
BioMed CentralBMC Bioinformatics

ss
Open AcceSoftware
SNPFile – A software library and file format for large scale
association mapping and population genetics studies
Jesper Nielsen*1,2 and Thomas Mailund1

Address: 1Bioinformatics Research Center, University of Aarhus, Denmark and 2Department of Computer Science, University of Aarhus, Denmark

Email: Jesper Nielsen* - jn@daimi.au.dk; Thomas Mailund - mailund@birc.au.dk

* Corresponding author

Abstract
Background: High-throughput genotyping technology has enabled cost effective typing of
thousands of individuals in hundred of thousands of markers for use in genome wide studies. This
vast improvement in data acquisition technology makes it an informatics challenge to efficiently
store and manipulate the data. While spreadsheets and at text files were adequate solutions earlier,
the increased data size mandates more efficient solutions.

Results: We describe a new binary file format for SNP data, together with a software library for
file manipulation. The file format stores genotype data together with any kind of additional data,
using a flexible serialisation mechanism. The format is designed to be IO efficient for the access
patterns of most multi-locus analysis methods.

Conclusion: The new file format has been very useful for our own studies where it has significantly
reduced the informatics burden in keeping track of various secondary data, and where the memory
and IO efficiency has greatly simplified analysis runs. A main limitation with the file format is that it
is only supported by the very limited set of analysis tools developed in our own lab. This is
somewhat alleviated by a scripting interfaces that makes it easy to write converters to and from
the format.

Background
High-throughput genotyping technology has enabled cost
effective typing of thousands of individuals in hundred of
thousands of markers for use in genome wide studies [1],
in particular genome disease association studies [2-7].

There are currently no standard file format for storing such
genotype data, and most major analysis tools define their
own textual input and output formats. Only a few tools
supports several input formats, and often several conver-
sion scripts needs to be implemented in a study. These file
formats of analysis tools usually only represent a restricted
set of the data collected for the study – only the data nec-

essary for the computations provided by the program – so
a study either needs a secondary format for storing all
data, with converter programs for import/export to analy-
sis tools, or need several files for storing various types of
data.

While spreadsheets and plain text files were adequate, if
not optimal, solutions earlier, the increased data size
mandates more efficient solutions. While plain text files
formats have the advantage that they are human readable
and can be edited in any text editor to correct mistakes,
they have two major disadvantages: i) they are less space
efficient than binary formats, often significantly so, and ii)

Published: 8 December 2008

BMC Bioinformatics 2008, 9:526 doi:10.1186/1471-2105-9-526

Received: 22 April 2008
Accepted: 8 December 2008

This article is available from: http://www.biomedcentral.com/1471-2105/9/526

© 2008 Nielsen and Mailund; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 11
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19063732
http://www.biomedcentral.com/1471-2105/9/526
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2008, 9:526 http://www.biomedcentral.com/1471-2105/9/526
text formats need to be parsed by tools before the data is
analysed, a time consuming task when dealing with mas-
sive data sets.

Here we describe a new binary file format, SNPFile, for
storing SNP data and a software library for manipulating
such files. The file format stores genotype data together
with any kind of additional data, using a flexible serialisa-
tion mechanism. Data is memory mapped as needed so
even very large data sets can be manipulated with moder-
ate RAM requirements. The representation is optimised
for accessing nearby markers together, and thus cache and
disk efficient for the access patterns of most multi-locus
analysis methods.

We have extended the suite of association mapping tools
developed in our group [8], including both single marker
methods [9] and multi locus methods [10,11] and now
successfully use it in our own studies.

Results and discussion
We have developed a new file format and C++ library for
manipulating SNP genotype data and arbitrary secondary
data. The design allows us to store all genotype and sec-
ondary data in a single file, using a flexible serialisation
framework. The genotype data representation is designed
to be memory and IO efficient for the access patterns typ-
ical for multi-marker association mapping methods.

Simple and efficient genotype data manipulation
The primary data in a SNPFile is genotype data, repre-
sented as a matrix with one or two rows per individual
(depending on whether the phase of the genotypes is
know or unknown) and one column per marker. A matrix
representation for the primary data is a simple abstraction
that makes it relatively easy to implement most analyses.

The actual implementation consists of a small hierarchy
of classes for representing the data, depending on the size
of the data and the usage pattern. Small matrices can effi-
ciently be stored in RAM while for larger matrices we pro-
vide file storage. The abstraction for accessing the data is
the same whether the actual data is stored in RAM or on
disk.

Although the programming abstraction for RAM based
and file based matrices are the same, the time perform-
ance can differ significantly between accessing RAM and
file data. By representing the file based matrices in a "col-
umn by column" order on the disk (see figure 1) we have
optimised the code for the common case where nearby
markers (nearby columns in the matrix) are accessed
together (see figure 2).

We do not expect the disk storage matrices to ever outper-
form RAM matrices. When the data can fit in RAM, the
RAM matrices will always be more efficient to access, and
when the matrix cannot fit in RAM, the swapping strategy

Memory layout of SNPFile matrixFigure 1
Memory layout of SNPFile matrix. If your program only accesses a few columns at a time they will cluster nicely in virtual
memory and it will be easy for the operating system to keep only the needed pages in physical memory. This means you can
handle very big SNPFiles while not using very much actual memory. Furthermore, if your program only access columns
ordered left-to-right and from top to bottom, the file will simply be accessed from the beginning to the end. This is what the
entire computer, both hardware and software, is optimized for. Thus it should be very fast. If you read a row from the matrix,
however, you will access a lot of pages in the file, only use a very small part of each and the operating system will waste a lot of
time reading data that will not be used, since it operates on entire pages.

Access by row

Physical RAM

Virtual memory

1 GB

2 GB

File on disk

Matrix of genotype data

Two rows in the matrix

Since the matrix is stored

in column-major order, the

cells of a given row is

spread all over the file.

Access by column

Physical RAM

Virtual memory

1 GB

2 GB

File on disk

Matrix of genotype data

Two columns

of the matrix

Position of columns in file

Matrix position in file
Page 2 of 11
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:526 http://www.biomedcentral.com/1471-2105/9/526
will be similar to the swapping strategy used for the mem-
ory mapped file matrices. The main advantage of using the
disk based matrices is that the matrix representation is
directly available after opening the file; potentially time
and memory consuming parsing is avoided.

Table 1 compares the running time of our Blossoc tool [12]
when loading data into RAM from its previous flat text for-
mat with the running time when using SNPFile. Blossoc is
a haplotype based association mapping tool. The algo-
rithm with or without SNPFile is exactly the same, and the
difference in running time is due to the parsing of the
input data. For large input sizes, the text based version
runs out of memory in the parsing routine, something
that of course could be alleviated by more careful resource
management. Using SNPFile, however, it is not necessary
to worry about it.

Framework for arbitrary secondary data
Depending on the analysis of the data, various secondary
data is needed, such as phenotypes, co-variates etc. Most
file formats support only a small fraction of the types of
secondary data of interest in a study, since they only focus
on the types of analysis intended when the file format was
designed. A consequence is that data is often kept in sev-
eral independent files, with ample risks for accidental
inconsistencies between files.

To avoid such problems we have designed a flexible
framework for secondary data into SNPFile. Through a
serialisation framework, any C++ type can be stored in a
SNPFile and accessed through a text key. Built-in types
and STL containers are directly supported, and user-
defined types can be supported by writing serialisation
and de-serialisation methods. This can be done either
through template methods in the user-defined types, or
non-intrusively through global or name-space functions.

Using SNPFile
Most multi-marker analysis methods can efficiently repre-
sent the genotype data in matrix form, with one or two
rows (columns) per individual and with a column (row)
per marker. For such methods, implementing them using
SNPFile is straightforward. With the framework for storing
arbitrary C++ data types, porting applications to use
SNPFile is usually a simple matter of changing the IO rou-

Time for accessing matricesFigure 2
Time for accessing matrices. Times for reading or writing an entire matrix as a function of matrix size. Three tests was
performed for each matrix size. The tests were done on a Intel Pentium 4 with 1 GB of RAM running linux.

2.0e+08 6.0e+08 1.0e+09 1.4e+09

0
10

20
30

40
50

Access times when accessing matrix by column

Matrix size / bytes

E
xe

cu
tio

n
tim

e
/ s

File matrix, write
Array matrix, write
File matrix, read
Array matrix, read

1e+08 2e+08 3e+08 4e+08

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00

Access times when accessing matrix by row

Matrix size / bytes

E
xe

cu
tio

n
tim

e
/ s

File matrix, write
Array matrix, write
File matrix, read
Array matrix, read

Table 1: Runtime comparison using the Blossoc tool with its text
file format vs. using SNPFile.

No. Individuals Text IO SNPFile

500 1200 867
1000 1893 1671

Running time in seconds, for Blossoc using text IO and SNPFile, as a
function as the number of individuals.
Page 3 of 11
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:526 http://www.biomedcentral.com/1471-2105/9/526
tines to read the relevant secondary data through this
framework, and then using SNPFiles matrix classes
instead of those used before.

We have ported our existing association mapping software
[8-11] – both single marker and multi-marker methods –
to work on the new file format. Since these tools already
represented genotype data as matrices, porting them was
a simple task, taking from a few hours to a day or two. We
are currently successfully using the updated tools in our
own studies, where the format has greatly alleviated the
informatics problems in data management and com-
pletely eliminated the need for cutting data into windows
for analysis, when the full data cannot fit in RAM.

Conclusion
The size of data that can cost efficiently be collected for
population genetics studies – and especially disease map-
ping studies – has increased immensely the last few years,
and this has lead to an informatics challenge in how to
efficiently store and manipulate this data together with
any secondary data collected for the study.

The file format we have described enables us to store all
relevant data – primary and secondary – in a single file.
The primary data is stored as a matrix, with a memory lay-
out that makes it IO efficient to manipulate the data on
disk, avoiding having to keep large data sets in RAM. The
secondary data is stored using a flexible serialisation
framework that allows any C++ data type to be stored
together with the primary data.

The format has been very useful for our own studies where
it has significantly reduced the informatics burden in
keeping track of various secondary data, and where the
memory and IO efficiency has greatly simplified analysis
runs. A main limitation with the file format is that it is
only supported by the very limited set of analysis tools
developed in our own lab. Through scripting interfaces to
the file format, we hope to alleviate this in the future.

A different binary file format for massive genotype data is
available in the PLINK project [13]. The purpose of the
binary format there is also achieving better CPU and
memory performance. Where their format differs from
ours is mainly in the treatment of secondary data. In the
PLINK project, secondary data such as co-variates requires
separate files from the genotype data. In contrast, we have
designed our format such that we can store arbitrary sec-
ondary data together with the primary data in the same
files.

Methods
A SNPFile stores primary data as a matrix as well as any
kind of secondary data, e.g. individuals phenotypes,

marker names and positions, ethnicity of individuals or
co-variates for disease studies.

File manipulation
SNPFiles are accessed through a class of the same name.
Instances of the class SNPFile represents a SNPFile on
disk, and arguments to its constructor determine read,
write and creation semantics of the file. The constructor
for SNPFile looks like this:

SNPFile(const std::string &filename,

bool allowWriting = false,

bool createFile = true,

int mode = 00644);

where filename specifies the name of the file on disk,
allowWriting determines if the file should be opened
read-only or in read-write mode, createFile specifies if the
file should be created on disk if it does not already exist,
and mode specifies the access file permissions. A usage
example could look like this:

#include <snpfile/snpfile.hh>

using namespace BiRC::SNPFile;

int main()

{

SNPFile readOnly("/dir1/file1.snp");

SNPFile readWrite("/dir2/file2.snp", true);

// Do computations with files

readOnly.close();

readWrite.close();

return 0;

}

The read/write semantics of a SNPFile is carried over to the
methods and classes for accessing data, in the form of sep-
arate interfaces to mutable and immutable matrices, pro-
viding a compile time check for correct access to the data.
The exception to this design is the SNPFile class itself: the
access to SNPFile objects is checked at runtime, with
exceptions thrown in case of incorrect access. The reason
Page 4 of 11
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:526 http://www.biomedcentral.com/1471-2105/9/526
for this is to permit write access permission to change at
runtime for interactive applications.

Accessing genotype data
The primary data in a SNPFile is genotype data. We repre-
sent this as a matrix with each cell containing a genotype
or allele. The matrix has one row for data with unknown
phase and two rows for data with known phase. The
matrix has one column per typed marker. The cells con-
tain a signed char representing the genotype, where by
convention, we use -9 to indicate missing values, use 0
and 1 for homozygote genotypes and 2 for heterzygote
genotypes. Other values are reserved for future use.

The library contains a small hierarchy of matrix classes for
representing genotype data, together with two handler
classes providing the matrix interface to the data represen-
tation classes. The matrix data representation hierarchy,
rooted in the abstract class MatrixData, implements the
memory management strategies, including allocation,
deallocation and resizing. The handler classes, Immuta-
bleMatrix and Matrix, provides the interface for accessing
and, in the case of Matrix, modifying the matrices. Split-
ting the matrix classes in two responsibilities, data repre-
sentation and data access, combines flexibility in
representation with efficient data access. We get a flexible
design for representing data both in RAM and on disk
with no virtual function overhead when accessing the
data.

Accessing matrices
Access to matrix data is through one of the classes Immu-
tableMatrix and Matrix. ImmutableMatrix represents a
read-only matrix, and Matrix represents a read-write
matrix. The later is derived from the former, but allows
entries in the matrix to be updated. A usage example, cal-
culating the genotype frequencies for all markers in a
matrix, is shown below:

#include <iostream>

#include <snpfile/matrix.hh>

using namespace BiRC::SNPFile;

void genotypeFrequencies(ImmutableMatrix &m)

{

for (int j = 0; j < m.noCols(); ++j) {

int counts[] = {0,0,0};

int total = 0;

for (int i = 0; i < m.noRows(); ++i) {

if (m(i, j) < 0) continue; //missing

if (m(i, j) > 2) continue; //error

++counts [m(i, j)];

++total;

}

if (total > 0) {

std::cout << counts [0]/total << ' '

<< counts [1]/total << ' '

<< counts [2]/total

<< std::endl;

} else {

std::cout << "nan nan nan"

<< std::endl;

}

}

}

Both handler classes can only be instantiated when
assigned a MatrixData instance. They do not represent the
data but only provide interfaces to it.

Matrix representation
The MatrixData class is abstract and provides the bridge
between data access (the ImmutableMatrix and Matrix
classes) and memory management. The actual data man-
agement is implemented in sub-classes of MatrixData. The
library provides two data representations, one for repre-
senting matrix data in RAM and one for representing data
on disk (the later actually implemented as two different
classes), but application programmers can provide their
own as needed.

In our design we have considered the data representations
implementation details, so the actual class representa-
tions cannot be accessed through the library interface.
Instead, instances of the classes can be created through
factory methods.
Page 5 of 11
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:526 http://www.biomedcentral.com/1471-2105/9/526
Small matrices, representing small windows of the data,
are often used as part of a larger computation, and such
matrices are most efficiently stored in RAM. The ArrayMa-
trixData class is provided for this. The factory method for
creating instances of this class returns a Matrix handler
since read-only RAM based matrices are of little use. This
handler can, of course, always be cast to a ImmutableMa-
trix handler if a read-only interface is needed for later
processing.

Matrices stored on disk are handled by the two classes:
ReadOnlyFileMatrixData and ReadWriteFileMatrixData.
Both are constructed with a reference to a SNPFile object.
The factory method for ReadOnlyFileMatrixData returns a
ImmutableMatrix instance while the factory method for
ReadWriteFileMatrixData returns a Matrix. It is a runtime
error to create a ReadWriteFileMatrixData object with a
reference to a SNPFile object opened as read-only. Com-
pile time checks ensure that the access patterns to matri-
ces, after their instantiation, is correct.

An example of accessing a matrix on a read-only file, for
calculating the genotype using the function defined
above, is shown below:

#include <iostream>

#include <snpfile/snpfile.hh>

#include <snpfile/matrix.hh>

#include <snpfile/file_matrix.hh>

using namespace BiRC::SNPFile;

void genotypeFrequencies(ImmutableMatrix &m)

{

// see above for implementation

...

}

int main()

{

SNPFile file("filename.snp");

ImmutableMatrix m = newReadOnlyFileMatrix(file);

genotypeFrequencies(m);

file.close();

return 0;

}

IO efficiency for large genotype data sets
One of the motivations for SNPFiles is efficient manage-
ment of large datasets; frequently datasets too large to
keep in the computer's main memory. We achieve this by
keeping file matrices (classes ReadOnlyFileMatrixData
and ReadWriteFileMatrixData) on disk, rather than load-
ing them into RAM, and then use memory mapping to
access the matrices. By representing the matrices on disk
in a way that matches common usage we can rely on the
operating system of the computer to make sure the right
parts of the file are read into memory and flushed back to
disk in an efficient way. This essentially means represent-
ing the matrices column-wise since most multi locus
methods access neighbouring markers together but less
frequently distant markers together.

Matrix views
For computations on sub-matrices, where the matrix data
is not modified, it is inefficient to copy the data. It is often
also inconvenient to design the methods to keep track of
relevant indices for sub-matrices, especially with recursive
methods that modify the views – e.g. split rows based on
genotypes or sort columns with respect to marker position
as in the Blossoc method [12].

The MatrixView class provides a solution to this problem
by wrapping MatrixData objects and modifying matrix
indices so a cell index in a view is redirected to the corre-
sponding cell index in the matrix. This design allow trans-
parent rearrangement of rows and columns, and
extraction of arbitrary sub-matrices, with very little com-
putational overhead.

Accessing secondary data (meta data)
SNPFiles can store arbitrary secondary data, or meta data,
associated to the primary data. Meta data access is han-
dled through three template methods:

template<typename T>

void getMetadata(const MetadataAccessor &acc,

const std::string &key,

T &dest);

template<typename T>

T fetchMetadata(const MetadataAccessor &acc,
Page 6 of 11
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:526 http://www.biomedcentral.com/1471-2105/9/526
const std::string &key);

template<typename T>

void setMetadata(MetadataAccessor &acc,

const std::string &key,

const T &src);

The first parameter for all tree functions is of type Metada-
taAccessor. A MetadataAccessor is a container capable of
storing meta data, which in practise is usually a SNPFile
object. The second parameter is a key used to identify the
data. Since we can store arbitrary meta data, keys are used
to identify the various data.

The functions are templates parameterized with the type
of the meta data. In principle, any C++ type can be used as
meta data, but the template functions needs to know how
to serialise data of the type. For serialisation, we use a
framework similar to the the Boost serialisation frame-
work [14], but one that is binary compatible across differ-
ent platforms and different versions of the C++ STL. The
framework can immediately serialise all primitive types,
such as int or double, and the most common STL types,
such as map<> or vector<>.

Adding meta data to a SNPFile is done using setMetaData
as below:

#include <snpfile/metadata_access.hh>

#include <snpfile/snpfile.hh>

#include <iterator>

#include <fstream>

using namespace BiRC::SNPFile;

using namespace std;

namespace {

// command line options...

bool binaryPhenotypes;

// ... more options ...

}

int main(int argc, char *argv[])

{

// ... option parsing ...

SNPFile file("someFile.snp", true);

ifstream input("input.txt");

if (binaryPhenotypes) {

// read a sequence of binary phenotypes

// into a boolean vector

vector<bool> phenotypes;

copy(istream_iterator<bool>(input),

istream_iterator<bool>(),

back_inserter(phenotypes));

// store a flag indicating the

// phenotypes are binary

setMetadata(file, "binary phenotypes?", true);

// store the phenotypes as well

setMetadata(file, "phenotypes", phenotypes);

} else {

// read a sequence of quantitative

// phenotypes into a double vector

vector<double> phenotypes;

copy(istream_iterator<double>(input),

istream_iterator<double>(),

back_inserter(phenotypes));

// store a flag indicating the

// phenotypes are *not* binary

setMetadata(file, "binary phenotypes?", false);

// store the phenotypes

setMetadata(file, "phenotypes", phenotypes);
Page 7 of 11
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:526 http://www.biomedcentral.com/1471-2105/9/526
}

file.close();

return 0;

}

where the example code reads some phenotype data from
a text file – either binary traits or continous traits depend-
ing on command line options – and stores the data,
together with a flag, in the SNPFile. Reading the data back
from a file is done through getMetadata or fetchMetaData:

#include <snpfile/metadata_access.hh>

#include <snpfile/snpfile.hh>

using namespace BiRC::SNPFile;

using namespace std;

int main()

{

SNPFile file("someFile.snp");

if (fetchMetadata<bool>(file, "binary phenotypes?")) {

vector<bool> phenotypes;

getMetadata(file, "phenotypes", phenotypes);

// ... analyse data ...

} else {

vector<double> phenotypes;

getMetadata(file, "phenotypes", phenotypes);

// ... analyse data ...

}

file.close();

return 0;

}

where fetchMetadata is just syntactic sugar around get-
MetaData so we can access data without necessarily
declaring a variable for it (as in the if statement above).

For complex data, such as maps, getMetaData is more effi-
cient than fetchMetadata.

Serialising user-defined types
User defined classes cannot immediately be serialised, but
it is possible to extend the serialisation framework with
arbitrary types in two ways: by implementing member
functions in the class or struct to be serialised, or by imple-
menting free functions in the namespace of the class. The
former can be used for classes the application program-
mer is free to modify, while the later can be used when
that is not an option.

The simplest way to add serialisation through member
functions it to add a template method named serialize
that can be used for both serialisation and de-serialisa-
tion, depending on its template instantiation. Alterna-
tively, an overloaded serialize function can be used to
handle serialisation and de-serialisation differently. A
class that implements serialisation with member func-
tions can then be exported to the SNPFile serialisation
framework using the macro BIRC_SNPFILE_INTRUSIVE
_SERIALIZATION.

For non-intrusive serialisation, the framework can use a
serialize template function in the namespace of the class
to be serialised and the macro BIRC_SNPFILE_NON
INTRUSIVE_SERIALIZATION instead. If different meth-
ods are needed for serialisation and de-serialisation, one
can implement methods load and save in a specialised
SerializationTrait template. For details on this, we refer to
the library documentation.

The example below illustrates serialisation of user-defined
types. The example shows how, in a hypothetical study
where a SNPFile combines individuals from different pre-
vious studies and from different populations, we can store
population and study information from the previous
studies, and associate this to each individual. The example
defines three new types: IndivData for data associated
with each genotyped individual, StudyData for data asso-
ciated with each previous study where the genotype data
is obtained from, and PopulationData for data associated
with populations. For IndivData we use the member func-
tion approach to serialisation and for the other two classes
we use the free function version.

#include <snpfile/metadata_access.hh>

#include <snpfile/snpfile.hh>

using namespace BiRC::SNPFile;

#include <string>
Page 8 of 11
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:526 http://www.biomedcentral.com/1471-2105/9/526
#include <vector>

#include <map>

using namespace std;

struct IndivData {

string name;

int studyID;

int populationID;

// member interface to

// meta data serialisation

template<class Archive>

void serialize(Archive & ar)

{

ar | name;

ar | studyID;

ar | populationID;

}

};

// macro needed to export the serialisation

// to the SNPFile framework

BIRC_SNPFILE_INTRUSIVE_SERIALIZATION(Indiv-
Data);

struct StudyData {

string someRelevantData;

string additionalData;

};

struct PopulationData {

string popData;

};

// non-intrusive support for serialisation

template<class Archive>

void serialize(Archive & ar, StudyData &d)

{

ar | d.someRelevantData;

ar | d.additionalData;

}

template<class Archive>

void serialize(Archive & ar, PopulationData &d)

{

ar | d.popData;

}

// macros needed to export

// serialisation

BIRC_SNPFILE_NONINTRUSIVE_SERIALIZATION(Stud-
yData);

BIRC_SNPFILE_NONINTRUSIVE_SERIALIZATION(Pop-
ulationData);

int main()

{

// mapping from studyIDs to study data

map<int, StudyData> studies;

// mapping from populationIDs to population data

map<int, PopulationData> populations;

// data for each individual in the SNPFile, ordered

// in the same order as the rows in the genotype

// matrix

vector<IndivData> individualsData;

// ... fill in data for the maps and vector...
Page 9 of 11
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:526 http://www.biomedcentral.com/1471-2105/9/526
SNPFile file("someFile.snp", true);

setMetadata(file, "study data", studies);

setMetadata(file, "population data", populations);

setMetadata(file, "individuals data", individualsData);

file.close();

return 0;

}

After the serialisation method is specified in this way, get-
MetaData, setMetadata and fetchMetadata can be used as
for any other type. For more information about serialisa-
tion of custom types, we refer to the library documenta-
tion.

Meta-data type system
The serialisation mechanism for meta-data requires that
the program accessing meta-data knows the type of the
data before accessing it – a consequence of using a stati-
cally typed language such as C++. Unfortunately, this lim-
its the general usability of the meta-data framework: tools
operating on SNPFiles must all agree on the availability
and type of meta-data to be able to manipulate it. This
requires a protocol that application programs must follow
if their programs should be able to operate on the same
files.

Our initial design did rely on such a meta-data protocol,
with agreed-upon types for the data used by our tool suite.
Our experience with this convinced us, however, that this
approach was less flexible than desired. This lead us to
design a system for storing type information together with
meta-data in SNPFiles, enabling us to dynamically extract
meta-data information – availability and type of meta-
data. With this design, programs can probe SNPFiles to get
information about meta-data, and users can – when the
tools support this – interactively access data to do their
analyses.

The meta-data type system is non-intrusive in the sense
that it does not affect the interface to storing meta-data
described above. Any kind of meta-data can still be serial-
ised into SNPFiles – using the functions above – and type
information will automatically be stored together with the
data whenever the type of the data is known by the
SNPFile library (which includes primitive types and STL
containers).

For custom meta-data – where the SNPFile library does
not know the type – a mechanism similar to the serialisa-
tion framework allows the application program to pro-

vide type information to SNPFile. For example, to add
support for the three custom types introduced in the
example above, we would just add the following lines to
our program:

BiRC_SNPFILE_EXPORT_TYPE(IndivData)

BiRC_SNPFILE_EXPORT_TYPE(StudyData)

BiRC_SNPFILE_EXPORT_TYPE(PopulationData)

The macros used for exporting types to the serialisation
framework will by default add type support as well, how-
ever, so in our example this is not needed.

In our program above, the type associated with meta-data
"individuals data" will then be std::vector< IndivData >,
the type associated with "population data" will be
std::map< int32_t, PopulationData > and the data associ-
ated with "study data" will be std::map< int32_t, Study-
Data >. Without specifying the type this way, the types
would be stored as std::vector< unknown > and std::map<
int32_t, unknown >, respectively.

Script access to SNPFiles
For easier manipulation of SNPFile files, we provide a
Python extension module. Through this module, the gen-
otype matrices can be manipulated in ways similar to the
C++ interface. Most common meta data types can be seri-
alized and manipulated, but due to type differences
between Python and C++ there are some limitations in the
Python interface, including manipulation of custom data
types.

Availability and requirements
Project name: SNPFile

Project home page: http://www.daimi.au.dk/~mailund/
SNPFile/

Operating system(s): Binary distributions available for
Linux. Source code available for all unix-like platforms.

Programming language: C++

Other requirements: The boost library [15].

License: GNU GPL version 2.

Any restrictions to use by non-academics: None, besides
those of the GPL license.

Abbreviations
IO: Input/Output; RAM: Random Access Memory; SNP:
Single nucleotide polymorphism; STL: Standard template
library.
Page 10 of 11
(page number not for citation purposes)

http://www.daimi.au.dk/~mailund/SNPFile/
http://www.daimi.au.dk/~mailund/SNPFile/

BMC Bioinformatics 2008, 9:526 http://www.biomedcentral.com/1471-2105/9/526
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
TM conceived of the project. JN and TM both designed the
library, while JN did the majority of the implementation.
Both authors drafted the manuscript.

Acknowledgements
TM is funded by the Danish Research Agency, FNU grant 272-05-0283 and
FTP grant 274-05-0365 and a Wellcome Trust 'Value in People Award'.

References
1. Barrett JC, Cardon LR: Evaluating coverage of genome-wide

association studies. Nat Genet 2006, 38(6):659-662.
2. Arking D, Pfeufer A, Post W, Kao W, Newton-Cheh C, Ikeda M,

West K, Kashuk C, Akyol M, Perz S, Jalilzadeh S, Illig T, Gieger C, Guo
C, Larson M, Wichmann H, Marban E, O'donnell C, Hirschhorn J,
Kaab S, Spooner P, Meitinger T, Chakravarti A: A common genetic
variant in the NOS1 regulator NOS1AP modulates cardiac
repolarization. Nat Genet 2006, 38(6):644-651.

3. Smyth D, Cooper J, Bailey R, Field S, Burren O, Smink L, Guja C,
Ionescu-Tirgoviste C, Widmer B, Dunger D, Savage D, Walker N,
Clayton D, Todd J: A genome-wide association study of non-
synonymous SNPs identifies a type 1 diabetes locus in the
interferon-induced helicase (IFIH1) region. Nat Genet 2006,
38(6):617-619.

4. Amundadottir LT, Sulem P, Gudmundsson J, Helgason A, Baker A,
Agnarsson BA, Sigurdsson A, Benediktsdottir KR, Cazier JB, Sainz J,
Jakobsdottir M, Kostic J, Magnusdottir DN, Ghosh S, Agnarsson K,
Birgisdottir B, Le Roux L, Olafsdottir A, Blondal T, Andresdottir M,
Gretarsdottir OS, Bergthorsson JT, Gudbjartsson D, Gylfason A,
Thorleifsson G, Manolescu A, Kristjansson K, Geirsson G, Isaksson H,
Douglas J, Johansson JE, Balter K, Wiklund F, Montie JE, Yu X, Suarez
BK, Ober C, Cooney KA, Gronberg H, Catalona WJ, Einarsson GV,
Barkardottir RB, Gulcher JR, Kong A, Thorsteinsdottir U, Stefansson
K: A common variant associated with prostate cancer in
European and African populations. Nat Genet 2006,
38(6):652-658.

5. Easton DF, Pooley KA, Dunning AM, Pharoah PD, Thompson D, Ball-
inger DG, Struewing JP, Morrison J, Field H, Luben R, Wareham N,
Ahmed S, Healey CS, Bowman R, Meyer KB, Haiman CA, Kolonel LK,
Henderson BE, Le Marchand L, Brennan P, Sangrajrang S, Gaborieau
V, Odefrey F, Shen CY, Wu PE, Wang HC, Eccles D, Evans DG, Peto
J, Fletcher O, Johnson N, Seal S, Stratton MR, Rahman N, Chenevix-
Trench G, Bojesen SE, Nordestgaard BG, Axelsson CK, Garcia-Clo-
sas M, Brinton L, Chanock S, Lissowska J, Peplonska B, Nevanlinna H,
Fagerholm R, Eerola H, Kang D, Yoo KY, Noh DY, Ahn SH, Hunter
DJ, Hankinson SE, Cox DG, Hall P, Wedren S, Liu J, Low YL,
Bogdanova N, Schurmann P, Dork T, Tollenaar RA, Jacobi CE, Dev-
ilee P, Klijn JG, Sigurdson AJ, Doody MM, Alexander BH, Zhang J, Cox
A, Brock IW, MacPherson G, Reed MW, Couch FJ, Goode EL, Olson
JE, Meijers-Heijboer H, Ouweland A van den, Uitterlinden A, Rivade-
neira F, Milne RL, Ribas G, Gonzalez-Neira A, Benitez J, Hopper JL,
McCredie M, Southey M, Giles GG, Schroen C, Justenhoven C,
Brauch H, Hamann U, Ko YD, Spurdle AB, Beesley J, Chen X, Man-
nermaa A, Kosma VM, Kataja V, Hartikainen J, Day NE, Cox DR, Pon-
der BA: Genome-wide association study identifies novel
breast cancer susceptibility loci. Nature 2007,
447(7148):1087-93.

6. Gudmundsson J, Sulem P, Steinthorsdottir V, Bergthorsson JT, Thor-
leifsson G, Manolescu A, Rafnar T, Gudbjartsson D, Agnarsson BA,
Baker A, Sigurdsson A, Benediktsdottir KR, Jakobsdottir M, Blondal
T, Stacey SN, Helgason A, Gunnarsdottir S, Olafsdottir A, Kristinsson
KT, Birgisdottir B, Ghosh S, Thorlacius S, Magnusdottir D, Stefansdot-
tir G, Kristjansson K, Bagger Y, Wilensky RL, Reilly MP, Morris AD,
Kimber CH, Adeyemo A, Chen Y, Zhou J, So WY, Tong PC, Ng MC,
Hansen T, Andersen G, Borch-Johnsen K, Jorgensen T, Tres A,
Fuertes F, Ruiz-Echarri M, Asin L, Saez B, van Boven E, Klaver S, Swin-
kels DW, Aben KK, Graif T, Cashy J, Suarez BK, van Vierssen Trip O,
Frigge ML, Ober C, Hofker MH, Wijmenga C, Christiansen C, Rader
DJ, Palmer CN, Rotimi C, Chan JC, Pedersen O, Sigurdsson G, Ben-

ediktsson R, Jonsson E, Einarsson GV, Mayordomo JI, Catalona WJ,
Kiemeney LA, Barkardottir RB, Gulcher JR, Thorsteinsdottir U, Kong
A, Stefansson K: Two variants on chromosome 17 confer pros-
tate cancer risk, and the one in TCF2 protects against type
2 diabetes. Nat Genet 2007, 39(8):977-83.

7. Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PI, Chen H,
Roix JJ, Kathiresan S, Hirschhorn JN, Daly MJ, Hughes TE, Groop L,
Altshuler D, Almgren P, Florez JC, Meyer J, Ardlie K, Bengtsson Bos-
trom K, Isomaa B, Lettre G, Lindblad U, Lyon HN, Melander O, New-
ton-Cheh C, Nilsson P, Orho-Melander M, Rastam L, Speliotes EK,
Taskinen MR, Tuomi T, Guiducci C, Berglund A, Carlson J, Gianniny
L, Hackett R, Hall L, Holmkvist J, Laurila E, Sjogren M, Sterner M, Surti
A, Svensson M, Svensson M, Tewhey R, Blumenstiel B, Parkin M, Defe-
lice M, Barry R, Brodeur W, Camarata J, Chia N, Fava M, Gibbons J,
Handsaker B, Healy C, Nguyen K, Gates C, Sougnez C, Gage D, Niz-
zari M, Gabriel SB, Chirn GW, Ma Q, Parikh H, Richardson D, Ricke
D, Purcell S: Genome-wide association analysis identifies loci
for type 2 diabetes and triglyceride levels. Science 2007,
316(5829):1331-6.

8. BiRC association mapping software [http://www.birc.au.dk/
~mailund/association-mapping/]

9. Single marker association tests [http://www.birc.au.dk/
~mailund/sma/]

10. Blossoc: Block association mapping [http://www.birc.au.dk/
~mailund/Blossoc/]

11. HapCluster: Haplotype clustering association mapping
[http://www.birc.au.dk/~mailund/HapCluster/]

12. Mailund T, Besenbacher S, Schierup M: Whole genome associa-
tion mapping by incompatibilities and local perfect phyloge-
nies. BMC Bioinformatics 2006, 7:454.

13. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender
D, Maller J, Sklar P, de Bakker PIW, Daly MJ, Sham PC: PLINK: a
tool set for whole-genome association and population-based
linkage analyses. Am J Hum Genet 2007, 81(3):559-575.

14. Boost Serialization [http://www.boost.org/libs/serialization/]
15. Boost [http://www.boost.org/]
Page 11 of 11
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16715099
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16715099
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16648850
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16648850
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16648850
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16699517
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16699517
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16699517
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16682969
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16682969
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17529967
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17529967
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17603485
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17603485
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17603485
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17463246
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17463246
http://www.birc.au.dk/~mailund/association-mapping/
http://www.birc.au.dk/~mailund/association-mapping/
http://www.birc.au.dk/~mailund/sma/
http://www.birc.au.dk/~mailund/sma/
http://www.birc.au.dk/~mailund/Blossoc/
http://www.birc.au.dk/~mailund/Blossoc/
http://www.birc.au.dk/~mailund/HapCluster/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17042942
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17042942
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17042942
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17701901
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17701901
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17701901
http://www.boost.org/libs/serialization/
http://www.boost.org/
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results and discussion
	Simple and efficient genotype data manipulation
	Framework for arbitrary secondary data
	Using SNPFile

	Conclusion
	Methods
	File manipulation
	Accessing genotype data
	Accessing matrices
	Matrix representation
	IO efficiency for large genotype data sets
	Matrix views

	Accessing secondary data (meta data)
	Serialising user-defined types
	Meta-data type system

	Script access to SNPFiles

	Availability and requirements
	Abbreviations
	Competing interests
	Authors' contributions
	Acknowledgements
	References

