@,

BiolMed Central

BIVIC Bioinformatics

Methodology article

Algorithm of OMA for large-scale orthology inference
Alexander CJ Roth*, Gaston H Gonnet* and Christophe Dessimoz*

Address: ETH Zurich, and Swiss Institute of Bioinformatics, 8092 Zurich, Switzerland

Email: Alexander CJ Roth* - alexande@inf.ethz.ch; Gaston H Gonnet* - gonnet@inf.ethz.ch; Christophe Dessimoz* - cdessimoz@inf.ethz.ch

* Corresponding authors

Published: 4 December 2008
BMC Bioinformatics 2008, 9:518 doi:10.1186/1471-2105-9-518

This article is available from: http://www.biomedcentral.com/1471-2105/9/518

© 2008 Roth et al; licensee BioMed Central Ltd.

Received: 22 August 2008
Accepted: 4 December 2008

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: OMA is a project that aims to identify orthologs within publicly available, complete
genomes. With 657 genomes analyzed to date, OMA is one of the largest projects of its kind.

Results: The algorithm of OMA improves upon standard bidirectional best-hit approach in several
respects: it uses evolutionary distances instead of scores, considers distance inference uncertainty,
includes many-to-many orthologous relations, and accounts for differential gene losses. Herein, we
describe in detail the algorithm for inference of orthology and provide the rationale for parameter

selection through multiple tests.

Conclusion: OMA contains several novel improvement ideas for orthology inference and
provides a unique dataset of large-scale orthology assignments.

Background

The classification of genes according to evolutionary rela-
tions is essential for many aspects of comparative and
functional genomics. Evolutionary relations are often
described as pairwise relations. Two genes that share a
common ancestor are defined as homologs, while genes
that are similar in sequence without a common origin are
termed analogs. Homologs can be divided into several
classes [1]: orthologs, which originate from a speciation
event; paralogs, which originate from gene duplication;
and xenologs, which originate from horizontal gene trans-
fer. Orthologs are valuable in numerous analyses, includ-
ing reconstruction of species phylogenies, protein
function inference, database annotation, and genomic
context analysis.

Evolutionary relations can also be defined with respect to
a third gene. Paralogs are classified as out-paralogs or in-
paralogs [2]. In-paralogs are genes that diverged by a
duplication that occurred after a speciation event of refer-

ence. The term co-orthologs is used occasionally to
describe the same scenario from the perspective of a third
gene that is orthologous to both genes. In contrast, out-
paralogs are paralogs that diverged before a particular spe-
ciation event of reference.

To address the need for reliable sources of orthologs, sev-
eral initiatives have been created for better orthologs pre-
diction Commonly, there are two classes of prediction
methods: phylogeny based methods, which compare gene
trees with species trees (e.g. NOTUNG [3], Orthostrapper
[4], RIO [5], Softparsmap [6], LOFT [7], Ensembl [8]) and
pairwise based methods, which perform homology search
with (optional) subsequent clustering (e.g. BBH [9], COG
[10], InParanoid [11], KOG [12], OrthoMCL [13], RSD
[14], MultiParanoid [15], Roundup [16], Homologene
[17], eggNOG [18]).

In 2005, we introduced the OMA orthology prediction
project with the goal to classify all orthologs in completely
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sequenced genomes [19]. OMA is a pairwise based
method with a number of distinctive features: alignments
are performed using an efficient implementation of full
Smith-Waterman dynamic programming [20] (as
opposed to methods with lower sensitivity such as
BLAST), confidence intervals explicitly consider estima-
tion uncertainty, and exclusion of paralogs is achieved
using sequences in third-party genomes as "witnesses of
non-orthology" [21].

Since then, we have substantially improved the OMA
algorithm. Orthology is now inferred on the basis of evo-
lutionary distances rather than alignment scores, the pre-
dicted orthologs are no longer limited to one-to-one
orthologs. We build groups of orthologs using a maxi-
mum-weight clique algorithm. A web interface now ena-
bles interactive exploration of the predictions [22]. In
addition, the number of complete genomes under analy-
sis has increased to over 657, which requires efficient
solutions regarding computation speed and memory con-
sumption.

In this paper, we describe the current OMA algorithm in
detail, motivate our parameter selection, and offer a dis-
cussion about the method and results.

Methods

The algorithm of OMA takes as input a set of complete
genomes and outputs pairs of orthologous genes that are
optionally clustered into orthologous groups. The algo-
rithm follows four steps (see Figure 1):

Step 1: To find homology, we compute pairwise align-
ments between all pairs of sequences for all genes in all
genomes. Pairs with significant alignment scores are
retained as candidate pairs.

Step 2: Orthologs are usually the closest genes in two
genomes, because they started diverging at speciation,
whereas paralogs started diverging at a duplication prior
to speciation. Genes across genomes that are mutually the
most closely related sequences, taking into account infer-
ence uncertainty, are upgraded to stable pairs.

Step 3: In cases where an ortholog is missing, we seek to
avoid erroneous classification of paralogs as orthologs
(pseudo-orthologs) by verifying stable pairs with
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sequences in a third genome that can act as witness of evo-
lution. Pairs that pass the verification step are upgraded to
verified pairs, and pairs that do not pass are paralogs and
referred to as broken pairs.

Step 4: For some applications, such as species tree recon-
struction, it is advantageous to cluster orthologs into
orthologous groups. Pairs of sequences in such groups are
termed group pairs.

In the following, we describe each of the four steps, and
motivate all parameter choices.

All-against-all alignments

The goal of the first step of the process is homology detec-
tion. All pairs of protein sequences from complete
genomes are aligned using full dynamic programming.
There are several advantages of using protein sequences
rather than using DNA sequences. Very distant homolo-
gies are difficult to find at the DNA level, and protein
sequences suffer less from convergence due to mutational
biases. Also, the length of a protein is one third of that of
the corresponding DNA sequence, a considerable advan-
tage given that the time complexity of aligning sequences
is quadratic with respect to length. The disadvantage to
using protein sequences instead of DNA is that complica-
tions arising from multiple gene products must be han-
dled explicitly by selecting the longest splice variant as
well as isoforms with at least 10% non-redundant posi-
tions. The sequences used by OMA are from public data-
bases (mainly Genbank [23] for Prokaryotes and Ensemb]
[8] for Eukaryotes) and all data are checked for consist-
ency and quality.

Homology is established in two sub-steps. First, align-
ments between all sequences are performed using full,
local dynamic programming with a fixed PAM matrix to
find all homologous sequences [20,24]. Second, signifi-
cant alignments (score > 85) are refined by searching
among all PAM distances the scoring matrix that maxi-
mizes the alignment score. Since scores are the log of odd
ratios, the PAM number of this matrix corresponds to the
maximum likelihood of evolutionary distance. Empiri-
cally, we observed that with a mixture of homologous and
non-homologous pairs of sequences as input, the PAM-
224 matrix yields alignment scores that are on average
closest to the ones obtained in the refinement part. Thus,

All All x All Candidate Stable PEITEmEd  Verified [MECdekd . Group
Pairs Comparison Pairs Stable Pairs Pairs Stable Pairs Pairs Orthologs Pairs

Figure |

Broken Pairs Orthologous Groups

Algorithm flow chart. Boxes represent the steps of the algorithm, and arrows are the input and output data for each step.
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Tests to determine the optimum length criterion
value. The fraction of candidate pairs that pass the triangle
inequality test and the fraction that have the same number of
domains increases with stricter (higher) length tolerance. In
contrast, the number of predicted orthologous relationships
decreases with stricter length tolerance. To consider only
alignments that cover at least a fraction of the sequence
length, a length criterion value of € = 0.61 is used in this
study.

this is the fixed matrix that we use in the first part. Refined
alignments with scores above 181 (which roughly corre-
sponds to an E-value of 10-14) are considered significant.
With scores below this value, the proportion of candidate
pairs that end up being predicted as orthologs decreases
rapidly (data not shown).

The all-against-all step is computationally expensive, and
the run time increases quadratically with the total number
of amino acids in a protein sequence. The use of a heuris-
tic-based algorithm such as BLAST could potentially
increase the speed of the homology search, but modern
implementations of Smith-Waterman using SIMD
instructions are almost as fast as BLAST [25]. Moreover,

Score Distance
No Tolerance BBH RSD
Tolerance RBH SP
Figure 3

Different methods to find potential orthologs. The
mutual best alignment can be determined by similarity score
or by evolutionary distance (columns), and with or without
the use of a tolerance to include multiple orthologous rela-
tionships (rows).
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Test to distinguish in-paralogs and out-paralogs. A
What is the relationship of sequences y, and y, with regard
to x? Identify which branch to place the root by finding an
out-group sequence z. B If the root on the branch leading to
X, then y, and y, are out-paralogs. C If duplication takes place
after speciation, y, and y, are in-paralogs. D To test if y, and
y, are in-paralogs, we confirm that the distance d of the inter-
nal branch is greater than zero.

most of the time is consumed by estimating evolutionary
distances.

Since we consider entire proteins as the basic evolutionary
unit, why then not use global alignments? Protein ends
are often variable, and thus, it is reasonable to ignore
them by using local alignments. To guarantee that a signif-
icant fraction of a sequence is aligned, we use a length tol-
erance criterion. The length of the shorter aligned
sequence must be at least the fraction € of the longest
sequence. That is

min (|a,], |a,|) > €-max(|s,], [s,|)

where a, and a, are the lengths of the aligned subse-
quences of s, and s,. Alignments that pass both the length
and score criteria are upgraded to candidate pairs (CP).

Parameter selection and validation

The parameter € is determined by two tests. The first test,
the triangle inequality test, is performed over all candidate
pairs. Under a time-reversible Markovian model, the evo-
lutionary distances between homologous sequences
should obey the triangle inequality condition which
requires that in a triplet of sequences, any distance
between two sequences be less than or equal to the sum of
the other two distances. Because these distances are esti-
mates, this property is expected only to hold within a con-
fidence interval.

dg,<dy+dy,
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Figure 5

Value for stable pair tolerance parameter. The fraction
of stable pairs that pass the out-paralog test has a local opti-
mum at the SP-tolerance |.81, for five different length crite-
ria. Increasing the tolerance value results in a larger fraction
of stable pairs suspected as out-paralogs.

For example, this condition may not be met if the
sequences x and y share one domain and sequences y and
z share another domain, but sequences x and z are not
related. The triangle inequality test detects such viola-
tions, which are likely to arise when inconsistent
sequences parts are matched. With increasing (i.e. stricter)
length criteria, a larger fraction of candidate pairs pass the
triangle inequality test (Figure 2).

Many proteins consists of several domains originating
from gene fusions, deletions, and internal repetitions. The
majority of multi-domain proteins have evolved by the
stepwise insertions of single domains [26]. In the second

A B C
X, —0—— Y, X Yy
Q\‘% “/ —
v
X, Z7Z, v, z, Z, z, z,

Figure 6

Assignment of potential paralogs. A In an evolutionary
scenario, an ancestral gene is duplicated, followed by two
speciation events, followed by asymmetrical gene loss of
genes X, and y,. The paralogous genes x, and y, could be mis-
taken for orthologs, but the duplicates are retained in
genome Z that can act as a witness of non-orthology. B
Schematic for verifying a stable pair between x, and y, using
genome Z. If (x,, z|) and (y,, z,) form stable pairs and are the
closest relatives then x, and y, are paralogs and were not
verified. C The only possible quartet formed when (x,, z|)
and (y,, z,) are the closest related sequences is shown.
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Value for verified pair tolerance parameter. The frac-
tion of verified pairs that passes the out-paralog test is
drawn. The top curve is produced with the use of the opti-
mal previous parameters, and the lower curves are produced
at other parameter settings and also have locally optimal val-
ues, both show similar optimal values (1.53) as the best
curve.

test, candidate pairs are verified by testing the assumption
that the number of domains for orthologous sequences
are in agreement, including identical domains (e.g. repe-
titions). Domain information is obtained from the Pfam
database and consists of conserved protein regions and
domains [27]. The amount of proteins with the same
number of domains increase with stricter length toler-
ance, but a "plateau” is observed for 0.6 < € < 0.9 (Figure
2).

Figure 2 shows the results of the two validation tests and
also that the number of orthologous relations (i.e. VP)
decreases with increasing length criteria. A trade-off exists
between sensitivity and selectivity. A value of € = 0.61 is a
good compromise between minimizing triangle inequal-
ity violations and numbers of different domains while
still including enough ambiguous alignments.

B

Figure 8

A An example graph containing one 4-clique, four 3-cliques,
and eight 2-cliques is provided. The highest scoring partition
of the graph is {w, x,, ;}, {y,, z,}. B A possible evolutionary
scenario corresponding to the graph.
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Evolutionary relations and corresponding classes of
pairs. The hierarchy of pairs are classified according to evo-
lutionary relations. We seek to find the borders of pairs to
capture underlying evolutionary relations. Verified pairs are
designed to cover all orthologs, and group pairs are a subset
of the closest orthologs. Broken pairs are cases where paral-
ogy is explicitly classified.

Formation of stable pairs

In the second step of the algorithm, potential orthologs
are detected by the identification of sequences in two
genomes that are more closely related to each other than
to any other sequence in the other sequence. We term
these sequences stable pairs (SP). This name was chosen
due to its close association with the stable marriage prob-
lem in computer science.

To measure the relatedness of sequences, either similarity
scores or evolutionary distances can be used. Most meth-
ods employ the similarity score ("best hit"), because it is

X 50

S 40]

£

2 20]

© |

o 104

o CP SP VP GP

Type of Connection

Figure 10

Number of pairs reported after each step. Each step of
the algorithm reduces the number of pairs, and the largest
reduction is observed with the formation of stable pairs.
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10°} — Al 550 302596 552
—— Bacteria 444 145255 720
—— Firmicutes 116 28109 767
. \ Eukaryota 72 157302 411
10 Archaea 51 15622 432
Vertebrates 32 80123 546
Mammalia 25 58982 575
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Figure 11

Distribution of group size. The average group size is
drawn for several versions of orthologous matrices. For large
sets of genomes (e.g. All and Bacteria) very few groups are
full (i.e. have one member from each genome).

directly obtained by the alignment process and the high-
est scoring sequence is usually the most closely related
sequence. However, scores do not constitute a direct
measure of relatedness. In particular, they depend on pro-
tein lengths. Evolutionary distances such as PAM units,
though more expensive to compute, constitute a sounder
measure of relatedness, because distances are additive in
their expected value (i.e. they are expected to equal the
sums of branch lengths between the species) and have
well characterized statistical properties.

A tolerance interval is used to allow the inclusion of more
than one potential ortholog, as this becomes necessary
when a gene duplication event occurred after speciation.
The tolerance threshold can be defined by including sim-
ilarity scores in an interval below the top score, or by using
variance of distance estimates to compute a confidence
interval.

Consequently, orthology assignment methods based on
pairwise sequence comparison can be classified in four
categories (see Figure 3). Bidirectional best hits (BBH) is
the most common approach and uses scores with no tol-
erance (e.g. [12]). Reciprocal-best-BLAST-hits (RBH) is
based on BLAST scores and uses a tolerance by including
all hits within a p-value [28]. The reciprocal smallest dis-
tance algorithm (RSD) use evolutionary distances without
a tolerance [14,16]. The stable pair method of OMA use
distance to measure relatedness between genes and their
variances as a tolerance criterion.

As mentioned above, the use of confidence intervals is
necessary to account for many-to-many orthologous rela-
tions, which arise when duplications occurred after speci-
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ation. Additionally, distance estimation is subject to
inference uncertainty and, thus, true orthologs may not
have the shortest estimated distance.

Formally, a pair of sequences (%, y) from genomes X and
Y is considered a stable pair if and only if, for all x; € X, x;
#x,and forally;e Y, y;#y:

2
dy —dy >k [0 (dy, —dy)

and

2
dyy —dy > ko (dy,, ~dy)

where d is a pairwise maximum likelihood distance esti-
mate and k, the tolerance parameter of the standard devi-
ation  between  the two  distances,  where

2 — 52 2 .
c (dei —dy)=0 (dxyf)+a (dyy)—2. An estimate of

the variance is obtained by the distance estimation, while
efficient estimation of covariance for this case was previ-
ously shown [21].

Parameter selection and validation

The tolerance parameter k controls the balance between
sensitivity (more true orthologs as stable pairs) and selec-
tivity (few out-paralogs as stable pairs). The optimal value
of k for our purpose is determined using the out-paralog
test.

The out-paralog test is designed to discriminate cases of
one-to-many orthology from cases of out-paralogy. More
precisely, it determines whether the divergence of
sequences X, y; and y,, illustrated in Figure 4A, is due to a
speciation or a duplication event. This is evaluated by
finding on which branch to place the root. If the root is
located on the branches leading to y, or y,, this suggests
that the divergence is a speciation and that the sequence
y, is an out-paralog (Figure 4B). In contrast, if the root is
on the branch leading to x, the divergence is a duplication
and both sequences in Y are orthologous to x (Figure 4C).
To find a suitable out-group z to place the root, the infor-
mation of a trusted phylogenetic topology is used (i.e. a
representative phylogeny that is indisputable). The
sequence z is selected to be the gene closest to x in the out-
group genome Z that is closest to the divergence of X and
Y. Figure 4D shows the quartet that is the result of y, and
y, being in paralogs. If the length of the internal branch d
for the given topology (i.e. the least square fit) is greater
than zero, the sequences are accepted.

dzy) tdzyy +tdxyy tdxy ) —2dzx—2dy1y,
4
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To evaluate the parameter k, the fraction of SP that passes
the test is measured. Figure 5 depicts the decreasing frac-
tion of passing stable pairs with increasing stable pair tol-
erance at different length criteria. Again, the problem is to
reduce the amount of conflicting out-paralogs while not
discarding interesting many-to-many relationships. In
this implementation, the required distance for a more dis-
tant stable pair must be within k = 1.81 of the closest sta-
ble pair.

Verification of stable pairs

Although the construction of stable pairs is likely to iden-
tify the corresponding ortholog of each sequence, at least
one special case exists in which systematic failure will
occur: differential gene loss. This problem affects all pair-
wise approaches, and is shown in Figure 6A. An ancient
duplication event is followed by two speciation events
resulting in three species X, Y, and Z. In two of these spe-
cies, each of the duplicates is lost (e.g. x, and y;), and as a
result, when comparing species X and Y, x; and y, are the
highest scoring match. In such a case, (x;, y,), although
paralogs, form a stable pair.

The purpose of the third step is to detect such stable pairs
corresponding to non-orthology. The presence of a third
genome Z, which has retained both copies z, and z, of the

duplication event, acts as a witness of non-orthology. We pre-
viously described the details of this procedure [29], and
the idea is illustrated in Figure 6B. If dy s, is significantly

shorter than d, , and d, , issignificantly shorter than

d there is evidence that x; and y, may not be

Yoz’
orthologs. Figure 6C depicts the most likely quartet pre-
dicted from the data provided in Figure 6A. This approach
can also be viewed as a tree-reconciliation that is based on
quartets without assuming any species tree topology.

Each stable pair is verified by comparison to all other
genomes. Stable pairs for which no witness of non-orthol-
ogy could be found are termed verified pairs (VP) and are
likely to be orthologs. Furthermore, stable pairs that are
not verified were defined as broken pairs (BP) and are likely
to correspond to paralogs.

Such cases of differential gene losses are not uncommon
in nature. Among yeasts for instance, approximately 5%
of stable pairs are detected as non-orthologous using the
procedure described above.

Parameter selection and validation

The procedure again uses a tolerance parameter to tune
the width of the confidence intervals required to detect
non-orthologs. To optimize the parameter, we use the
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out-paralog test (described in the previous section). We
select the VP tolerance value such that the fraction of ver-
ified pairs that pass the test is maximized. In figure 7, the
fraction of passing VPs as a function of the VP tolerance is
charted. In terms of the trade-off between VP- and the SP-
tolerance, increasing the VP-tolerance has little effect
when the SP-tolerance is low (i.e. only the closest stable
pairs were chosen). The decrease in the amount of VPs
with stricter VP-tolerance is much less than with stricter
SP-tolerance. Hence, it is reasonable to have a stricter VP-
tolerance than SP-tolerance to maximize coverage. From
the plot, a VP-tolerance of k = 1.53 visibly constitutes a
reasonable trade-off.

Note that although both the verification of the SP step and
the out-paralogy test detect non-orthologs, the test
requires knowledge of the species tree. To keep the orthol-
ogy prediction independent from such (often uncertain)
knowledge, we only used the out-paralogy test for param-
eter fitting, and only in cases where the species topology is
undisputed.

Ortholog clustering

The final step of the algorithm creates groups of orthologs.
Such grouping is non-trivial, because orthology is defined
over pairs of sequences and is not necessarily a transitive
relation. For instance, a sequence in one genome may
form several verified pairs with sequences in another
genomes, corresponding to several orthologous relations
(co-orthologs). These in turn cannot be orthologous to
each other. In OMA, we address this problem by making
available both pairwise orthologous relations (the verified
pairs) and groups of genes in which all pairs are orthologs.
Though the OMA groups leave out orthologous relations,
they are useful for some applications, such as species tree
inference.

We use a clique algorithm to search for maximal, com-
pletely connected subgraphs in a graph, where the vertices
are genes and the edges are verified pairs. To compute
cliques, algorithms exist to maximize either the size of the
clique (number of vertices) or the total weight of cliques
(sum of edge weights). Figure 8A shows a graph with
edges between all vertices except (z;, z,) and (z;, y,),
which are paralogous relations. The highest scoring parti-
tion is {wy, x;, 2}, {y, 2,}, with the total sum of edge
weights of 700 + 800 + 900 + 1000 = 3600. The score is
higher than the highest scoring maximum size clique {w;,,
Xy Yo 2o}, {2z,}, where the sum of the scores is
200+300+400+500+800+1000 = 3200. Hence, a smaller
clique is chosen due to higher edge weights, which cor-
rectly assigns orthologs according to the hypothetical evo-
lutionary scenario in Figure 8B, where the duplication
give subscripts that correspond to functionality. Finding
cliques is a NP-complete problem and the implementa-
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tions used here are based on an approximation of the ver-
tex cover problem [30]. Each clique constitutes an
orthologous group, where the sequence pairs in an ortholo-
gous group are denoted group pairs (GP), corresponding to
close orthologs.

Parameter selection and validation

To validate our methods and to compare different algo-
rithms for clique construction, a species tree is built from
the orthologous groups produced by each algorithm, and
the fit of the data to the tree is measured using the dimen-
sionless index [31]. This technique assumes that if the
groups inferred by the clique algorithms correctly predict
orthology, the data will have a better fit to the species tree.

For verification, 100 trials using various genomes and dif-
ferent taxa are computed using four different clique ver-
sions. Maximum size clique chose the largest clique in the
graph starting with the highest scoring edge (but does not
use any other edge information). Maximum size score clique
is an extension that uses the sum of the edge weights and
selects the higher scoring clique from several maximum
cliques of same size. The above described algorithm, max-
imum edge weight clique, is used twice, first with the scores
and then with the distances complement as edge weights.

In general, the maximum edge weight clique algorithms
perform better than the maximum size cliques (in 82 % of
the trials), as shown in Table 1. This result supports the
argument of the hypothetical example in Figure 8. To
build maximum edge weight clique we chose scores as
edge weights, over distances, because scores provides bet-
ter fits of the data to the constructed species trees twice as
often.

Results and discussion
Assigning evolutionary relationships

The goal of the OMA project is to detect all orthologous
sequence relationships among sequenced genomes. Con-
sidering that orthology is a pairwise relation, the starting

L n . .
point is all (ZJ sequence pairs that successively filter

through several steps to yield pairs of orthology (Figure
9). Table 2 lists the names of shrinking subsets and their
meaning in terms of the corresponding evolutionary rela-
tionships. The first step of the method, the all-against-all
alignment, removes the majority of pairs and leaves only
a small fraction of candidate pairs. These are further fil-
tered in subsequent steps, and the decrease of the relative
number of pairs after each step is depicted in Figure 10. A
substantial reduction occurs with the classification of sta-
ble pairs from candidate pairs and serves to reduce the
complexity of the verification step. The reduction of stable
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Table I: Results of clustering

Clique Times best

Maximum size |

Maximum size score 17
Maximum edge weight (distance) 28
Maximum edge weight (score) 54

Evaluation of the quality of the trees built from orthologous groups
using different clustering methods. The quality of trees is measured
using the dimensionless index [31].

pairs to verified pairs is comparatively small, but never-
theless important, since this crucial step removes non-
orthologs and explicitly indicates cases of paralogy (bro-
ken pairs). Finally, group pairs are the fewest in number,
because all but the most similar orthologous relationships
have been removed.

Verified pairs

Verified pairs represent a useful resource that describe
many-to-many orthology while pseudo-orthologs from
differential gene loss have been removed. In other words,
the most similar sequences may not be orthologous, and
for this reason, all stable pairs are verified using a third
genome as a witness of non-orthology. A critical assump-
tion in the verification of stable pairs is that in at least
some genomes both copies of a duplication event are
present. It is possible that no duplicates remain and that
paralogy cannot be detected by sequence similarity. How-
ever, the increasing number of completed genomes also
increases the chance of observing duplicates in a genome.
Both paralogs are often present in multiple genomes. For
example, when predicting orthologs for the subset of Fir-
micutes, (the subset is used for computational reasons)
75% of broken pairs had more than one witness of non-
orthology.

Lateral gene transfer (LGT) events of homologous
sequences (xenologs) are difficult to distinguish from
duplication events. Two genes may appear to be dupli-
cates when in fact, they are not. This issue affects most
orthology prediction methods. In the case of OMA, the
verification step helps reducing the adverse impact of
LGT; furthermore, we are investigating reliable ways of
excluding the most obvious cases of LGT.

Fusion-fission events

Two genes that in one organism may be truly orthologous
to one fused genes in another organism. OMA considers
the entire protein, rather than domains, to be the basic
evolutionary unit. Users interested in gene fusion-fission
events, or in domain evolution, may view this as a limita-
tion. We have chosen to exclude such scenarios, due to the
difficulty to separate these events from the cases where the

http://www.biomedcentral.com/1471-2105/9/518

domains in proteins arose form different evolutionary
unrelated domains. Although part of the sequence may
have diverged through speciation, another part is clearly
non-homologous. If orthology is defined at the domain
level, a gene could be orthologous to two or more
sequences that are completely unrelated. In terms of func-
tion, which is often inferred from orthology, genes with
different domains are unlikely to be similar. Finally,
restricting potential orthology to genes with a majority of
homologous positions presents the advantage of not only
avoiding these problems, but also reducing computa-
tional complexity.

Orthologous groups

In OMA, orthologous groups consist of close orthologs,
which are useful to build species trees. The results of
grouping close orthologs is represented by an ortholog
matrix. In this matrix, rows correspond to groups of
orthologous genes, and columns correspond to genomes.
A non-empty element in M; ;indicates that a genome j has
a member in an orthologous group i. The members of a
group possess at most one close ortholog in each genome.

In cases where duplication events occurred after a specia-
tion event, several orthologous relationships exist and are
often referred to as co-orthologs or in-paralogs [2]. We
group orthologs such that the most similar protein
sequence belong together using maximum edge weight
cliques. It should be noted that the most similar
sequences do not necessarily have the most similar func-
tion [32].

Using cliques to construct groups is a strict requirement,
because if an edge is missing (due to weak similarity or
misclassification), the group gets split. For applications
where this is problematic, users can devise their own
grouping strategy from the orthologous pairs, which we
also make available.

The distribution of group sizes for different sets of
genomes is displayed in Figure 11. The average size of the
orthologous groups (number of genes per group) is rela-
tively small in comparison to other methods (ranging
from approximately 4 to 7 genes per group). More small
groups exist rather than large groups, which is expected
based on the occurrence of duplications throughout evo-
lution. Large groups commonly consist of highly con-
served genes, such as ribosomal proteins.

Exhaustive sequence alignments

The all-against-all step is computationally expensive, and
the time complexity is O((n, + n, + ... + n;,)?) where n, rep-
resents the number of sequences in the kth genome. As of
November 2008, we have computed nearly 6 trillion
sequence alignments. A total of approximately 12 Hexa-
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Table 2: Sequence pairs and their corresponding evolutionary
relationships

Pairs Evolutionary Relation

All pairs (AP)  Any
Candidate pairs (CP) Homologs
Stable pairs (SP) Orthologs, Pseudo-orthologs
Broken pairs (BP) Paralogs
Verified pairs (VP) Orthologs
Group pairs (GP) Close orthologs

flop or roughly 500 years of CPU time. Of these align-
ments, 3.2 billion were considered significant (i.e. score >
130). This dataset constitutes a valuable resource for com-
parative studies and is available upon request. The subse-
quent steps of the algorithm are comparatively fast.

Comparison to other projects

The performances of OMA are compared to other projects
in a separate article [33]. The study includes COG, KOG,
EggNOG, InParanoid, OrthoMCL, Ensembl, Homolo-
gene, and RoundUp. The study tests ortholog predictions
on the basis of phylogeny (through reconstruction of
orthologous gene trees and through comparison with
phylogenetic analyses from the literature) and on the
basis of function conservation (in terms of GO annota-
tion, EC number classification, expression level, and gene
neighborhood conservation). The results of OMA are
among the best in the phylogenetic tests. In functional
tests, it also performs well where high functional specifi-
city is required, at the expense of a lower recall than
projects such as OrthoMCL or EggNOG.

In terms of size and with 657 genomes analyzed, OMA is
by a wide margin the largest orthologs inference effort
(the second largest, EggNOG, includes 373 genomes).
Our website is regularly updated as new species get
included.

Conclusion

Orthology is interesting for a wide range of bioinformatics
analyses, including functional annotation, phylogenetic
inference, or genome evolution. This paper describes and
motivates the algorithm of OMA for predicting ortholo-
gous relationships among complete genomes. The algo-
rithm takes a pairwise approach, thus neither requiring
tree reconstruction nor reconciliation, and offers the fol-
lowing improvements over the standard bidirectional best
hit approach: i) the use of evolutionary distance instead of
score, ii) a tolerance that allows the inclusion of one-to-
many and many-to-many orthologs, iii) consideration of
uncertainty in distance estimations, iv) detection of
potential differential gene losses. The algorithm is charac-
terized by four parameters that are optimized using inde-
pendent tests. The current status of the project and the

http://www.biomedcentral.com/1471-2105/9/518

project results, including phylogenetic trees derived from
the data, are available online [34].
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