similarly reduced sub-
stitutions in a matrix such that some of the eigenvectors
may be almost parallel, resulting in a near-singular matrix.
The fact that there is little difference in the matrix norm
statistics between dinucleotide 1+2 and 2+3, yet the max-
imum eigenvector matrix condition numbers exhibit a
similar order of magnitude to that observed for the trinu-
cleotide cases (Tables 1 and 3), is consistent with this
hypothesis [16]. The absence of such errors from the pri-
mate intron dinucleotide matrices (Table 2) follows,
because the putative absence of selective constraint on
intronic sequence would allow greater differentiation
between the dinucleotide substitutions and thus result in
matrices that were not close to singular. This argument
also applies to the increased frequency of errors affecting
codon matrices compared with the trinucleotide counter-
parts (Table 3). These results indicate that combinations
of divergence and natural selection, such as those consid-
ered here, exist to which the expEIG algorithm is not well
suited.

We considered an alternate, but less likely, explanation for
the distinct frequency of pathological matrices between
the protein coding and intronic sequence classes – that
they represent an artefact of the concatenation of protein
coding sequences. Concatenation of sequences from pro-
tein coding genes subjected to distinct evolutionary and
mutagenic processes could generate (or obscure) patho-
logical matrices. We evaluated this possibility for dinucle-
otide matrices on individual protein coding sequence
alignments for just one of the species triples (Anabaena
variabilis, Anabaena sp. PCC 7120 and Thermosynechococcus
elongatus). The results were consistent with those reported
above regarding the occurrence of errors for expEIG (Table

4). In contrast to the results from the concatenated align-
ments, there was a substantial error rate from expTAYL.

Consistent with our assessment from trinucleotide matri-
ces from protein coding sequences, the failures were pre-
dominantly caused by the absence of some states, a case
that was increased due to the much shorter length of the
individual alignments. These properties were robust to
whether expPADÉ or expEIG were used in the constrained

optimisation step (Table 4). That all algorithms exhibited

a consistently lower median error rate on the  estimated

using expPADÉ (~0.0017) compared with those estimated

using expEIG (~0.0026) further supports the robustness of

expPADÉ .

Matrices pathological to an algorithm can also occur dur-
ing numerical optimisation. What defines the frequency
of such matrices is unclear but they do arise during opti-

21
4701

Q̂
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misation. For ~1% of the primate intron trinucleotide P
matrices, the Taylor series to the second element (which
we used as the initial estimate for optimisation) were
pathological to expEIG. Whether occurrence of such matri-
ces during an optimisation would affect the resulting solu-
tion is unclear.

Although expEIG lends itself to caching, the utility of a glo-
bal Q, and thus the importance of caching, diminishes
when considering non-reversible models. Non-stationar-
ity is implicitly a part of non-reversible phylogenetic mod-
els; this, by definition necessitates non-global Q. As
evidenced by the computational speed summaries in
Table 5, if numerous exponentiations are required then
expPADÉ has a clear performance advantage in addition to
its numerical robustness.

Conclusion
We have determined that matrices pathological to the
most commonly applied matrix exponentiation algo-
rithms exist in nature. The robust behaviour of the Padé
with scaling and squaring algorithm, combined with its
performance advantage for larger sequence alphabets,
establishes this as the algorithm most suited to non-
reversible models.

Methods
Sampling Sequences from Microbes
Most methods for inferring rate matrices perform best
when the diagonal of the probability matrix is strongly

dominant, i.e. when there are relatively few changes.
Incorrect choices of the outgroup are also problematic,
because such choices reverse the directionality of the evo-
lutionary process. We therefore chose species triples
where the sister taxa are substantially more related to one
another than they are to the outgroup. Specifically, we
required sister taxa to be at least 98% identical in their 16
S rRNA genes, and required the outgroup to be 90–98%
identical, thus ensuring that all but the fastest-evolving
proteins would have dominant diagonals in their P matri-
ces and that the outgroup would be more different than
the remainder. For each of these species triples, for each
protein in one of the two sister taxa, its best BLAST hit in
each of the other two taxa was recovered (blastp e-value
10-10). The best hits were then aligned using MUSCLE
with default parameters and the nucleotide sequences
from KEGG threaded back through the protein alignment
to generate a nucleotide alignment.

Sampling Sequences from Primates
We sampled primate sequence alignments from the
Ensembl release 46 multiple-sequence alignments of
Homo sapiens (human), Pan troglodytes (chimpanzee) and
Macacca mulatta (macaque) genomes. Genomic coordi-
nates for human protein coding genes were determined
and Ensembl's PECAN genomic multiple alignments cor-
responding to the human coordinates selected for the spe-
cies-set. Only genes for which sequence alignments were
available for all three lineages were retained. Exonic
sequence, indels and the simple repeat sequences were
masked. Alignments were split into trinucleotide columns
and any column containing characters other than ACGT
were excluded and of the resulting filtered alignments
those ≥ 50000 base pairs long were kept. This procedure
resulted in ~1100 alignments of primate intron
sequences.

Orthologous protein coding sequence (CDS) for the sam-
pled human genes was extracted and aligned using the
PyCogent progressive HMM alignment algorithm, with a
codon substitution model [17]. All aligned codon col-
umns containing non-nucleotide characters were
removed. Due to the computational demands of fitting

Table 4: Exponentiation of individual matrices from protein coding exons from a triad of microbial species.

Fit1 Data Norm2 Cond2 TAYL
2

EIG
2

PADÉ
2

EPADÉ
3 N4

expPADÉ Dinuc 1+2 (0.13, 3.7e+02) (10, 1.3e+18) (6.2e-06, 1.2e+137) (6.2e-06, 86) (6.2e-06, 0.96) 85 141 0 5580
Dinuc 2+3 (0.35, 5.8e+02) (15, 9.4e+16) (0.0017, 5.2e+141) (0.0017, inf) (0.0017, 0.97) 89 140 0 5580

expEIG Dinuc 1+2 (0.13, 2.6e+02) (15, inf) (1.4e-05, 1.5e+70) (1.4e-05, 0.96) (1.4e-05, 0.96) 86 137 0 5580
Dinuc 2+3 (0.36, 5.4e+02) (17, 2e+17) (0.0026, 1.6e+133) (0.0025, 1) (0.0026, 1) 99 56 0 5580

The species were Anabaena variabilis, Anabaena sp. PCC 7120 and Thermosynechococcus elongatus.
1 Fit – the algorithm used for the constrained estimation of Q; 2 – median and maximum values; 3 – Number of P matrices for the indicated 
algorithm with an invalid probability; 4 – total number of matrices; inf – an infinite difference, typically arising from an exponentiation error.

ETAYL
3 EEIG

3

Table 5: Exponentiation algorithm compute times.

Alphabet Algorithm Time

Nucleotide expEIG 0.2
expTAYL 0.4
expPADÉ 0.2

Dinucleotide expEIG 0.8
expTAYL 0.6
expPADÉ 0.4

Trinucleotide expEIG 11.2
expTAYL 7.6
expPADÉ 3.7

Mean compute time (milliseconds) from 100 different matrices.
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trinucleotide models, we concatenated 10 aligned genes
in an arbitrary order (determined by the sort order of the
Ensembl identifier of the human gene) resulting in ~100
alignments of concatenated primate protein coding genes.

All alignments were in trinucleotide frame, meaning that
(starting from the first nucleotide) each triplet of nucle-
otide columns contained only 'real' trinucleotides. Due to
the elimination of masked sequences, spanning between
trinucleotides could create sequence elements not present
in the original genome sequence. To avoid sampling arti-
ficial dinucleotides, alignments were split into trinucle-
otide columns first and either all first and second, or
second and third positions were selected and concate-
nated to construct dinucleotide alignments. Nucleotide
and trinucleotide alignments were derived without any
modification.

Estimating Q
For each alignment for a species triad, we used the known
outgroup lineage to determine the direction of substitu-
tions between sequence states for each ingroup lineage.
Alignments were split into columns of non-overlapping
motifs of either nucleotide, dinucleotide or trinucleotides
with the trinucleotide based sampling of sequences taken
into account for the dinucleotide sampling (see above).
Columns in which all three sequences were different were
excluded since the ancestral state of the ingroups cannot
be determined. If the ingroups were identical to each
other, but different from the outgroup, the ancestral state
is taken as the ingroup state. If one of the ingroup lineages
was identical to the outgroup, their state was taken as the
ancestral state. These assignments of ancestral state were
used to count the number of times motif i changed to
motif j for each ingroup lineage separately. This procedure
generated a 'counts' matrix for each lineage, for each align-
ment which can be converted into a P matrix by dividing
the elements of each row by the row sum. The resulting P
matrices can be non-reversible.

Estimation of Q from P matrices was done using a con-
strained optimisation procedure. All off-diagonal ele-
ments of Q (qij, i ≠ j) are free parameters while the diagonal

elements are constrained to be qii = -∑j, j ≠ i qij to ensure the

row sums of the instantaneous rate matrix are 0. Con-

straining the qij, i ≠ j ≥ 0, we minimised ||  - exp(Q)||

where the matrix exponential was computed by Padé
(unless stated otherwise). This function was minimised
using the PyCogent [18] Powell optimiser with tolerance
of 10-6 and a maximum of 5 restarts. We used the Taylor
series to the second element, computed as P minus the
identity matrix, as the starting values for the numerical

optimisation. The number of free parameters for Q were
N × (N - 1) (N is the number of motifs in the alphabet):
12 for nucleotides; 240 for dinucleotides; and 4032 for tri-
nucleotide matrices. Due to the very large number of free
parameters in the trinucleotide models, and computa-
tional times required to estimate some Q of ~24 hours
(for the microbial samples), not all alignments were used.
Codon matrices were derived for the protein coding
sequences by removing the unobserved states which cor-
responded to the trinucleotides encoding stop codons.

Measuring matrix exponentiation error
In order to quantify the accuracy of the matrix exponenti-
ation methods a number of measures are introduced.
Firstly, there is the concept of a matrix norm. The matrix
norm ||Q|| is a generalisation of the vector norm (length
of a vector) and yields a measure of the effective size of a
matrix Q in terms of the size of its elements [7]. We
employed the Frobenius norm (often easier to compute
than the induced norms) [7], which for the matrix Q is

where the qij are the elements of Q. The distance between
two matrices can therefore be computed as the norm of
the difference between the matrices and equates to the
square root of the sum of absolute squared differences.
We define relative measures of exponentiation error as

where  is the probability matrix estimated from the

counts matrix and  is the instantaneous rate matrix esti-

mated from this  as described above.

In addition to the norm of the rate matrix, the perform-
ance of some of the matrix exponentiation methods may
depend on the condition number condEV(Q) of the eigen-
vector matrix of Q [6,7]. The eigenvector matrix condition
number condEV(Q) can be defined within the spectral
matrix norm (2-norm) [19] as [7]

P̂

|| || | |Q =
==

∑∑ qij

j

n

i

n
2

11

(1)

²TAYL = −|| exp ( ) ||P QTAYL
(2)

²EIG = −|| exp ( ) ||P QEIG
(3)

²PAD = −|| exp ( ) ||P QPAD
(4)

P̂

Q̂

P̂

condEV( ) || || || || ( ) / ( )max minQ U U Q Q= =−
2 2

1

(5)
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where U is the matrix of eigenvectors and max(Q) and

min(Q) are the maximal and minimal singular values [7]
of Q respectively.

Software implementation
The PyCogent [18,20] built-in routines for determining
counts matrices and matrix exponentiation routines were
used, while the matrix statistics were computed using the
python numerical library, Numpy version 1.0.4 [21]. All
scripts used to undertake this study are available on
request.
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