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Abstract

Background: The power of haplotype-based methods for association studies, identification of
regions under selection, and ancestral inference, is well-established for diploid organisms. For
polyploids, however, the difficulty of determining phase has limited such approaches. Polyploidy is
common in plants and is also observed in animals. Partial polyploidy is sometimes observed in
humans (e.g. trisomy 21; Down's syndrome), and it arises more frequently in some human tissues.
Local changes in ploidy, known as copy number variations (CNV), arise throughout the genome.
Here we present a method, implemented in the software polyHap, for the inference of haplotype
phase and missing observations from polyploid genotypes. PolyHap allows each individual to have
a different ploidy, but ploidy cannot vary over the genomic region analysed. It employs a hidden
Markov model (HMM) and a sampling algorithm to infer haplotypes jointly in multiple individuals
and to obtain a measure of uncertainty in its inferences.

Results: In the simulation study, we combine real haplotype data to create artificial diploid,
triploid, and tetraploid genotypes, and use these to demonstrate that polyHap performs well, in
terms of both switch error rate in recovering phase and imputation error rate for missing
genotypes. To our knowledge, there is no comparable software for phasing a large, densely
genotyped region of chromosome from triploids and tetraploids, while for diploids we found
polyHap to be more accurate than fastPhase. We also compare the results of polyHap to
SATlotyper on an experimentally haplotyped tetraploid dataset of 12 SNPs, and show that polyHap
is more accurate.

Conclusion: With the availability of large SNP data in polyploids and CNV regions, we believe that
polyHap, our proposed method for inferring haplotypic phase from genotype data, will be useful in
enabling researchers analysing such data to exploit the power of haplotype-based analyses.

Background finer localisation of causative mutations [4]. Haplotype-
Haplotype analysis plays an important role in the map-  based methods may also be used to infer aspects of popu-
ping of disease genes where it has been shown to be more  lation history, such as the effects of positive selection [5]
powerful than single-marker analysis [1-3] and provides  and recombination events [6].
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Experimental methods for determining haplotypic phase
are available, but are prohibitively expensive for large-
scale studies [7]. Consequently statistical inference of hap-
lotypic phase has become a popular alternative. A variety
of maximum-likelihood [8-10] and Bayesian [11] meth-
ods has been developed for diploid genotypes. Currently,
two popular methods are PHASE [12], based on the coa-
lescent model, and fastPhase [13], based on an ancestral
haplotype-clustering model. While preparing this article,
we became aware that a software, SATlotyper [14], was
developed for inferring haplotypic phase in polyploids
using a parsimony based approach, but we found it to be
incapable of analysing the datasets in our simulation
study, which consist of hundreds of markers and hun-
dreds of individuals.

Polyploidy is common in plant species, for example
potato (Solanum tuberosum, 4n) and sugar beet (Beta vul-
garis, 2n, 3n, 4n), and also occurs in animals such as gold-
fish (Carassius auratus, 4n). As these examples illustrate,
tetraploidy (4n) is most common [15] but other ploidy
levels occur. Partial polyploidy arises in humans, occa-
sionally at the level of entire chromosomes (e.g. trisomy
21; Down's syndrome). Within-chromosome changes in
ploidy, known as copy number variations (CNV), occur
frequently throughout the genome and span intervals up
to many megabases. Some human tissues (e.g. heart and
liver) are known to frequently show variable ploidy, as do
cancer cells. Our focus here is on autopolyploid popula-
tions such as tetraploid potato. In contrast, for allopoly-
ploids such as wheat, pairs of chromosomes with distinct
origins are analyzed as diploid data using markers that are
specific to each pair.

There is currently much interest in kinship as a confound-
ing factor in association mapping [16,17] and kinship can
be estimated more accurately from phased than from
unphased genotypes [18]. The study of linkage disequilib-
rium (LD) provides a basis both for mapping disease
genes and for the investigation of evolutionary history.
Some LD-based studies have been conducted in polyploid
species [19,20]. To overcome the problems of inferring
phase, most of this work was conducted on homozygous
individuals from inbred populations. However, since the
effects of inbreeding depression often prevent the achieve-
ment of widespread homozygosity, this approach is often
limited to small regions of chromosomes. It may also be
inappropriate to make generalisations about the evolu-
tion of an out-breeding species using data from artificially
created inbreds [21]. Another way to conduct LD associa-
tion analyses in polyploids is to treat the polyploid geno-
types as diploids, which can generate biased estimates. It
is clear, therefore, that there is much information in poly-
ploid genomes that is currently hidden from us due to the
lack of phased genotype data.
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Here we propose a method, implemented in the software
polyHap, for the inference of haplotypic phase and miss-
ing observations from polyploid genotype data. Our
method is a generalisation of the approach developed in
[3] and employs a hidden Markov model (HMM) to infer
an ancestral cluster for each haplotype at each marker,
reflecting the idea that similar haplotypes are likely to
have descended from the same ancestral haplotype. The
ancestral cluster allocations of an individual are highly
correlated across tightly-linked loci, reflecting limited
recombination since the common ancestors. PolyHap
first learns the ancestral clusters from genotype data
jointly for all individuals, then infers phased sets of ances-
tral clusters for each individual, and hence the underlying
haplotypes.

PolyHap is designed for use with SNP genotype data,
where the marker order is known. With genetic or physical
maps of plant genomes becoming increasingly available
(including that of potato [20,22]) and with increasing
numbers of CNV regions identified and improving tech-
nology for genotyping copy number polymorphisms
(CNP), we believe that polyHap provides a timely addi-
tion to the geneticist's toolkit.

Results and discussion

Results

Due to the limited availability of phased SNP data from
polyploid species, we evaluated the performance of poly-
Hap by randomly combining human male X-chromo-
some haplotypes from the WICCC to create datasets of
artificial diploid, triploid and tetraploid genotypes (see
methods). For diploids we compare with fastPhase which
is a well established method and of comparable computa-
tional speed to polyHap. For triploids and tetraploids, we
attempted to compare with SATlotyper, but we found that
the scale of our simulated dataset was not computation-
ally feasible for SATlotyper. To evaluate the imputation
error rate, 1% of all genotypes were set as missing, and we

Table I: Imputation Error Rates

diploid triploid tetraploid
method 1=1 1=10 1=1 1=10 I1=1
polyHap:
z=8 0.039 0.038 0.056 0.047 0.073
z=6 0.040 0.045 0.058 0.060 0.087
z=4 0.049 0.044 0.077 0.065 0.106
z=2 0.101 0.085 0.144 0.114 0.194
fastPhase:
z=20 0.044 0.043
z=10 0.046 0.045
z=8 0.050 0.046
I is the number of repetitions of the EM algorithm.
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report in Table 1 the proportions of missing genotypes
that were assigned incorrect genotypes for polyHap and
(diploids only) fastPhase. With eight ancestral haplotype
clusters in diploids, polyHap had an imputation error rate
of 3.9% after one repetition of the EM algorithm (see
methods), falling to 3.8% after ten repetitions, compared
with 5.0% and 4.6% for fastPhase. With 20 clusters, the
error rate of 4.4% (4.3%) for fastPhase with one (ten) rep-
etitions remained higher than for polyHap with eight
clusters. For triploid data, polyHap's error rate increased
to 5.6% (4.7%), and for tetraploid data it was 7.3% for
one repetition (due to computational demands, only one
repetition was performed on the tetraploid dataset).

PolyHap also provides a measure of certainty between
zero and one for each imputed genotype. Figure 1 shows
a histogram of the distribution of certainty scores, and the
average imputation error rate in each histogram bin, after
running polyHap with eight clusters and one repetition.
For all ploidies, more than 80% of predicted genotypes
have certainty > 0.9, and the imputation error rates are <
1% in this bin. More generally, the dashed curves in Figure
1 lie close to the line y = 1 - x, indicating that our certainty
score is approximately the probability that the imputation
is correct.

The switch error rate for an individual is defined as the
minimum number of switches required to reconstruct its
true haplotypes from the phased haplotypes provided by
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polyHap, divided by number of heterozygous markers
minus one. Average switch error rates are reported in
Table 2. With eight ancestral haplotype clusters, polyHap
had an error rate of 7.8% (6.8%) for one (ten) repetitions
respectively, compared with 9.3% (7.8%) for fastPhase.
With 20 clusters, fastPhase had a switch error rate of 8.7%
(7.1%), still greater than for polyHap with eight clusters.
For triploid data, polyHap's error rate increased to 12.7%
(11.4%) and for tetraploid data, it was 17.5% for one rep-
etition.

PolyHap also provides a certainty measure for the phase
assignment. Figure 2 shows the distribution of certainties
over ten bins, as well as the average switch error rate in
each bin for a run of polyHap with eight clusters and one
repetition. For all ploidies, there is a decreasing relation-
ship between certainty of phase assignment and switch
error rate. For diploids, the certainties above 50% are well
calibrated with the switch error rate. Moreover, 80% of
phase estimates have certainty > 0.9, and the switch error
rate is < 1% in this bin. For triploids, ~75% of phase esti-
mates have certainty > 0.7, and average switch error rate is
< 6% in each of these bins. For tetraploid data, ~50% of
phase estimates have certainty > 0.5, and the average
switch error rate is < 8% in each of these bins.

To assess the effect of haplotype inferences on inferences
about LD, we compared 2 values calculated from inferred
haplotypes (estimated r2) with those from the simulated
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Histogram of certainty scores and imputation error rate in each bin. The histogram shows the distribution of cer-
tainty scores for imputations of missing genotypes, when polyHap was run with eight ancestral clusters and one repetition of
the EM algorithm. The circles indicate average imputation error rates within each histogram bin.
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Table 2: Switch Error Rates

diploid triploid tetraploid
method 1=1 1=10 1=1 1=10 1=1
polyHap:
z=8 0.078 0.068 0.127 0.114 0.175
z=6 0.085 0.074 0.132 0.117 0.239
z=4 0.098 0.082 0.147 0.127 0.263
z=2 0.153 0.119 0.241 0.186 0.323
fastPhase:
z=20 0.087 0.071
z=10 0.098 0.076
z=8 0.093 0.078

I is the number of repetitions of the EM algorithm.

haplotypes (true 12). Panels A-C of Figure 3 shows that 2
estimated via polyHap is highly correlated with the true 12,
even for tetraploids. Similarly in Panel D, r2 estimated via
fastPhase and the true 12 are highly correlated. Panels E
and F show that existing methods based on treating poly-
ploid genotypes as diploid lead to imprecise estimates of
2.

We applied our method to a real dataset which consists of
12 SNPs from 19 tetraploid potatoes with known haplo-
typic phase obtained from the laboratory, and compared
our results with those from SATlotyper. PolyHap had an
average switch error rate of 6.6% with eight ancestral hap-
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lotypes for ten repetitions, while SATlotyper had error rate
of 8.8%. Also, among 17 samples (excluding two samples
having homozygous genotypes), 15 samples were phased
correctly for the whole sequence by polyHap, compared
with 13 samples by SATlotyper.

The computing time of polyHap with eight clusters and
one repetition for a dataset of 501 markers and 500 (488,
300) individuals for diploid (triploid, tetraploid) was
approximately 0.5 (4, 30) hours. The corresponding com-
puting time for fastPhase with 20 clusters and one repeti-
tion (only for diploid) was approximately 7 minutes.
Although fastPhase with one repetition was fast, the
results were less precise than those from polyHap.
Attempting to run SATlotyper on our dataset of 501 mark-
ers and 300 tetraploid individuals generated an error due
to excess memory requirement on a 16 GB computer (the
same as was used to run polyHap). The problem persisted
when we reduced the number of markers to 50. Reducing
it further to 25 markers (still with 300 tetraploid individ-
uals) allowed the program to run but it failed to generate
a result after 72 hours.

Discussion

We present the polyHap software for inferring haplotypes
from polyploid genotype data with some missing observa-
tions, using a HMM similar to that underlying fastPhase
[13] and HINT [23] for diploid data. The optimal number
of ancestral clusters is typically unknown, and we have
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Figure 2

Histogram of certainty scores and switch error rate in each bin. The histogram shows the distribution of phasing cer-
tainty scores, averaged over individuals, for the same polyHap runs as in Figure |. The circles indicate average switch error

rates within each histogram bin.
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Comparison between estimated and truer?. Estimated versus true r2 values for diploids, triploids, and tetraploids, respec-
tively for all pairs of markers separated by < 500 Kb. The estimated r2 in A-C is calculated from haplotypes inferred using the
same polyHap runs (with eight clusters and | repetition) as in Figure 2, while in D-F is calculated from haplotypes inferred using
fastPhase (with 20 clusters and 10 repetitions) by treating the polyploid genotypes as diploid. The Pearson correlation coeffi-
cients between estimated and true r? for A-F are 0.999, 0.997, 0.996, 0.998, 0.975 and 0.840 respectively.

considered 2,4,6 and 8 clusters, finding in general that
more clusters provide better inferences but at increased
computational cost. Our approach does not require pre-
defined haplotype blocks nor a sliding window scheme to
define haplotype boundaries. Although we focus on dial-
lelic markers here, polyHap could be adapted to allow for
multi-allelic markers.

The results from our evaluation of polyHap are encourag-
ing: using eight ancestral clusters we obtained imputation
error rates of 4.7% and 7.3%, and switch error rates of
11% and 18%, for triploids and tetraploids respectively.
For diploid data, we obtained lower imputation and
switch error rates for polyHap than for fastPhase. Phasing
using polyHap generated a considerable improvement in

the estimation of 12 from polyploid data over estimates
based on treating polyploids as diploids. The certainty val-
ues generated by polyHap are approximately well-cali-
brated as error probabilities for imputation of missing
genotypes, and provide a useful guide to the quality of
phase inferences.

We have shown that polyHap outperforms SATlotyper on
a tetraploid dataset which was experimentally haplo-
typed. The switch error rates are 6.6% for polyHap com-
pared to 8.8% for SATlotyper and more samples are
phased correctly by polyHap (88%) than SATlotyper
(76%). Although this potato dataset is small, our results
strongly suggest that polyHap is at least as good as SATlo-
typer for phasing a short region. Moreover, polyHap is

Page 5 of 9

(page number not for citation purposes)



BMC Bioinformatics 2008, 9:513

able to phase genotypes in a long region with many SNPs
whereas SATlotyper is limited to analysing a relatively
small number of SNPs.

PolyHap also supports datasets containing individuals of
different ploidy, but not variable ploidy within an individ-
ual. However, in the latter case separate runs of polyHap
can be applied over regions where within-individual
ploidy is constant. In some situations, phased haplotypes
are available for some individuals (e.g. from a study of
inbreds or other laboratory process). PolyHap can exploit
the extra information about haplotype structure from any
available phased individuals; the resulting reduction in
error rates will vary depending on sample size and other
factors.

In addition to imputing completely missing genotypes,
polyHap also supports a scenario in which the genotype is
partially known, for example at dominant markers in
which only the presence or absence of a particular allele is
known. Our model, incorporating this partial information
from available alleles, is expected to give better inference
than the conventional approach which ignores the par-
tially available alleles and considers partially missing data
as completely missing.

Conclusion

Knowledge of phase allows powerful haplotype-based
methods to be exploited in genetic analyses. The inference
of phase in the diploid case is well established and the
advantages of inferred haplotypes are now widely appreci-
ated. Polyploid organisms present greater challenges and,
until now, phase has been difficult to determine routinely
unless detailed pedigree information is available.

Using our polyHap software, the phased genotypes of tri-
ploid and tetraploid organisms can now be inferred from
samples of unrelated individuals. Importantly, the quality
of the inferences can be measured and allowed for in sub-
sequent analyses. Thus the quality of subsequent infer-
ences can be assessed, reducing the risk of overconfident
extrapolations from imperfect data.

In terms of both switch and imputation error rates in the
diploid case, polyHap was superior in our simulation
study to a well-established software, and offers good accu-
racy at higher ploidy. As a demonstration of the utility of
the approach, we show good agreement in terms of LD
(measured as 2) between inferred and true data.

With increasing marker densities and improving genetic
and physical maps in many polyploid species, together
with increasing information about, and recognition of the
potential importance of CNV regions in humans and
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other species, we believe that polyHap will prove to be a
timely addition to the geneticists toolkit.

Methods

We will first briefly describe the construction of the poly-
ploid HMM, which is a development of our previous
work; see [3] for further details. We then describe the sam-
pling algorithm for inferring missing genotypes and hap-
lotypic phase as well as for calculating a certainty for each
estimate.

Our notation is similar to that of [3], where g = (g;,
$,..-.8y) are the genotypes of M SNPs for an individual; N
is the ploidy and g,, = {g,,1.---&n~n} i$ an unordered list of
the individual's alleles at marker m. Each allele is assumed
to have been drawn from one of z ancestral clusters. Also,
Sy = {S1sesSyny and Sy, = [S,1,--,5,,n] are the unordered

and ordered lists of clusters at marker m, respectively. We
write 7( s}, ) = [Sya1y - Smany] fOr @ permutation of Sm,

and [1(s,,) for the set of all such permutations.

Transition probabilities for the polyploid HMM

Transitions in the HMM correspond to recombination
events at which an individual's haplotype switches the
cluster from which it is considered to have descended.
First we define the transition probability in a haploid
HMM from clusters k, to I, between markers m-1 and m by:

I k (l_Jm)"—]mamln lnzkn
p(smn ~n |S(m—l)n - n) - ]mamln ln - kn,

where J,, is the probability of a jump occurring at marker
m-1, and the probability that a jump results in cluster /, is

1, , irrespective of the current cluster. For tightly-linked
markers, J,, is small so that cluster changes occur infre-
quently, but are allowed between any pair of markers.
Gene conversion events are not modelled explicitly but
can be accommodated in our model by two proximal
recombination events. Based on this haploid model, the
transition probability between ordered lists of clusters
[ky,...ky] and [14,....1y | is given by

PS5 = [t Sy = o)) = [T G = b | oty = R

1,...N

and between unordered lists of clusters it is

P = Lo lnd Sy = ks = D T 2 =Ly [ Semotyn = Fen)-

nell(s,,) n=1,...N
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Emission probabilities for the polyploid HMM

The relation between hidden cluster and observed geno-
type data is modelled by emission probabilities. As for the
transition probability, the emission probability of the
polyploid HMM can be derived from a haploid model.
For generality, we assume multiallelic markers with alleles
h € {0,...H}. Denote 8,,(h) the emission probability of
allele h in a haploid model at marker m from cluster I. We
then obtain the emission probability of a genotype given
an unordered list of ancestral haplotypes s,, by

rell(g,) n=1,.,N 7ell(g,,) n=1,-..N

If g,, is completely missing for an individual at marker m,
we set 6,;(h) to be uniform over all alleles. If g,, is partially
missing, we set 8,,(h) to be uniform over alleles that are
consistent with the observed genotype at marker m.

We use Dirichlet priors on all of our parameters. We let 6,
~ Dirichlet(uym,), where m,is the uniform vector with
each element equal to 1/H, and ¢, ~ Dirichlet(u,m,)

where m_, is the uniform vector with each element equal

-d -d
to 1/z. We also let J,, ~ Beta(u;(1—e™"),ue™ ") where
d,, is the physical distance between consecutive markers

and r = 10 per base pair, reflecting the background
recombination rate. We use u,=u,= 1 and u; = 10° for ini-

tialisation of the EM algorithm and u,=u, = u;= 0.1 for

the maximisation step.

Although our HMM has many parameters, J,, at each
marker and «,, and 6,,, at each hidden cluster and each
marker, approximate posterior mode estimates are readily
obtained using an expectation maximisation (EM) algo-
rithm, which in this setting is usually referred to as the
Baum-Welch algorithm.

Estimating genotypes and haplotypes from the HMM

After each repetition of the Baum-Welch EM algorithm
which consists of a default 25 iterations, we obtain esti-
mates of the parameters of the HMM which approximate
a local mode of their joint posterior distribution. For each
individual, we then run the forward-backward algorithm
using these parameter values to obtain a 'trace' matrix of
the probability, conditional on the model being in state |
at marker m, of having arrived from state k at marker m-1.
We can then sample from the posterior distribution over
state-paths conditional on the non-missing genotype data
of a given individual, by starting at the 'end’ state, position
M+1, and moving back towards marker 1, sampling the
state at the previous marker using the elements of this
trace matrix. Each state in this state-path consists of an
unordered list of ancestral haplotype clusters. At each

http://www.biomedcentral.com/1471-2105/9/513

marker we use (2) to sample a state of ordered haplotype
clusters from these unordered haplotype clusters. We then
sample from the probability distribution of ordered lists
of alleles which are consistent with the genotype data at
this marker, given the ordered list of haplotype clusters. In
the case of missing genotype data, all possible ordered
lists of alleles are considered. As we are reconstructing
ordered lists of alleles, we obtain the N haplotypes (recall
that the ploidy is N).

A pre-specified number (e.g. 100) of haplotype assign-
ments is calculated, as described above, for each of a
number (e.g. 10) of repetitions of the EM algorithm. From
this we obtain a number of haplotype assignments (e.g
1000 = 10 x 100) for each individual. At markers with
missing genotype data, the genotype that is sampled most
often is reported as the imputed genotype, and the frac-
tion of times it is sampled is reported as the 'certainty' of
this estimate. Because we consider only a small number
(e.g. 10) of local modes of the posterior distribution for
the HMM parameters, our certainty value is not the prob-
ability of the imputed genotype under our model, which
would require integration over the posterior distribution,
but it may serve as a reasonable approximation to this
probability.

The algorithm to calculate the most likely phase assign-
ment for an individual on the basis of the set of sampled
haplotypes proceeds from left to right. Consider a hetero-
zygous marker, say m. If there is no missing data, all sam-
ples from the HMM have the same genotype at m;
otherwise, we only consider samples which have the most
common genotype. We assume that the haplotype config-
uration for all of the samples from the HMM is the same
up to and including marker m-1, which is trivially true of
the first heterozygous marker. We count the number of
times each haplotype configuration (up to and including
marker m) is observed, and return the configuration that
is observed the most often as the phase assignment up to
and including marker m; and the fraction of times this is
observed as the 'certainty' of this configuration. We then
go through each of the samples and as necessary introduce
a switch between markers m-1 and m so that each of the
samples now has the same haplotype configuration up to
and including marker m as the reported configuration. At
the stage of counting haplotype configurations, we note
that it is only necessary to count as far back as to identify
N different haplotypes for each sample.

Material and simulation

Simulated dataset

Haplotype data were obtained from a 6.4 Mb non pseudo-
autosomal region of the X-chromosome (34,135,863 to
40,527,829 bp) genotyped by the WTCCC [24]. We
included 1464 males from the 1958 British Birth Cohort
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and the UK Blood Service Control Group, after removing
eight males showing high levels of heterozygosity. We
then removed 243 SNPs on the whole X-chromosome
which showed any heterozygosity. We analysed all 501
sites reported by the WI'CCC, of which only 468 were pol-
ymorphic in our sample and 426 had minor allele fre-
quency > 1%. We randomly combined the the X-
chromosomes, first into pairs to create 500 diploid geno-
types, then into triples and then quadruples, to create 488
triploid and 300 tetraploid genotypes.

Experimentally haplotyped tetraploid dataset

The dataset, described in [14], consists of experimentally
determined haplotypes at the BA213c14t7 locus with 12
SNP sites from 19 tetraploid individuals (potato). In [14],
590 amplicon derived clones were sequenced over a 500
bp region, and 10 distinct haplotypes were identified
among those 19 samples. The most probable genotype for
each sample was then determined based on the observed
haplotypes and the frequency of each haplotype sequence
(see detail in [14]). We analysed these genotypes using
polyHap and SATlotyper, and assessed the performance of
these two softwares by comparing the computed haplo-
types with experimentally determined haplotypes.

Switch error rate

The switch error rate for each individual is defined as y/
(n-1), where n denotes the number of heterozygous sites
for that individual and y is the minimal number of
switches needed to recover the true haplotypes. We
assumed that at most one switch could occur between
consecutive heterozygous sites. For each individual, we
determined if there was a switch by comparing the

http://www.biomedcentral.com/1471-2105/9/513

inferred haplotypes to the true haplotypes. If a discrep-
ancy is identified at a heterozygous marker m, a switch
error is counted (e.g. Figure 4) and a switch is introduced
in the inferred haplotypes to ensure that it matches the
true haplotypes up to marker m. To identify a discrepancy,
it is only necessary to compare haplotype sets as far back
as to distinguish N distinct preceding haplotypes (N is the
ploidy), which in diploids requires looking back to the
previous heterozygous marker only.

Assessment of r2

A commonly used statistic for measuring LD between two
diallelic markers is the squared correlation coefficient, 2.
To assess the effect of phasing errors on the resulting esti-
mates, we compared 72 values calculated from inferred
haplotypes (estimated r2) with those from the simulated
haplotypes (true r2). In some polyploid studies [20], mul-
tiple sets of chromosomes have been considered as dip-
loid to measure LD, due to the limitations imposed by the
markers used and the lack of phase information. To assess
the effect of this approximation, we calculated 12 via fast-
Phase by analysing polyploid genotypes as if they were
diploid. For example, the tetraploid genotypes AAAB,
AABB, and ABBB are all regarded as AB, while AAAA and
BBBB are represented as AA and BB respectively.

Availability and requirements

PolyHap is written in Java language and distributed as a
Java jar file. It requires Java Runtime Environment with
version 1.6.0_01 or later. The software can be executed
from the command line or the supplied batch file under
Unix like operating system. PolyHap is distributed under
the GNU GENERAL PUBLIC license for non-commercial

Investigated
position
(_A—l

true-hap 1 .... B A B A i B A A ‘ 5
true-hap 2 B A A B | A B A 2 A
true-hap 3 A B B A i A A B 3:A
site . m4 m3 m2 ml:m mil m2 = —-+--
infer-hap1 | ... B A B Ai A A B i A
infer-hap 2 B A A B A B A {i g---
infer-hap 3 A B B A B A A M

Figure 4

Identifying a switch error in the triploid case. In general we require at least N = 3 polymorphic sites to determine a phas-
ing error, but because we can assume that the ordered haplotypes are correct up to and including marker m—I, we can see
immediately that there is a switch at position m between haplotypes | and 3.
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use only and can be downloaded from: http://www.impe

rial.ac.uk/medicine/people/l.coin.
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