
BioMed CentralBMC Bioinformatics

ss
Open AcceMethodology article
A fast algorithm for the multiple genome rearrangement problem
with weighted reversals and transpositions
Martin Bader*1, Mohamed I Abouelhoda2,3 and Enno Ohlebusch1

Address: 1Institute of Theoretical Computer Science, University of Ulm, 89069 Ulm, Germany, 2Faculty of Engineering, Cairo University, Giza,
Egypt and 3Nile University, Giza, Egypt

Email: Martin Bader* - martin.bader@uni-ulm.de; Mohamed I Abouelhoda - mabouelhoda@yahoo.com;
Enno Ohlebusch - enno.ohlebusch@uni-ulm.de

* Corresponding author

Abstract
Background: Due to recent progress in genome sequencing, more and more data for
phylogenetic reconstruction based on rearrangement distances between genomes become
available. However, this phylogenetic reconstruction is a very challenging task. For the most simple
distance measures (the breakpoint distance and the reversal distance), the problem is NP-hard
even if one considers only three genomes.

Results: In this paper, we present a new heuristic algorithm that directly constructs a phylogenetic
tree w.r.t. the weighted reversal and transposition distance. Experimental results on previously
published datasets show that constructing phylogenetic trees in this way results in better trees than
constructing the trees w.r.t. the reversal distance, and recalculating the weight of the trees with
the weighted reversal and transposition distance. An implementation of the algorithm can be
obtained from the authors.

Conclusion: The possibility of creating phylogenetic trees directly w.r.t. the weighted reversal and
transposition distance results in biologically more realistic scenarios. Our algorithm can solve
today's most challenging biological datasets in a reasonable amount of time.

Background
During evolution both local and global mutations of
DNA molecules occur. Local mutations (point mutations)
consist of the substitution, insertion, or deletion of single
nucleotides, while global mutations (genome rearrange-
ments) change the DNA molecules on a large scale. In uni-
chromosomal genomes, the most common
rearrangements are inversions (also called reversals in bio-
informatics), where a section of the genome is excised,
reversed in orientation, and re-inserted. But also transpo-
sitions play a role. In a transposition, a section of the
genome is excised and inserted at a new position in the

genome; this may or may not also involve an inversion.
Since genome rearrangements are rare compared to point
mutations, they can give us valuable information about
the evolutionary history of organisms. Moreover, because
of the progress in large-scale sequencing in the last decade,
hundreds of complete genomes are available to date. As a
consequence, we are now able to tackle the problem of
reconstructing the evolutionary history of genomes.

In the context of genome rearrangements, a unichromo-
somal genome is usually represented by an ordering of
certain oriented markers (e.g., genes or synteny blocks

Published: 4 December 2008

BMC Bioinformatics 2008, 9:516 doi:10.1186/1471-2105-9-516

Received: 14 March 2008
Accepted: 4 December 2008

This article is available from: http://www.biomedcentral.com/1471-2105/9/516

© 2008 Bader et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 13
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/9/516
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19055792
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2008, 9:516 http://www.biomedcentral.com/1471-2105/9/516
[1]). Moreover, in the comparison of several genomes, it
is typically assumed that the genomes have the same set
{1,...,n} of markers. Thus, in the following a unichromo-
somal genome will be represented by a signed permuta-
tion of the sequence (1,...,n), where the sign indicates the
corresponding orientation (strandedness) of the marker.

In the multiple genome rearrangement problem, one
searches for a phylogenetic tree describing the most "plau-
sible" rearrangement scenario for multiple genomes. For-
mally, given k genomes, find a tree T with the k genomes
as leaf nodes and assign ancestral genomes to internal
nodes of T such that the tree is optimal, i.e., the sum of
rearrangement distances over all edges of the tree is mini-
mal. The following rearrangement distances have been
studied:

• The breakpoint distance between two genomes is the
smallest number of places where one genome must be
broken so that the pieces can be rearranged to form the
other genome. It can straightforwardly be computed in
linear time.

• The reversal distance between two genomes is the mini-
mum number of reversals required to transform one
genome into the other. It can also be computed in linear
time [2,3].

• In the weighted reversal and transposition distance, the two
types of operations are assigned (different) weights, and
the rearrangement distance between two genomes is the
minimum of the weights of all rearrangement sequences
that transform one genome into the other (of course, the
weight of a sequence is the sum of the weights of the oper-
ations in the sequence). The problem of computing the
weighted reversal and transposition distance in polyno-
mial time is yet unsolved, but we developed a 1.5 approx-
imation algorithm that works well in practice [4,5],
extending the work of Hartman and Sharan for equally
weighted reversals and transpositions [6].

Although transpositions really matter and are frequently
observed, they were not considered in software tools for
whole genome phylogeny due to the computational com-
plications associated with them. The following small
example demonstrates the importance of considering
transpositions. Table 1 shows the ordering of the mito-
chondrial genes (starting with the cox1 gene in the circular
genome) in Drosophila melanogaster, while Table 2 addi-
tionally provides the ordering of these genes in Lithobius
forficatus. Obviously, the mitochondrial genome of D.
melanogaster can be transformed into that of Lithobius for-
ficatus by a transposition of gene 37 and an inverted trans-
position of gene 2. If one takes solely reversals into
account, then the optimal rearrangement scenario would
consist of five unnatural reversals.

The multiple genome rearrangement problem was shown
to be NP-hard for both the breakpoint and the reversal
distance [7,8]. This is true even if one considers only three
genomes [7,8]. To put it differently, the breakpoint and
the reversal median problem are NP-hard. Recall that in
the median problem, we are given a distance or dissimilar-
ity measure d, three genomes g1, g2, and g3, and we want

to find a genome M (a median) such that the sum

 is minimized.

Related work
Breakpoint distance
Sankoff and Blanchette [9] solved the multiple genome
rearrangement problem for the breakpoint distance by
solving the following problem for each tree topology: Given
a tree topology T with the k genomes as leaf nodes, assign
ancestral genomes to internal nodes of T such that the tree
is optimal (among all trees with this topology). They pro-
posed to use the breakpoint median problem in an itera-
tive manner to refine rough initial guesses for internal
nodes. The breakpoint median problem in turn can be
reduced to the traveling salesman problem for which very
good heuristics exist. The resulting software BPAnalysis,
however, was rather slow. Moret et al. [10] provided a

d M gii
(,)=∑ 1

3

Table 1: Ordering of the mitochondrial genes in Drosophila melanogaster

1 2 3 4 5 6 7 8 9 10
cox1 L2 cox2 K D atp8 atp6 cox3 G nad3

11 12 13 14 15 16 17 18 19 20
A R N S1 E -F -nad5 -H -nad4 -nad4L

21 22 23 24 25 26 27 28 29 30
T -P nad6 cob S2 -nad1 -L1 -rrnL -V -rrnS

31 32 33 34 35 36 37 38
UNK I -Q M nad2 W -C -Y
Page 2 of 13
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:516 http://www.biomedcentral.com/1471-2105/9/516
reimplementation of BPAnalysis called GRAPPA that
resulted in a speedup by several orders of magnitude.

Reversal distance
Moret et al. [11] and Tang et al. [12] showed that using
reversal medians instead of breakpoint medians in the
method of Sankoff and Blanchette [9] yield better phylo-
genetic trees, and they further extended the GRAPPA soft-
ware in this direction. Moreover, Bourque and Pevzner
[13] pointed out that the use of the breakpoint distance
for generating the tree is disadvantageous because it may
result in a tree that is suboptimal under other rearrange-
ment distances. Their own greedy method iteratively
builds a phylogenetic tree, based on a heuristic for finding
the reversal median (in case of multichromosomal
genomes, translocations are taken into account as well).
Their method is implemented in the software tool MGR.
Wu and Gu devised algorithms that solve an equivalent
Steiner tree problem. Besides a nearest path search algo-
rithm on a simple grid [14] (simplifying the grid search
algorithm of Sankoff et al. [15]), they also presented a
neighbor perturbing algorithm that starts with a mini-
mum spanning tree as a 2-approximation of the optimal
Steiner tree and tries to iteratively improve the tree by
searching for better Steiner nodes in the neighborhoods of
the current nodes [16]. Recently, Bernt et al. [17] pre-
sented a software tool called amGRP which further signif-
icantly improves upon GRAPPA and MGR.

Weighted reversal and transposition distance
To the best of our knowledge, the approach of Cosner et
al. [18] is the only one that (indirectly) takes weighted
reversals and transpositions into account. In their
method, they first use a heuristic to construct a phyloge-
netic tree according to the breakpoint distance as follows:
Genomes are encoded as binary strings, a maximum par-
simony technique for binary strings is employed, and
then each internal node in the resulting phylogenetic tree
is relabeled using BPAnalysis. Then, the weighted reversal
and transposition distances on the edges of the tree are
heuristically calculated with the software tool DERANGE
II [19].

Our contribution
In this paper, we present a new heuristic algorithm for
solving the multiple genome rearrangement problem.
Our algorithm is the first one that tries to directly con-
struct an optimal phylogenetic tree under the weighted
reversal and transposition distance. We conducted experi-
ments on previously published datasets, and the results
are very promising. Because there is no other software tool
that can deal with the weighted reversal and transposition
distance, we conducted the same experiments with the
reversal distance and compared our results with those
delivered by other software tools. Although our program
was not designed for the reversal distance, the results
show that it can compete with state-of-the-art programs in
this field.

Results
Definitions

In this paper, we consider genomes that consist of a single
circular chromosome (like mitochondrial, chloroplast or
bacterial genomes). Such genomes are modeled by signed

circular permutations. A signed circular permutation π = (π1

... πn) is a permutation of (1...n), in which the indices are

cyclic (i.e., n is followed by 1) and each element is labeled
by plus or minus. We will use the term "permutation" as
short hand for signed circular permutation. The reflection

of a permutation π is the permutation (-πn... π1). It is con-

sidered to be (biologically) equivalent to π. The permuta-
tion id = (+1 + 2...+n) is called the identity permutation. A

segment πi... πj (with j ≤ i) of a permutation π is a consecu-

tive sequence of elements in π, with πi as first element and

πj as last element. We consider three possible rearrange-

ment operations on a permutation π. A transposition t(i, j,
k) (with i <j and k <i or k > j) is an operation that cuts the

segment πi ... πj-1 out of π, and reinserts it before the ele-

ment πk. A reversal r(i, j) (with i <j) is an operation that

reverses the order of the elements of the segment πi ... πj-1.

Additionally, the sign of every element in the segment is
flipped. An inverted transposition tr(i, j, k) (with i <j and k

Table 2: Ordering of the mitochondrial genes in the two organisms.

D. melanogaster 1 2 3 4 5 6 7 8 9 10 11 12 13
14 15 16 17 18 19 20 21 22 23 24 25 26
27 28 29 30 31 32 33 34 35 36 37 38

L. forficatus 1 3 4 5 6 7 8 9 10 11 12 13 14
15 16 17 18 19 20 21 22 23 24 25 26 -2
27 28 29 30 31 37 32 33 34 35 36 38

The mitochondrial genome of Drosophila melanogaster can be transformed into that of Lithobius forficatus by a transposition of gene 37 and an
inverted transposition of gene 2.
Page 3 of 13
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:516 http://www.biomedcentral.com/1471-2105/9/516
<i or k > j) is the composition t(i, j, k) � r(i, j) of a reversal

and a transposition. In other words, the segment πi ... πj-1

will be cut out of π, inverted, and reinserted before πk. A

sequence of rearrangement operations op1, op2 ,..., opk

applied to a permutation π yields the permutation =

opk(opk-1(...(op1(π))...)). We also say that the sequence is a

sorting sequence of p w.r.t. , as it sorts π into . A permu-

tation lies on a sorting sequence op1, op2,...,opk of π if

there is a j ≤ k such that opj(opj-1(...op1(π))...)) = . Each

operation op is assigned a positive weight w(op). The
weight of a sequence is the sum of the weights of its oper-

ations. An optimal sorting sequence between π and is a

sequence of minimum weight transforming π into . The

weighted genome rearrangement distance between π and

(denoted by d(π,)) is the weight of an optimal sorting
sequence between them. In this paper, we consider two
different genome rearrangement distances, the reversal dis-
tance and the weighted reversal and transposition distance.
For the reversal distance, we restrict the set of allowed
operations to reversals. Each reversal has the weight 1, i.e.

the reversal distance dr(π,) is the minimum number of

reversals required to transform π into . For the weighted
reversal and transposition distance, the weight of an oper-
ation only depends on its type:w(op) = wr if op is a reversal,

and w(op) = wt if op is a transposition or an inverted trans-

position. As reversals usually occur much more frequently
than transpositions and inverted transpositions, we

assume that wr ≤ wt. In fact, we assume that wr = 1 ≤ wt ≤ 2

because this results in a biologically meaningful balance
between reversals and transpositions (see also in Section
"Testing, Weight Ratios"). The weighted reversal and

transposition distance between two permutations π and

 is denoted by dw(π,), and a lower bound

for this distance is dw(π,) ≥ (wt/2)·(n - σ(π,)), where

n is the size of the permutations and σ(π,) is the score

between the permutations π and (for details, see [4]).

A median M(π1, π2, π3) of three permutations π1, π2, and

π3 is the permutation that minimizes d(M, π1) + d(M, π2)

+ d(M,π3). Note that in general a median is not unique. An
algorithm that solves the median problem (either exactly
or heuristically) is called a median solver. A phylogenetic tree

of a set of permutations (genomes) P = {π1,...,πn} is a tree
T = (V, E), where V is the set of nodes and E is the set of
edges of the tree. Each node is labeled by a permutation vi,

and there is a bijection between the labels of the leaves

and the permutations in P (i.e., any element of P is label
of exactly one leaf). The weight of an edge (vi, vj) is the dis-

tance d(vi, vj). The weight of a tree w(T) is the sum of the

weights of its edges. The phylogenetic reconstruction problem
is to find a phylogenetic tree with minimum weight, given
the set of permutations P.

Algorithm
The algorithm has two different phases. In the first phase,
we use a fast heuristic that creates a tree. This heuristic
does not rely on median solvers. In the second phase, this
tree will be improved until it converges to a local opti-
mum. We use two different improvement algorithms.
One improves the tree topology, while the other improves
the labeling of internal nodes by using a median solver.
These two algorithms can be run alternatingly until the
tree does not improve any further. In practice, the topol-
ogy of the tree created in the first phase is already very
good, so the algorithm for improving the topology has to
be run only once. The whole algorithm was designed for
the weighted reversal and transposition distance, how-
ever, it can also be used for other rearrangement distances
as it only requires an algorithm that finds an optimal sort-
ing sequence between two permutations, or at least a good
approximation algorithm. Only the second improvement
algorithm requires a median solver. We implemented the
algorithm for the reversal distance and the weighted
reversal and transposition distance. For the reversal dis-
tance, there is an efficient exact sorting algorithm [20,21]
and a branch-and-bound algorithm for the median that
works well in practice [22]. For the weighted reversal and
transposition distance, there is a 1.5-approximation for
the sorting problem that works well in practice [4,5]. As
median solver, we extended Caprara's reversal median
solver [22] such that it works on the lower bound for the
weighted reversal and transposition distance instead of
using the maximum cycle decomposition of the original
algorithm. As the algorithm for the weighted reversal and
transposition distance is often able to find exact solutions,
especially for short distances, the median solver also finds
an exact median w.r.t. the weighted reversal and transpo-
sition distance in many cases.

Creating the tree
We create the tree T iteratively, beginning with a tree
whose set of nodes consists only of one arbitrary permu-
tation of the set of input permutations P = {π1,...,πk}, i.e.
T0 = (V0, E0) = ({π}, ∅) with π ∈ P.

In each step, we create the tree Ti from the tree Ti-1 by
choosing a permutation π ∈ P\Vi-1 that is not yet a node in
the tree, and add this permutation as leaf node. This
includes an update of the edge set, and can include the
creation of a new internal node. The algorithm terminates

π

π π
π̂

π̂

π
π

π
π

π

π

d M gii
(,)=∑ 1

3 π

π π

π
π

Page 4 of 13
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:516 http://www.biomedcentral.com/1471-2105/9/516
when all input permutations are in the tree, i.e., T = Tk.
Choosing the next permutation π ∈ P to be added to the
tree Ti-1, as well as determining its ancestor node, is done
by a heuristic that minimizes the weight of the resulting
tree Ti. In contrast to previous algorithms, we do not use a
median solver for this. Instead, we maintain for each edge
(v, v') ∈ Ei-1 a set of permutations, called the cloud of the
edge. This cloud can be seen as sets of candidate nodes for
internal nodes. For a formal definition of a cloud, we first
must define the δ-vicinity of an edge.

Definition 1 Let (v, v') be an edge in a tree and let δ ∈ �. The
δ-vicinity of (v, v') is defined by

Vicδ (v, v') = {s ∈ V | d(v, s) + d(s, v') ≤ d(v, v') + δ}

In the following, we often simply speak of the vicinity of an
edge, assuming that δ is fixed.

Intuitively, this means that the d-vicinity of an edge (v, v')
are all permutations w that lie "in between" v and v'. Split-
ting the edge into the two edges (v, w) and (w, v'), and
adding the edge (w, π) will increase the weight of the tree
by at most d(w, π) + δ. Thus, searching for new internal
nodes in the vicinity of edges seems to be a good heuristic.
However, even the 0-vicinity of an edge (v, v') can be of
exponential size w.r.t. d(v, v'). Hence, it is not practicable
to search the whole vicinities of the edges, and we have to
restrict the search space somehow. In the following, we
assume that d is a small, fixed number.

Definition 2 The cloud Cloud(v, v') of an edge (v, v') in a tree
is a subset of Vicδ(v, v').

Of course, this definition is quite general and does not
reflect how to generate "good" clouds. We will present a
heuristic for generating clouds in the next section.

Creating the tree Ti from Ti-1 is now done as follows. We
choose an element π ∈ P\Vi-1 and either (a) a node v ∈ Vi-

1 or (b) an edge (v, v') ∈ Ei-1 and a permutation s ∈ Cloud(v,
v'), such that the resulting tree Ti is of minimum weight. If
(a) a node v ∈ Vi-1 is chosen, then the resulting tree is
obtained by adding an edge from π to v, i.e., Vi = Vi-1 ∪ {π}
and Ei = Ei-1 ∪ {(v, π)}. If (b) an edge (v, v') and a permu-
tation s ∈ Cloud(v, v') is chosen, the resulting tree is
obtained by replacing (v, v') with the two edges (v, s) and
(s, v') and adding a new edge (π, s), i.e., Vi = Vi-1 ∪ {s, π}
and Ei = Ei-1 ∪ {(v, s), (s, v'), (π, s)} \ {(v, v')}. An illustra-
tion can be found in Fig. 1. The weight of Ti can be calcu-
lated in case (a) by w(Ti) = w(Ti-1) + d(v, π) and in case (b)
by w(Ti) = w(Ti-1) - d(v, v') + d(v, s) + d(s, v') + d(π, s). It
should be pointed out that whenever we add an edge to
the tree we also generate its cloud. Analogously, whenever
we remove an edge from the tree we also delete its cloud.

The resulting tree does not necessarily fulfill the definition
of a phylogenetic tree, as a permutation π ∈ P may corre-
spond to an internal node v instead of a leaf node. This
can easily be fixed by creating an exact copy v' of v and
adding the edge (v, v'), i.e. π corresponds now to the leaf
v'.

Creating the clouds
The quality and size of the clouds are crucial for the qual-
ity of the resulting tree and the running time of the algo-
rithm. Let us consider the two extremes. If the clouds are
empty, the algorithm is reduced to Prim's algorithm that
finds a minimum spanning tree of P. If the cloud of an
edge (v, v') contains the whole vicinity of the edge, the

Adding a nodeFigure 1
Adding a node. A new node π can either be added to (a) a node v in the tree or (b) to a point s in a cloud of an edge (v, v').
In the latter case, we have to split the edge (v, v') into two edges (v, s) and (s, v'). Clouds are removed/generated accordingly.

s

v

v’

p

v

v’

p

v

v’

s

v

v’

(a) (b)
Page 5 of 13
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:516 http://www.biomedcentral.com/1471-2105/9/516
algorithm will always find a best ancestral genome unless
it is not in this vicinity. However, in this case the size of
the cloud is exponential w.r.t. d(v, v'). Our goal is to find,
for each edge (v, v'), a cloud of polynomial size w.r.t. d(v,
v') that provides a good coverage of the vicinity of (v, v').
The main idea of our heuristic is to generate different opti-
mal or near optimal sorting sequences between v and v'
and to select a subset of the permutations that lie on these
sorting sequences as the cloud of the edge. To avoid dupli-
cates in the cloud, our algorithm proceeds as follows.
First, we define the set C0 = {v}. Then, we iteratively gen-
erate the sets Ci out of the sets Ci-1 by applying to each per-
mutation in Ci-1 each operation that decreases the distance
to v'. Then, we reduce the size of Ci by selecting a fixed
number of disjoint permutations from Ci. As additional
heuristic, we select the permutations from Ci that mini-
mize the distance to the closest permutation in the set of
input permutations P that is not yet in the tree. These steps
are repeated until we reach the permutation v', i.e. Cm =
{v'}. As cloud, we use the union of the sets C1 to Cm-1.

Note that the resulting cloud is a subset of Vic0(v, v').
However, this works only for the reversal distance, as we
do not have an exact algorithm for the weighted reversal
and transposition distance. In this case, we apply opera-
tions that decrease the lower bound instead of decreasing
the real distance. Thus, the parameter δ depends on the
approximation quality of the algorithm for generating the
sorting sequence, and we cannot determine it exactly.
However, the approximation quality of the algorithm is
very good in practice [5], so we can assume that δ is small.

Improving the topology

The construction phase may get trapped in a local mini-
mum. To avoid this, it is followed by an improvement

phase, which iteratively tries to find edges that are better
than the existing ones. The input to the improvement
algorithm is a tree T' = (V', E') for P in conjunction with
the clouds of the edges. The algorithm works as follows.

First, we temporarily remove an edge e ∈ E'. This splits T'
into two subtrees T1 = (V1, E1) and T2 = (V2, E2). Then we

search for a better edge (w1, w2) that reconnects these two

subtrees as follows. w1 is either a node in V1 or a permuta-

tion in a cloud of an edge (v1,) ∈ E1. In the latter case,

we alter the tree T1 into a tree by replacing

the edge (v1,) with the two edges (v1, w1) and (w1,),

i.e., = V1 ∪ {w1} and

. Otherwise, we

set = T1. The tree is defined analogously to by

distinguishing as to whether w2 is a node in V2 or a permu-

tation in a cloud of an edge (v2,) ∈ E2. The new tree

 is obtained by connecting and by the

edge (w1, w2), i.e., and

. For an example, see Fig. 2. If

w() <w(T'), these changes are accepted (i.e., T' :=),
otherwise they are discarded. When the changes are
accepted, we generate the clouds for the new edges and
delete the clouds of removed edges.

Note that searching for the edge (w1, w2) is done by an
exhaustive search for w1 in all nodes in V1 and all permu-
tations in the clouds of all edges in E1, and similarly for

′v1

T V E1 1 1= (,)

′v1 ′v1

V1

E E v w w v v v1 1 1 1 1 1 1 1= ∪ ′ ′{(,),(,)} \ {(,)}

T1 T2 T1

′v1

T V E= (,) T1 T2

V V V= ∪1 2

E E E w w= ∪ ∪1 2 1 2{(,)}

T T

Improving the tree topologyFigure 2
Improving the tree topology. The subtrees T1 and T2 are reconnected by an edge from s to v2, where s ∈ Cloud(v1,) and

v2 ∈ V2. The edge (v1,) must be split into two edges (v1, s) and (s,) before the new edge (s, v2) is added. Clouds are

removed/generated accordingly.

T1

T2

v2

v’1

v1

v’1

v1

v2s
s

′v1

′v1 ′v1
Page 6 of 13
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:516 http://www.biomedcentral.com/1471-2105/9/516
w2. The improvement step is repeated until no further
improvement is found.

Improving internal nodes
Due to the tree construction algorithm, usually some of
the internal nodes are not the median of their neighbor-
ing nodes, although they are very close to the median in
most cases. The second improvement algorithm further
improves the tree by relabeling internal nodes until all
internal nodes are the median of their neighbors. For this,
we first must ensure that each internal node is of degree 3,
since our median solver is designed to find the median of
three nodes. Thus, for each internal node v with a degree
of k > 3, we create a node v' which is an exact copy of v. We
reconnect these two nodes such that v is connected to v'
and two of its former neighbors, while v' is connected to v
and all other neighbors of v. Thus v has now a degree of 3,
and v' has a degree of k - 1. We repeat this until all internal
nodes have a degree of 3.

Now, for each internal node v, we calculate the median M
of its three neighboring nodes. If the sum of the distances
of the neighbor nodes to M is less than the sum of the dis-
tances of the neighbor nodes to v, we replace v with M. For
the reversal distance, we used the exact Caprara median
solver, which maximizes the number of cycles in the mul-
tiple breakpoint graph and then checks the pairwise dis-
tances towards the calculated median (for details, see
[22]). For the weighted reversal and transposition dis-
tance, we extended Caparara's median solver such that it
minimizes the sum of the lower bounds between the cal-
culated median and each of the three input permutations,
and then checks the pairwise distances towards the calcu-
lated median. Note that there is no efficient exact median
solver known for the weighted reversal and transposition
distance. However, the median solver finds an exact
median w.r.t. the lower bound for the weighted reversal
and transposition distance. Thus, we only get inaccuracies
by using the approximation algorithm for the weighted
reversal and transposition distance, and therefore the
approximation ratio of our median solver is as least as
good as the approximation ratio of the pairwise distances,
which is very good in practice.

The improvement of internal nodes is repeated until the
tree does not improve any further, i.e. each node is the
median of its neighboring nodes.

Testing
Data sets
We tested our algorithm on the following three biological
datasets, which can be considered as benchmarks for phy-
logenetic reconstruction algorithms based on genome
rearrangements.

Campanulaceae
This dataset contains 13 chloroplast DNAs of the flower-
ing plant family Campanulaceae, where each genome con-
tains 105 markers. It was created by Cosner et al. as test
case for their new method MPBE [18], and at that time
was ranked among the most challenging datasets for
genome rearrangement algorithms.

Metazoan
This dataset contains 11 metazoan mitochondrial DNAs
with 36 different markers. In the context of genome rear-
rangement algorithms, it was first used in [23]. In the year
2002, Bourque and Pevzner published a tree with 150
reversals, showing that MGR outperforms GRAPPA, as
GRAPPA was only able to find a tree with 175 reversals in
more than 48 hours [13]. However, GRAPPA has been
improved ever since, and the current version is now able
to find a tree with 159 reversals in 68 seconds (see Subsec-
tion "Experimental results").

Protostomes
This dataset contains 62 protostome mitochondrial DNAs
with 36 different markers. It was first published in [24]
and later adjusted in [17] to be used as test scenario for
amGRP. The increased amount of data and the larger
genome distances make this dataset much more compli-
cated than the metazoan dataset.

Weight ratios
Two circular genomes (represented by n markers) are
identical if the number of breakpoints between them is
zero and the number of cycles in the breakpoint graph is
n, respectively (for details, see [25]). Thus, a sequence of
rearrangement operations that transforms one genome
into the other must reduce the number of breakpoints to
zero and increase the number of cycles to n, respectively.
Because a reversal removes at most two breakpoints and
generates at most one new cycle, while a transposition
removes at most three breakpoints and generates at most
two new cycles, transpositions are generally favored if the
weight ratio is 1:1 (wr : wt). On the other hand, if the
weight ratio is 1:2 and one uses Eriksen's (1 +)-approxi-
mation algorithm [26], then an optimal sequence of rear-
rangements will consist almost solely of reversals. In our
opinion, a realistic weight ratio for most biological data-
sets must be somewhere between these two extremes.
Exemplarily, we are using the weight ratio 1:1.5.

We performed tests for the weighted reversal and transpo-
sition distance with the weight ratios 1:2, 1:1.5, and 1:1.
The weight wr for reversals was fixed to 1, while the weight
wt for transpositions was set to the corresponding values.
We tested our program with different tree improvement
strategies: No tree improvement (phylo-n), using only the
tree perturbation to improve the topology (phylo-t), using
Page 7 of 13
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:516 http://www.biomedcentral.com/1471-2105/9/516
only the median solver to improve the inner nodes
(phylo-m), and the combination of both strategies
(phylo-tm). Since the result of our algorithm depends on
which permutation of the set P was chosen as first node,
we performed one run for each permutation in P as start
node.

Other tools using the reversal distance
As there is no other algorithm that can handle the
weighted reversal and transposition distance, we also per-
formed all tests mentioned above with the reversal dis-
tance, and compared our results with the results of the
following programs.

GRAPPA
We used the current version 2.0 [27], which contains
some serious improvements above older versions, espe-
cially it includes a median solver. The best results were
achieved with the parameters -t4 -T4 -n4 -e -m -a -C (for
details see the GRAPPA manual). Using DCM-GRAPPA
[28] only improved the running times, but usually
resulted in worse trees.

MGR
We used the current version 2.01. The best results were
achieved with the triplet resolution heuristic disabled.
Note that the heuristics h3 and h5 are no longer available,
thus we could not reproduce some of the results given in
[13] and [17].

amGRP
We used the version of April 2007. The best results were
achieved with the "skewest" heuristic. As amGRP relies on
randomness, we performed 50 runs for each data set. Note
that this results in a similar number of runs and overall
running time for amGRP and our program when using the
reversal distance on the protostomes data set. In Subsec-
tion "Experimental results", we will only report the result
of the best of these runs. For more information about the
variance of the output of amGRP, the reader is referred to
[17].

All tests were performed on a standard PC (Athlon 64
3200+ 2 GHz CPU, 512 kB L2 Cache, 4 GB RAM, 1000
MHz Bus Speed, Debian Kernel 2.6.22, GCC 4.1.2).

Comparing the results
While comparing the trees according to the reversal dis-
tance is straightforward, one might also be interested in
comparing the trees according to the weighted reversal
and transposition distance. The only other approach that
tackles this task is the one of Cosner et al. [18], however
in a very indirect way. First, a phylogenetic tree is gener-
ated according to the breakpoint distance, using a maxi-
mum parsimony technique for obtaining the tree

topology and the software tool BPAnalysis for obtaining
the labeling of internal nodes. Then, the weighted reversal
and transposition distances of the edges of the tree are
heuristically calculated with the software tool DERANGE
II [19]. Since BPAnalysis is no longer state-of-the-art and
software tools have improved ever since, we investigated
whether it is worthwhile to create a tree according to the
reversal distance, and then to recalculate the weights of
the edges using the weighted reversal and transposition
distance. The experiments showed that using DERANGE II
or the algorithm devised in [4] led to very similar results,
thus we only provide the results of the latter algorithm. To
avoid misleading results by using an approximation algo-
rithm, we also recalculated the weights of the edges using
the lower bound for the weighted reversal and transposi-
tion distance, resulting in a lower bound for the tree
weight for a given topology and labeling of internal
nodes. To put it differently, recalculating the tree weight
with an exact algorithm for the weighted reversal and
transposition distance cannot give us a result that is lower
than this value. This approach was only feasible for MGR
and amGRP because GRAPPA does not report the permu-
tations at internal nodes. One might also ask if using Erik-
sen's (1 +)-approximation algorithm [26] would lead to
better results for the weight rato 1:2. However, comparing
the calculated tree weights with the lower bounds showed
that the approximation ratio of our algorithm is very good
in practice, especially for this weight ratio, so we did not
perform further tests with Eriksen's algorithm.

Experimental results
Weighted reversal and transposition distance
The best results for the Campanulaceae dataset were
achieved by phylo-m and phylo-tm, except for the weight
ratio 1:1, where phylo-m found a tree with weight 38,
while phylo-tm only found a tree with weight 39, see
Table 3. A possible reason for this is that the Campanu-
laceae dataset is easy for the first phase of the algorithm,
and the resulting tree has already a very good topology in
most cases. As the tree perturbation is a heuristic, a single
step can lead to a worse topology. As we can only perform
very few improvement steps with this heuristic, there is a
risk of having a worse topology than in the beginning. If
we have a dataset that allows more improvement steps,
the probability of getting a worse tree becomes very small,
and we get better trees in almost all cases (see also the
results for the protostome dataset). The running time of
our algorithm varies from 5 to 14 seconds, depending on
the chosen parameters. It has already been mentioned
that Cosner et al. [18] constructed a phylogenetic tree for
the Campanulaceae dataset according to the breakpoint
distance and then relabeled its internal nodes according to
the weighted reversal and transposition distance. In this
way, they were able to account for transpositions and
obtained tree with 40 reversals and 12 transpositions.
Page 8 of 13
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:516 http://www.biomedcentral.com/1471-2105/9/516
Note that this is worse than our result. For the weight ratio
1:2, we obtained a tree of weight 62, whereas their tree has
weight 64. Our experimental results show that also creat-
ing the tree according to the reversal distance and recalcu-
lating the edge weights using the weighted reversal and
transposition distance is not a competitive approach.
Even for the weight ratio 1:2, where reversals are the
favored operation, the tree found by our algorithm has a
weight of 62, while the trees found by MGR and amGRP
have a weight of 63. This gap enlarges for the other weight
ratios. Calculating the lower bounds shows that the gap is
not caused by inaccuracies during the recalculation of the
edge weights but by the approach itself. For details see
Table 3. The variance of the different runs of our algo-
rithm is depicted in Fig. 3.

The best results for the metazoan dataset were achieved by
phylo-m and phylo-tm, except for the weight ratio 1:1.5,
where phylo-m found a tree with weight 119.5, while
phylo-tm only found a tree with weight 120.5. While the
algorithm was very fast for the weight ratio 1:2 (2:36 min

per run for phylo-m and 6:13 for phylo-tm), the running
times increased for the other weight ratios when the
median solver was used. Nevertheless, the running times
of about 1.5 hours per run are still feasible in practice. A
comparison of our trees with those found by amGRP and
MGR again showed that the direct usage of the weighted
reversal and transposition distance is of advantage. Except
for the weight ratio 1:2, for which amGRP found a better
tree, the trees found by our program have a lower weight
under the weighted reversal and transposition distance
than the trees found by the other programs. Details can be
found in Table 4. The variance of the different runs of our
algorithm is depicted in Fig. 4.

The best results for the protostomes dataset were achieved
by phylo-tm, improving the tree topology paid off for all
weight ratios. Again, the algorithm is fast for a weight ratio
of 1:2 (43:19 min), and the running times increase for the
other weight ratios when the median solver is used. Still,
the running times of up to about 3 hours per run are fea-
sible in practice. Again, the trees found by our program

Variance of the Campanulaceae datasetFigure 3
Variance of the Campanulaceae dataset. The results of our algorithm for the Campanulaceae dataset over all runs as box
plots. For each improvement strategy, also the average running time per run is provided. (a) contains the results for the weight
ratio 1:2, (b) for the weight ratio 1:1.5, and (c) for the weight ratio 1:1.

phylo−n phylo−t phylo−m phylo−tm

62
.0

63
.0

64
.0

65
.0

phylo−n phylo−t phylo−m phylo−tm

50
.0

51
.0

52
.0

53
.0

phylo−n phylo−t phylo−m phylo−tm

38
.0

39
.0

40
.0

41
.0

sc
or

e

sc
or

e

sc
or

e

0:05 0:05 0:08 0:08

(a)

0:06 0:09 0:11 0:13

(b)

0:08 0:08 0:14 0:14
(c)
Page 9 of 13
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:516 http://www.biomedcentral.com/1471-2105/9/516

Page 10 of 13
(page number not for citation purposes)

Table 3: Results for the Campanulaceae dataset.

phylo-n phylo-t phylo-m phylo-tm amGRP MGR

1:2 62 (62) 62 (62) 62 (62) 62 (62) 63 (63) 63 (63)
0:05 0:05 0:08 0:08

1:1.5 51.5 (51) 50 (49.5) 50 (49.5) 50 (49.5) 52.5 (52) 56 (55)
0:06 0:09 0:11 0:13

1:1 40 (39) 39 (38) 38 (37) 39 (38) 42 (41) 49 (47)
0:08 0:08 0:14 0:14

The results for the Campanulaceae dataset and the weighted reversal and transposition distance. The different lines correspond to the different
weight ratio wr : wt, while the columns correspond to the different improvement strategies. Each entry consists of the weight of the best tree, the
lower bound for the weight of the tree in brackets (with the given topology and labeling of internal nodes), and the average running time per run in
minutes. The results of MGR and amGRP were achieved by creating a tree w.r.t. the reversal distance, and recalculating the tree weight with the
weighted reversal and transposition distance. The running time for this method is mainly the running time of amGRP or MGR (see Table 6), thus we
did not provide explicit running times for these results.

Variance of the metazoan datasetFigure 4
Variance of the metazoan dataset. The results of our algorithm for the metazoan dataset over all runs as box plots. For
each improvement strategy, also the average running time per run is provided. (a) contains the results for the weight ratio 1:2,
(b) for the weight ratio 1:1.5, and (c) for the weight ratio 1:1.

phylo−t phylo−m phylo−tm

14
6

14
8

15
0

15
2

15
4

15
6

phylo−n phylo−t phylo−m phylo−tm

12
0

12
2

12
4

12
6

phylo−t phylo−m phylo−tm

85
86

87
88

89
90

phylo−n

phylo−n

1:38 6:03 2:45 12:09 62:36 80:592:36 6:13

87:474:03 4:46 95:51

(b)(a)

(c)

sc
or

e
sc

or
e

sc
or

e

BMC Bioinformatics 2008, 9:516 http://www.biomedcentral.com/1471-2105/9/516
have a lower weight under the weighted reversal and
transposition distance than the trees found by amGRP
and MGR. For details we refer to Table 5. The variance of
the different runs of our algorithm is depicted in Fig. 5.

Reversal distance
Although our algorithm was not particularly designed for
this distance measure, we also performed all tests with the
reversal distance to compare our program with the other
programs. The best result for the Campanulaceae dataset
was achieved by our program and GRAPPA (64 reversals).
However, GRAPPA needed over 20 minutes to find a tree,

Table 4: Results for the metazoan dataset.

phylo-n phylo-t phylo-m phylo-tm amGRP MGR

1:2 153 (153) 151 (151) 146 (145) 146 (146) 142 (141) 151 (151)
1:38 6:03 2:36 6:13

1:1.5 125 (125) 123.5 (123.5) 119.5 (119.5) 120.5 (120.5) 125.5 (123.5) 134.5 (129)
2:45 12:09 62:36 80:59

1:1 87 (87) 87 (87) 85 (85) 85 (85) 110 (106) 116 (107)
4:03 4:46 95:51 87:47

The results for the metazoan dataset and the weighted reversal and transposition distance.

Variance of the protostomes datasetFigure 5
Variance of the protostomes dataset. The results of our algorithm for the protostomes dataset over all runs as box plots.
For each improvement strategy, also the average running time per run is provided. (a) contains the results for the weight ratio
1:2, (b) for the weight ratio 1:1.5, and (c) for the weight ratio 1:1.

phylo−n phylo−t phylo−m phylo−tm

49
0

49
5

50
0

50
5

51
0

51
5

phylo−n phylo−t phylo−m phylo−tm

39
5

40
0

40
5

41
0

phylo−n phylo−t phylo−m phylo−tm

27
8

28
0

28
2

28
4

28
6

28
8

29
0

(a)

11:59 41:39 13:21 43:19

(b)

17:31 135:48 190:12

30:56 88:5623:56 101:11

(c)

77:17

sc
or

e

sc
or

e

sc
or

e

Page 11 of 13
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:516 http://www.biomedcentral.com/1471-2105/9/516
while our program needed only a few seconds per run.
The best result for the metazoan dataset was achieved by
amGRP (143 reversals in 35 seconds), our own program
was only slightly worse (144 reversals in 49 seconds).
GRAPPA (159 reversals in 1:08 min) and MGR (151
reversals in 36:42 min) were both outperformed. Also for
the protostomes dataset, the best result was achieved by
amGRP (501 reversals in 6:52 min). The tree found by our
program was slightly worse, but it was faster than amGRP
for this dataset (505 reversals in 4:41 min). Again, MGR
was outperformed (528 reversals in about 20 hours).
GRAPPA was not able to find any solution at all within
five days. A summary of these results is shown in Table 6.
The tremendous improvement in speed of our program
versus the weighted reversal and transposition distance
can be explained by the fact that calculating the reversal
distance can be done in linear time [2], while we use a
cubic algorithm for the weighted reversal and transposi-
tion distance.

Conclusion
Our algorithm achieves two improvements over previous
works on this topic. First, it does not rely on a specific
genome rearrangement distance. It can be used for any
genome rearrangement distance as long as there is at least
a good approximation algorithm for generating a sorting
sequence between two genomes. Second, it avoids median

solvers as long as possible. The median problem is NP-
hard for the breakpoint distance and the reversal distance,
and most likely also for the other genome rearrangement
distances. Although solving the median problem may be
feasible for small problems, it is getting more and more
complicated for larger genomes. Thus, in our opinion,
median solvers should be avoided as long as possible. We
have shown that our algorithm can compete with the cur-
rently best algorithms w.r.t. the reversal distance. To the
best of our knowledge, our algorithm is currently the only
one that directly tackles the phylogenetic reconstruction
problem for the weighted reversal and transposition dis-
tance.

We implemented the algorithm in C++. The program is
open source and can be obtained from the authors.

Authors' contributions
The initial idea of the algorithm was developed by all
three authors. MB developed and tested the software.

Acknowledgements
This work was supported by DFG-grant Oh 53/5-1. The authors wish to
thank Jijun Tang for providing DCM-GRAPPA, Guillaume Bourque and
Glenn Tesler for providing MGR, and Matthias Bernt for providing amGRP
and his helpful comments on finding the best parameters for it.

References
1. Pevzner P, Tesler G: Genome Rearrangements in Mammalian

Evolution: Lessons From Human and Mouse Genomes.
Genome Research 2003, 13:37-45.

2. Bader D, Moret B, Yan M: A Linear-Time Algorithm for Com-
puting Inversion Distance between Signed Permutations
with an Experimental Study. Journal of Computational Biology
2001, 8:483-491.

3. Bergeron A, Mixtacki J, Stoye J: Reversal Distance without Hur-
dles and Fortresses. Proc 15th Annual Symposium on Combinatorial
Pattern Matching, of Lecture Notes in Computer Science 2004,
3109:388-399.

4. Bader M, Ohlebusch E: Sorting by Weighted Reversals, Trans-
positions, and Inverted Transpositions. Journal of Computational
Biology 2007, 14(5):615-636.

5. Bader M: Sorting by Weighted Transpositions and Reversals.
Diploma thesis 2005 [http://www.uni-ulm.de/fileadmin/
website_uni_ulm/iui.inst.190/Mitarbeiter/bader/bad_2005.pdf]. Uni-
versity of Ulm

6. Hartman T, Sharan R: A 1.5-Approximation Algorithm for Sort-
ing by Transpositions and Transreversals. Journal of Computer
and System Sciences 2005, 70(3):300-320.

Table 5: Results for the protostomes dataset.

phylo-n phylo-t phylo-m phylo-pm amGRP MGR

1:2 501 (497) 498 (494) 490 (487) 488 (485) 496 (490) 522 (520)
11:59 41:39 13:21 43:19

1:1.5 400.5 (399) 400 (398.5) 392.5 (392.5) 392 (392) 431.5 (418) 446.5 (441.5)
17:31 77:17 135:48 190:12

1:1 23:56 30:56 101:11 88:56 365 (347) 388 (363)
23:56 30:56 101:11 88:56

The results for the protostomes dataset and the weighted reversal and transposition distance.

Table 6: Results for the reversal distance.

phylo-tm amGRP MGR GRAPPA

Campanulaceae 64 65 66 64
0:03 0:01 0:47 20:29

Metazoan 144 143 151 159
0:49 0:35 36:42 1:08

Protostomes 505 501 528 n.a.
4:41 6:52 1248:49

The results for the datasets when using the reversal distance. Only
the results of the best strategies are shown. GRAPPA did not find any
solution for the protostome dataset within 5 days.
Page 12 of 13
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12529304
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12529304
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11694179
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11694179
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11694179
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17683264
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17683264
http://www.uni-ulm.de/fileadmin/website_uni_ulm/iui.inst.190/Mitarbeiter/bader/bad_2005.pdf
http://www.uni-ulm.de/fileadmin/website_uni_ulm/iui.inst.190/Mitarbeiter/bader/bad_2005.pdf

BMC Bioinformatics 2008, 9:516 http://www.biomedcentral.com/1471-2105/9/516
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

7. Pe'er I, Shamir R: The median problems for breakpoints are
NP-complete. Electronic Colloquium on Computational Complexity
1998, 5(71):.

8. Caprara A: Formulations and Hardness of Multiple Sorting by
Reversals. In Proc 3rd Annual International Conference on Computa-
tional Molecular Biology ACM; 1999:84-93.

9. Sankoff D, Blanchette M: Multiple Genome Rearrangement and
Breakpoint Phylogeny. Journal of Computational Biology 1998,
5(3):555-570.

10. Moret B, Wyman S, Bader D, Warnow T, Yan M: A New Imple-
mentation and Detailed Study of Breakpoint Analysis. Pacific
Symposium on Biocomputing 2001:583-594.

11. Moret B, Siepel A, Tang J, Liu T: Inversion Medians Outperform
Breakpoint Medians in Phylogeny Reconstruction from
Gene-order Data. In Proc 2nd Workshop on Algorithms in Bioinformat-
ics, of Lecture Notes in Computer Science Volume 2452. Springer-Verlag;
2002:521-536.

12. Tang J, Moret B, Cui L, dePamphilis C: Phylogenetic Reconstruc-
tion from Arbitrary Gene-order Data. In Proc 4th IEEE Confer-
ence on Bioinformatics and Bioengineering IEEE Press; 2004:592-599.

13. Bourque B, Pevzner P: Genome-Scale Evolution: Reconstruct-
ing Gene Orders in the Ancestral Species. Genome Research
2002, 12:26-36.

14. Wu S, Gu X: Multiple Genome Rearrangement by Reversals.
In Pacific Symposium on Biocomputing World Scientific; 2002:259-270.

15. Sankoff D, Sundaram G, Kececioglu J: Steiner Points in the Space
of Genome Rearrangements. International Journal of Foundations
of Computer Science 1996, 7:1-9.

16. Wu S, Gu X: Algorithms for Multiple Genome Rearrange-
ment by Signed Reversals. In Pacific Symposium on Biocomputing
World Scientific; 2003:363-374.

17. Bernt M, Merkle D, Middendorf M: Using median sets for infer-
ring phylogenetic trees. Bioinformatics 2007, 23:e129-e135.

18. Cosner M, Jansen R, Moret B, Raubeson L, Wang LS, Warnow T,
Wyman S: An Empirical Comparison Between BPAnalysis and
MPBE on the Campanulaceae Chloroplast Genome Dataset.
In Comparative Genomics: Empirical and Analytical Approaches to Gene
Order Dynamics, Map Alignment, and the Evolution of Gene Families Klu-
wer Academic Publishers; 2000:99-121.

19. Blanchette M, Kunisawa T, Sankoff D: Parametric genome rear-
rangement. Gene 1996, 172:GC11-17.

20. Hannenhalli S, Pevzner P: Transforming cabbage into turnip:
polynomial algorithm for sorting signed permutations by
reversals. Journal of the ACM 1999, 46:1-27.

21. Tannier E, Bergeron A, Sagot MF: Advances on sorting by revers-
als. Discrete Applied Mathematics 2007, 155:881-888.

22. Caprara A: The Reversal Median Problem. INFORMS Journal on
Computing 2003, 15:93-113.

23. Blanchette M, Kunisawa T, Sankoff D: Gene order breakpoint evi-
dence in animal mitochondrial phylogeny. Journal of Molecular
Evolution 1999, 49(2):193-203.

24. Fritzsch G, Schlegel M, Stadler P: Alignments of mitochondrial
genome arrangements: Applications to metazoan phylog-
eny. Journal of Theoretical Biology 2006, 240(4):511-520.

25. Bafna V, Pevzner P: Genome Rearrangements and Sorting by
Reversals. SIAM Journal on Computing 1996, 25(2):272-289.

26. Eriksen N: (1 +)-approximation of Sorting by Reversals and
Transpositions. Theoretical Computer Science 2002, 289:517-529.

27. Moret B, Tang J: GRAPPA's Homepage. World Wide Web [http:/
/www.cs.unm.edu/~moret/GRAPPA].

28. Liu T, Tang J, Moret M: Quartet-Based Phylogeny Reconstruc-
tion from Gene Orders. In Proc 11th Annual International Confer-
ence on Computing and Combinatorics, of Lecture Notes in Computer
Science Volume 3595. Springer-Verlag; 2005:63-73.
Page 13 of 13
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9773350
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9773350
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11262975
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11262975
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11779828
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11779828
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11928481
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12603042
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12603042
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17237080
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17237080
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8654963
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8654963
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10441671
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10441671
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16325206
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16325206
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16325206
http://www.cs.unm.edu/~moret/GRAPPA
http://www.cs.unm.edu/~moret/GRAPPA
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Related work
	Breakpoint distance
	Reversal distance
	Weighted reversal and transposition distance

	Our contribution

	Results
	Definitions
	Algorithm
	Creating the tree
	Creating the clouds
	Improving the topology
	Improving internal nodes

	Testing
	Data sets
	Campanulaceae
	Metazoan
	Protostomes

	Weight ratios
	Other tools using the reversal distance
	GRAPPA
	MGR
	amGRP

	Comparing the results
	Experimental results
	Weighted reversal and transposition distance
	Reversal distance

	Conclusion
	Authors' contributions
	Acknowledgements
	References

