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Abstract

Background: The expansion of raw protein sequence databases in the post genomic era and
availability of fresh annotated sequences for major localizations particularly motivated us to
introduce a new improved version of our previously forged eukaryotic subcellular localizations
prediction method namely "ESLpred". Since, subcellular localization of a protein offers essential
clues about its functioning, hence, availability of localization predictor would definitely aid and
expedite the protein deciphering studies. However, robustness of a predictor is highly dependent
on the superiority of dataset and extracted protein attributes; hence, it becomes imperative to
improve the performance of presently available method using latest dataset and crucial input
features.

Results: Here, we describe augmentation in the prediction performance obtained for our most
popular ESLpred method using new crucial features as an input to Support Vector Machine (SVM).
In addition, recently available, highly non-redundant dataset encompassing three kingdoms specific
protein sequence sets; | |98 fungi sequences, 2597 from animal and 491 plant sequences were also
included in the present study. First, using the evolutionary information in the form of profile
composition along with whole and N-terminal sequence composition as an input feature vector of
440 dimensions, overall accuracies of 72.7, 75.8 and 74.5% were achieved respectively after five-
fold cross-validation. Further, enhancement in performance was observed when similarity search
based results were coupled with whole and N-terminal sequence composition along with profile
composition by yielding overall accuracies of 75.9, 80.8, 76.6% respectively; best accuracies
reported till date on the same datasets.

Conclusion: These results provide confidence about the reliability and accurate prediction of SVM
modules generated in the present study using sequence and profile compositions along with
similarity search based results. The presently developed modules are implemented as web server

"ESLpred?2" available at http://www.imtech.res.in/raghava/eslpred2/.

Background erupted by incredible sequencing projects, are some of the
In this post genomic era, functional annotation and char-  inescapable challenges that has been baffling the scientific
acterization of nearly millions of raw protein sequences, = community in order to bridge the mounting gap between
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number of unknown and annotated proteins. However, it
is unfeasible to assign function to all proteins using purely
time consuming and expensive experimental techniques,
even if one compromises with experimental errors. Hence,
this crisis entails the development of computational
methods that would help in predicting functions of pro-
teins expeditiously as well as economically. One of the
fundamental and popular indirect strategies for assigning
function is the identification of subcellular compartments
of proteins as knowledge about localization can provide
important indications about protein functions. After
PSORT [1,2] the first method developed to predict the
subcellular localizations, ample of novice, improved, gen-
eralized and organism specific prediction methods have
been developed for predicting subcellular locations of
eukaryotic and prokaryotic proteins, namely, NNPSL,
PSORTB, FKNN, TargetP, SubLoc, SignalP, CELLO, LOC-
net, PSLpred, HSLPred, PLOC, Mutiloc, Proteome Ana-
lyst, LOCtree, TSSub, BaCelLo and Esub8 using different
datasets and protein input features [3-24]. In 2004, our
group has combined the information of similarity search
with sequence composition based attributes and achieved
accuracy up to 88% [20]. Recently, it has been observed
that use of multiple sequence alignment information in
the form of Position Specific Scoring Matrix (PSSM) pro-
files predicted the subcellular localization of eukaryotic
proteins with a higher accuracy [17,18,21]. Moreover,
fusion of profile information (whole or N or C-terminals)
with sequence compositional features resulted in the
attainment of prediction accuracy upto 93% for eukaryo-
tic subcellular localizations [17]. Hence, extraction of cru-
cial protein attributes for the training of machine-learning
technique is a key step to improve the prediction quality
of protein subcellular localizations.

Indeed, PSSM based predictors have been able to achieve
a very good performance but the dataset used to train
some of these methods has been generated ~10 years back
[3] and hence, not considered to be a very reliable for
developing any new method. In particular, the growing
sequence database and availability of newly annotated
sequences for major localizations in the post genomic era,
retrospectively encouraged us to introduce a new
improved version of our previously forged eukaryotic sub-
cellular localization prediction method ESLpred, trained
on the same ~10 years older and highly redundant dataset
(referred as RH2427 dataset [3]). Since, a need of predic-
tors is only desired when no information can be inferred
from homology-based search. Hence, the amount of
redundancy present in the dataset used for developing
subcellular localization prediction method is another
issue, which has raised the questions on the robustness of
the subcellular localization predictors, henceforth,
demanding an evaluation on the highly non-redundant
datasets. Therefore, an attempt has been made to include
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a recently generated highly non-redundant dataset (used
for developing BaCelLo method [18]) as a major training
set in the development of new "ESLpred2" method.

In a nut-shell, a systematic approach has been taken to
improve the prediction quality of eukaryotic subcellular
localizations using PSI-BLAST generated PSSM profiles
along with compositional attributes and similarity search
based information. These features are observed to be
promising and highly crucial in predicting the localiza-
tions irrespective of the presence and absence of redun-
dancy in the trained dataset. The present method has
achieved a highest success rate for the prediction of local-
izations with good overall and average accuracy, and
hence, compliments the existing subcellular localization
prediction methods.

Results and discussion

Importance of evolutionary searching

Recently, the issues provoked by few reports regarding the
usage of BLAST search information in prediction process
have challenged the prediction accuracy of subcellular
localizations methods [18,25], hence, necessitates evalua-
tion of predictors without incorporating homology infor-
mation. But the present authors feel that homology based
searching is the first step for the functional annotation of
unknown proteins. Further, this is considered to be the
most reliable and promising method to elucidate the
functions. Unfortunately, this technique fails when query
proteins fail to find out significant homology within data-
base. In that case, it is always profitable to add machine-
learning based prediction results along with similarity
based search information. Hence, we can say that
machine learning based methods, indeed helping the
homology based searching to provide more accurate pre-
dictions. But showing subcellular localization prediction
accuracy just with homology based searching should not
be recommendable.

Need of a new improved version

ESLpred method, trained on RH2427 dataset [3] has been
predicting the four types of eukaryotic sub localizations-
cytoplasm, mitochondria, nuclear, and extracellular with
a good overall accuracy of 88% since 2004. In addition,
ESLpred has achieved highest success rate on the same
dataset when compared with other popular methods such
as SubLoc, NNPSL, Markov models and Fuzzy-k-NN.
Though, LOCSVMPSI attained higher accuracy of 90%,
nevertheless prediction accuracy of ESLpred for nuclear
proteins observed to be much better. Although ESLpred
has revealed hitherto success in prediction accuracy, the
growing sequence databases and the requirement of add-
ing new input feature which could have the potential to
enhance the subcellular localizations prediction perform-
ance, necessitates the introduction of new version of ESL-
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pred using recently developed highly non-redundant,
kingdom specific datasets-animal with 2597 sequences;
1198 fungi sequences and 491 sequences were from plant
[18] (referred as BaC2597, BaC1198, and BaC491 in sub-
sequent discussions).

Performance on RH2427 dataset

It is indispensable to show the prediction accuracy on
RH2427 dataset which covered 4 major localizations such
as cytoplasm, mitochondrial, nuclear and extracellular
using new input features which were not implemented in
ESLpred. The earlier method employed the hybrid
approach based strategy of coupling amino acid composi-
tion, dipeptide composition, physicochemical properties
and similarity search based information as an input fea-
tures for the prediction of subcellular localizations.

Since, N-terminal signal is imperative for localizing cer-
tain classes of proteins mainly chloroplast, mitochondrial
and extracellular to their final destinations, hence, the
sequence of N-terminal can be used as a discriminating
feature for the classification of proteins of these three
classes from the rest. First, AAC-NTerm based SVM mod-
ule was constructed, where the localizing signals present
at N-terminal of the sequences were exclusively captured
by calculating the amino acid composition of N-terminal
along with whole sequence composition. The training of
SVM model with this input feature of 40 dimensions,
resulted an overall and average accuracy of 86.5% and
85.5% (kernel = RBF, y = 20, C = 6) respectively as shown
in Table 1.

Notably, the use of evolutionary information in the form
of multiple sequence alignment profiles provides more
information than a single sequence [26-34]. In addition,
the subcellular localization methods based on PSSM also
showed better performance than composition based
methods [17,18,21]. Hence, in the present study, PSSM
profiles were also used for the training of SVM models. It
was observed that using 400 dimensional input vector of
PSSM as such i.e. without normalization completely
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failed to classify test proteins into their respective classes.
This failure might be due to presence of highly divergent
scoring values present in the matrix. So it became appar-
ent to scale down each matrix element in the range of 0-
1 to have better classification. It was observed normalized
PSSM based SVM module was able to accomplish good
overall and average accuracy of 88.6 and 86% (y=30,C =
4) respectively as shown in Table 1, which is comparable
to hybrid approach based SVM module of ESLpred. Fur-
thermore, module was able to enhance the performance
of subcellular localizations by 2% in comparison to accu-
racy achieved by presently developed sequence composi-
tion based modules. Hence, it shows that frequency of
occurrence of each of the 20 amino acids at one position
in the alignment is more informative than capturing the
information from a single sequence. Importantly, it pro-
vides evidence about the reliability of PSSM profile as an
input feature which alone could encapsulate the crucial
attributes such as amino acid composition, local order,
and evolutionary information for the prediction of sub-
cellular localizations.

Further, with desire to enhance the performance, an
attempt was made to combine the information of AAC-
NTerm module with whole profile composition, which
generated an input vector of 440 dimensions for the train-
ing of SVM model (referred as "hybidl module"). The
hybrid1 module astoundingly improved the prediction
performance, exhibiting overall and average accuracy of
91.7 and 91.1% (y = 10, C = 5) (Table 1), which is ~3%
and 5% enhancement in prediction accuracies in compar-
ison to PSSM based SVM module respectively.

Finally, coupling the similarity search based information
(EuPSI-BLAST) with PSSM and AAC-NTerm based SVM
module (hybrid2 module) enhanced the performance
from 91.7% to 93.6% in terms of overall accuracy (Table
1). Moreover, an average accuracy for this module was
93.1%, which is best average accuracy every reported for
RH2427 dataset. The accuracies achieved for cytoplasmic,
mitochondrial, nuclear and extracellular classes were

Table I: Detailed performance of various SVM based modules and EuPSI-BLAST on the RH2427 dataset

Approaches Cytoplasm Mitochondria Nuclear Extracellular Overall Average

ACC MCC ACC MCC ACC MCC ACC MCC ACC MCC ACC MCC
AAC-NTerm (A) 82.2 0.76 83.5 0.82 90.3 0.80 86.2 0.86 86.5 0.80 85.5 0.8l
PSSM based (B) 84.1 0.79 713 0.74 95.2 0.85 93.2 0.95 88.6 0.83 86.0 0.83
*EuPSI-BLAST (C) 77.6 - 54.8 - 84.5 - 86.7 - - - —
Hybridl (A+B) 86.1 0.84 89.4 0.89 95.2 0.87 93.9 0.94 91.7 0.88 9l.1 0.89
Hybrid2 (A+B+C) 89.6 0.87 90.7 0.91 96.4 0.91 95.7 0.96 93.6 0.90 93.1 0.91
ACC is accuracy; MCC is Matthew correlation coefficient
ACC is calculated in percentage
*The results are obtained from ESLpred method 20
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89.6%, 90.7%, 96.4% and 95.7% respectively (Table 1).
These results confirmed that our approach of using infor-
mation, exploiting PSI-BLAST which generated both simi-
larity based search results and PSSM profiles are crucial for
detecting subcellular localization of proteins. Hence,
usage of evolutionary information of proteins improved
the prediction accuracy significantly in comparison to
compositions based SVM modules.

Comparison with ESLpred and other existing predictors for
RH2427 dataset

ESLpred2 (trained on RH2427 dataset) is an improved
version of our previous eukaryotic subcellular localization
prediction method ESLpred. ESLpred method achieved an
overall accuracy of 78.1%, 77.8%, 82.9% and 88% for
modules based on amino acid composition, physico-
chemical properties, dipeptide composition and the
hybrid approach respectively. Further, nuclear, cytoplas-
mic, mitochondrial and extracellular proteins were able to
be predicted with accuracies of 95.3%, 85.2%, 68.2% and
88.9% respectively using hybrid approach based module.
In the present study, using the new input features (which
were not implemented in ESLpred), ESLpred2 was able to
attain better accuracy of ~94%, ~6% higher than that
achieved by ESLpred, when trained on RH2427 dataset.
The main credit for this achievement goes to the use of
evolutionary information, amino acid composition along
with similarity search based results as an input features.
Moreover, increase in prediction accuracy was observed
for all four major localizations also.

The comparison of the present method with recently
developed subcellular localization methods also revealed
good enhancement. First, we compared ESLpred?2 (trained
on RH2427 dataset) with LOCSVMPSI method, which
was trained on the same dataset using PSSM along with
amino acid composition as an input feature. LOCSVMPSI
has achieved an overall accuracy of 90.2% with jackknife
test. The results showed that overall prediction accuracy of
ESLpred2 (using 5-fold cross-validation) was 4% higher,
with better accuracy for each location also. For TSSub
method, which integrated four different probabilistic neu-
ral network classifiers for four different features along
with SVM classifier, overall prediction accuracy of
ESLpred2 was ~1% higher and average accuracy was ~2%
higher. For class-wise comparison, ESLpred2 attained ~2
and 6% higher accuracies for extracellular and mitochon-
drial classes. In a nut shell, overall prediction accuracy of
ESLpred2 is 21%, 18%, 15%, 9%, 6%, 4% and 1% higher
when compared with Markov model, NNPSL, SubLoc,
Fuzzy k-NN, ESLpred, LOCSVMPSI, and TSSub methods
respectively.

http://www.biomedcentral.com/1471-2105/9/503

Training on latest and highly non-redundant datasets

In addition, the present study was also carried out on
highly non-redundant, three additional datasets, incorpo-
rated in order to have an idea about the effectiveness of
the use of evolutionary information along with composi-
tional features for discriminating subcellular localizations
while using highly non-redundant dataset. For this notion
to fulfill, we employed BaCelLo dataset, divided into three
subsets to deduce the prediction accuracy on three king-
doms such as fungi, animals and plant proteins sepa-
rately.

Performance on BaCl 198 dataset

Keeping in view, the importance of homology in func-
tional annotation, similarity based search was carried out
to encapsulate the evolutionary information of the pro-
teins covering four major localizations such as cytoplasm,
mitochondrial, nuclear and extracellular proteins. The
module was able to yield an overall and average accuracy
of 29.5% and 23.1% respectively, however, 780 proteins
were not able produce any significant homology with the
local database of fungi proteins after five-fold cross-vali-
dation. Therefore, in order to cover 100% predictions for
1198 proteins, it was indispensable to learn machine
learning technique, or to fuse both.

Hence, we trained a SVM model with input features such
as PSSM profile along with AAC-NTerm compositions
(hybrid1), which eventually accomplished an overall
accuracy of 72.7% along with higher average accuracy of
75.7% (kernel = RBF, y = 5, C = 4) (Table 2). The compar-
ison of hybridl module's performance with BaCelLo
method revealed an improvement of ~3% in overall accu-
racy, whereas average accuracy was comparable as shown
in Table 2. Hence, the present strategy of using evolution-
ary information in the form of PSSM profiles along with
sequence compositional attributes seems to be a promis-
ing and crucial feature in increasing the prediction accu-
racy of subcellular localizations. Importantly, the strategy
also works very well irrespective of the presence and
absence of redundancy in the dataset.

Finally, addition of similarity search based information to
hybrid of PSSM and AAC-NTerm resulted in further
improvement of overall accuracy from 72.7% to 75.9%,
and average accuracy from 75.7% to 76.8%, which is ~6%
and ~1% better performance in comparison to BaCelLo
method as shown in Table 2. Indeed, achieving better
overall and average accuracies along with ~2% and ~12%
astounding improvement in case of mitochondrial and
nuclear protein in comparison to BaCelLo method, the
prediction accuracy of cytoplasmic class was noticed to be
very lower (~6%) as compared with the cytoplasmic class
of BaCelLo method. The comprehensive analysis of accu-
racies for each class demonstrated a good coverage of
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Table 2: The detailed prediction results of different modules and comparison of performance with BaCelLo method on non-redundant

and organism specific datasets

Datasets Localizations  PSI-BLAST (A) (PSSM+AAC-NTerm) (B) Hybrid2 (A+B) Hybrid2 (10-fold CV) #Using BaCelLo'8
BaCello method
strategy (B)
ACC MCC ACC MCC ACC MCC ACC MCC ACC ACC
(Third level)

Fungi Cytoplasm 10.9 - 53.6 0.32 54.0 0.36 51.7 0.37 62.6 60.2
dataset

Mitochondria 12.2 ---- 84.0 0.75 82.5 0.77 83.5 0.77 90.4 814

Nuclear 39.7 - 73.0 0.73 78.6 0.59 80.7 0.60 747 67.1

Extracellular 29.6 - 92.1 0.92 92.1 0.93 93.2 0.93 94.3 94.3

Overall 29.5 ---- *72.7 0.56 75.9  0.60 77.0 0.61 80.5 70.1

Average 23.1 ---- *75.7 0.63 76.8 0.66 773 0.67 76.5 75.8

ACC MCC ACC MCC ACC MCC ACC MCC ACC ACC

(Third level)

Animal Cytoplasm 28.7 — 62.9 0.42 63.3 0.49 61.3 0.48 70.6 653
dataset

Mitochondria 17.0 ---- 77.1 0.75 78.2 0.77 787 0.77 91.5 76.1

Nuclear 53.8 ---- 69.0 0.60 77.7 0.68 79.1 0.69 72.6 64.8

Extracellular 40.9 - 924 0.86 95.3 0.90 95.0 0.90 93.8 90.8

Overall 42.9 ---- *75.8 0.66 80.8 0.72 81.0 0.73 80.1 73.8

Average 35.0 ---- *75.4 0.66 78.6 0.71 78.5 0.71 82.1 74.2

ACC MCC ACC MCC ACC MCC ACC MCC ACC ACC

(Fourth

level)

Plant Chloroplast 314 - 775 0.67 81.9 0.69 8238 0.71 90.7 73.0
dataset

Cytoplasm 6.90 -—-- 51.7 0.50 50.0 0.53 50.0 0.50 79.3 517

Mitochondria 16.4 - 67.2 0.66 65.8 0.63 70.2 0.66 67.2 50.7

Nuclear 48.8 ---- 80.2 0.77 81.8 0.76 81.8 0.79 86.8 71.9

Extracellular 26.8 ---- 87.8 0.65 90.2 0.70 95.1 0.76 85.4 854

Overall 30.3 - *74.5 0.66 76.6 0.68 78.0 0.70 84.7 68.2

Average 26.4 ---- *72.9 0.64 73.9 0.67 76.0 0.69 81.9 66.6

ACC is accuracy; MCC is Matthew correlation coefficient; ACC is calculated in percentage
*Overall and average accuracy obtained at SVM parameters: For Fungi dataset (kernel = RBF, y = 5, C = 4); Animal dataset (kernel = RBF, y =5, C

= 2); Plant dataset (RBF, y =9, C = 3).

#SVM parameters obtained for each class using hybrid| features-For Fungi dataset (Cytoplasm: j = 4,y = 7, C = 0.4, threshold value = 0.0;
Mitochondria: j = 5,y = |, C = 1.6, threshold value = 0.0; Nuclear: j = 4,y = 7, C = 0.54, threshold value = 0.0; Extracellular: j=3,y=1,C=1,
threshold value = 0.0), Animal dataset (Cytoplasm: j = 3, y =9, C = 0.5, threshold value = 0.0; Mitochondria: j = 25, y = |, C = 2, threshold value =
0.0; Nuclear: j =3, y=9, C = 0.5, threshold value = 0.0; Extracellular: j = 6, y = 2, C = I, threshold value = -0.1), Plant dataset (Cytoplasm: j = 2, y
=3, C =0.7, threshold value = 0.1; Mitochondria: j = |, y = 5, C = 75, threshold value = 0.2; Nuclear: j = 2, y = 3, C = 0.7, threshold value = 0.1;

Extracellular: j =9,y = I, C = I, threshold value = 0.0)

92.1%, 82.5% and 78.6% for extracellular, mitochondrial
and nuclear classes respectively; however, cytoplasmic
class found to be least discriminated with 54% of accuracy
with our strategy of using input features. The possible rea-
son for this poor performance of cytoplasmic class might
be the use of composition of N-terminal signal along with
whole sequence and profile composition that eventually
resulted in overestimation of localization signal pertain-
ing classes and masked the performance of signal lacking
cytoplasmic class. But this observation was not realized

while developing the same SVM based module for other
dataset such as RH2427, where, cytoplasmic proteins were
predicted with good accuracies along with N-terminal sig-
nal containing classes.

Therefore, to have broad insight, we also adopted the
BaCelLo's architecture of building SVM layers arranged in
a decision tree manner for prediction of classes. Here, an
input features of 440 dimensions i.e. PSSM with AAC-
NTerm compositions (hybrid1) was used. Doing so, extra-
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cellular, mitochondrial, cytoplasmic and nuclear proteins
were predicted with 94.3%, 90.4%, 62.6%, and 74.7% of
accuracies respectively at the third level of the decision
tree (Table 2). Moreover, at the same level of the decision
tree, we were able to attain overall and average accuracy of
80.5% and 76.5%, which is ~11% and 1% better perform-
ance in comparison to 70.1% and 75.8% achieved by
BaCelLo method respectively.

This proves that use of 440 dimensional input features of
PSSM along with whole and N-terminal sequence compo-
sition provided better discriminating results in terms of
overall and average accuracies, whether, adopting our
present strategy of constructing 1-v-r SVM models or
BaCelLo's architecture of building SVM layers. Although
cytoplasmic class achieved better performance when
BaCelLo's strategy was adopted, which might be due to
the fact that use of SVM layers in a decision tree manner,
the complications and competitions between proteins to
go and predict in different classes reduced a lot at each
level. For instance, at the third level of BaCelLo's architec-
ture, only two classes were left to be discriminated such as
nuclear and cytoplasmic proteins, whereas, in our case (1-
v-1 strategy), all the four classes were simultaneously con-
sidered. Hence, an increase in accuracy for cytoplasmic
class of fungi proteins was observed while using BaCelLo's
architecture.

Performance on BaC2597 dataset

This dataset also covered four major localizations such as
cytoplasm, nuclear, mitochondrial and extracellular
classes; however, protein sequences were exclusively from
animal kingdom. First similarity search based module was
developed using the dataset of 2597 proteins and the
module was able to predict 1114 correct hits yielding an
overall accuracy and average accuracy of 42.9 and 35%
respectively. Next, hybrid1 module using whole profile
compositions along with AAC-NTerm module was able to
achieve better overall and average accuracy of 75.8% and
75.4% (kernel = RBF, y = 5, C = 2), which is ~2 and 1%
better performance than 73.8% and 74.2% yielded by
BaCelLo method respectively (Table 2). However, on add-
ing the similarity search based results to the hybrid1 mod-
ule, astonishingly increase in accuracies was
accomplished. The hybrid2 module achieved ~5% and
~4% better performance in comparison to hybrid1 mod-
ule by achieving overall and average accuracies of 80.8%
and 78.6%, respectively (Table 2). Further, comparison
with BaCelLo method also showed better performance by
our method with an increase of ~7% and 5% in overall
and average accuracies respectively. Herein, the use of
hybrid1 features for the building of SVM models in three
layers as in BaCelLo's architecture, overall and average
accuracies of 80.1% and 82.1% was achieved as shown in
Table 2.
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Performance on BaC491 dataset

Unlikely BaC2597 and BaC11198 datasets, BaC491 data-
set covered five major localizations such as chloroplast,
cytoplasm, extracellular, mitochondrial and nuclear. In
the present study, the similarity search based module also
provided a poor coverage for plant proteins with achiev-
ing an overall and average accuracy of 30.3% and 26.4%
respectively. Herein, the use of profile composition with
AAC-NTerm module as an input feature for training of
SVM module yielded 77.5%, 51.7%, 87.8%, 67.2% and
80.2% of accuracies for five classes respectively (Table 2).
The module was able to attain overall and average accura-
cies of 74.5 and 72.9% (kernel = RBF, y =9, C = 3) respec-
tively. Further, making the hybrid2 module using PSSM
and AAC-NTerm based module along with similarity
search based results, an increase in overall and average
accuracies to 76.6% and 73.9% was observed. The com-
parison of performance with fourth level accuracies of
BaCelLo's method revealed an enhancement of ~9% and
7% in overall and average accuracies respectively by our
method. In addition, the present input features of 440
dimensions when used for constructing SVM models
arranged four layers same as in BaCelLo's method, overall
and average accuracies of 84.7 and 81.8% was attained
respectively, which was observed to be an astounding
increase of 17% and 15% of accuracies in comparison to
BaCelLo's performance. Hence, our strategy of using evo-
lutionary information in the form of 400 dimensional
input vector, along with whole and N-terminal sequence
compositions and similarity search based results seems to
promising and reliable strategy of predicting subcellular
localization. Importantly, the technique is able to predict
localizations with higher accuracy even if data is highly
non-redundant.

In addition, we also evaluated the performance of hybrid2
SVM model using the 10-fold CV evaluation technique
and the accuracies were found to be slightly better in com-
parison to the accuracies obtained using 5-fold CV for
plant and fungi protein dataset, whereas, for animal data-
set the performance was observed to be nearly similar
(Table 2). However, here, the direct comparison of these
results with BaCelLo method cannot be made as different
evaluation 10-fold CV procedure was adopted to assess
the performance of SVM models.

Further, to assess the usage of validation set in SVM train-
ing as used earlier in the BaCelLo study, the dataset was
divided into 5 sets-three sets were used for training, one as
validation set (for selecting SVM parameters and optimal
threshold value) and last one was used as testing set for 5-
fold CV. Here, we also adopted BaCelLo's architecture of
building SVM layers arranged in a decision tree manner.
For animal dataset, it was found that overall and average
accuracies of 79.8 and 81% was achieved, which was a
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slighter reduction from the earlier ones (80.1 and 82.1%)
obtained without using the validation sets. This reduction
might have arisen due to smaller size of training set left for
training the SVM (3 out of 5) model in comparison to pre-
vious one where 4 out of 5 sets were used for training the
model.

Testing on independent datasets

The best way to judge the unbiased performance of any
predictor is to assess its performance on an independent
dataset. Here, we used the same independent dataset as
used previously by Pierleoni et al [18] for comparing the
performance of BaCelLo method with best publicly avail-
able subcellular localizations prediction methods. In
order to have the fair comparison with existing methods,
Pierleoni et al used the sequences upto Swiss-Prot version
41 for retraining the method and the remaining sequences
till version 48 for independent testing on the retrained
models. Thus, in the present study, to have reasonable
comparison with other methods and BaCellLo itself,
ESLpred2 was retrained with sequences upto Swiss-Prot
version 41 and then tested on the same independent data-
set of 707 and 179 animal and fungi protein sequences
respectively. Since, independent dataset for plant proteins
was very small, hence that was not included in the predic-
tion process. The detailed evaluation of performances on
these two datasets have already been shown by Pierleoni
et al with best publicly available subcellular localizations
prediction methods such as LOCtree, Psort II, SubLoc,
ESLPred, and LOCSVMPSI and surprisingly better per-
formance for BaCelLo methods was observed in compari-
son to other methods. Therefore, mainly the comparison
of present method with BaCelLo method was performed
in the present study.

http://www.biomedcentral.com/1471-2105/9/503

For animal protein dataset, it was found that our method
was able to predict 503 proteins out of 707 proteins cor-
rectly, yielding average and overall accuracies of 70.7 and
71.2% respectively as shown in Table 3. The comparison
of ESLpred2 with BaCelLo method also revealed ~2% bet-
ter accuracies along with enhanced performance for cer-
tain classes by our method. It was observed that ESLpred?2
was able to achieve 2%, and 5%, better accuracies for
nuclear and extracellular protein classes as compared to
BaCelLo method (Table 3). Further, our method showed
~8%, 11% and 9% better overall accuracies when com-
pared with LOCtree [15], PLOC [29] and MultiLoc [14]
methods respectively. Moreover, PLOC method per-
formed very badly on cytoplasmic, extracellular and mito-
chondrial proteins in comparison to ESLpred2 and
BaCelLo methods. In this post genomic era, one can fully
utilize the features of any prediction method only if it
allows the prediction on whole genome/proteome rather
than a single sequence at a time, this is the main reason
that has limited the utility of some latest prediction meth-
ods such as ProLoc-GO, Cell-PLoc [31,32] which allow
the prediction to be made on a single or few sequences
only at a time. However, predictions on another most
popular method Proteome Analyst [16] yielded an aver-
age accuracy of 83.2% on an independent dataset, which
is significantly better than our present, LOCtree and
BaCelLo methods. However, the present author feels this
comparison to be unbiased as these predictions were com-
pletely based on the homology search of 707 proteins in
the SWISSPROT database, and the presence of these pro-
teins in the database likely to be predicted correctly by the
method.

In the case of 179 fungi proteins, ESLpred2 was able to
achieve overall and average accuracies of 79.3% and
76.5% respectively. Although the present method was

Table 3: The detailed evaluation of performance on an independent datasets of 707 animal and 179 fungi proteins

Localizations ESLpred2 BaCelLo* LOCtree* PLOC MultiLoc
Animal independent dataset Cytoplasm 54.8 54.0 382 234 60.6
Mitochondria 68.6 68.6 60.0 54.2 65.7
Nuclear 68.0 66.1 622 82.1 584
Extracellular 91.3 855 84.9 424 68
Overall Accuracy 71.2 68.6 63.0 59.7 61.5
Average Accuracy 70.7 68.5 61.3 50.5 63.2
Localizations ESLpred2 BaCelLo* LOCtree* PLOC MultiLoc
Fungi independent dataset Cytoplasm 26.7 56.7 46.7 133 20.0
Mitochondria 90.9 100 63.6 45.5 727
Nuclear 88.5 66.4 66.4 87.7 549
Extracellular 100 93.8 81.3 62.5 75.0
Overall Accuracy 79.3 69.2 64.3 704 52.0
Average Accuracy 76.5 79.2 64.3 523 55.7
*The values are obtained from reference 18
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able to attain 10% better overall accuracy in comparison
to BaCelLo method, still, 2% lower performance in terms
of average accuracy was observed for our method (Table
3). Again the present method was able to achieve much
better accuracies in comparison to other eukaryotic sub-
cellular localization prediction methods such as LOCtree,
PLOC and MultiLoc, hence, increasing the confidence
about the reliability and robustness of present method in
comparison to others.

ESLpred2 server

The SVM modules constructed in the present study have
been implemented as World Wide Web server
"ESLpred2", available at http://www.imtech.res.in/
raghava/eslpred?/ using CGI/Perl script. The server runs
on SUN server 420R under the Solaris environment. It is
user-friendly web server and allows users to enter multiple
protein sequence in the fasta format. Users can input pro-
tein sequences by pasting in the box or by using the file
upload facility. The server also provides the options to
select different approaches such as amino composition
based, PSSM based and hybrid approach based SVM mod-
ules. In addition, there is a provision of selecting models
trained on different datasets such as RH2427 and organ-
ism specific datasets (animal, plant and fungi). The pre-
diction results consist of classification of the respective
input sequences into its predicted subcellular localization
along with SVM predicted scores.

Conclusion

To conclude, an improved version of prediction of eukary-
otic subcellular localization is presented here, covering
four major localizations, coupled with kingdom specific
prediction SVM models. An interesting feature of the
present method is the hybrid of different protein features,
such as composition of PSSM profile, whole and N-termi-
nal composition of sequence and similarity search based
results, which supported the assignment of the subcellular
localization of proteins more reliably and with high accu-
racy irrespective of redundancy in the training datasets.
The present method is able to complement all existing
subcellular location prediction methods and provides an
alternative way for biologists to predict protein subcellu-
lar locations.

Methods

Data set

The present method was trained using the latest dataset,
which was earlier used for developing BaCelLo method
[18]. The dataset was retrieved from SWISSPROT version
48.0 and divided into three subsets on the basis of king-
doms-animal with 2597 sequences; fungi with 1198
sequences and 491 sequences were from plant. The major
attraction of this dataset was the stringent cut-off value of
30% used to reduce the similarity between sequences. The
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first two datasets covered 4 major localizations such as
cytoplasm, mitochondria, nuclear, and extracellular,
whereas, plant dataset included chloroplast class along
with four major localizations. These three datasets has
been referred as BaC2597, BaC1198, and BaC491 in our
discussions.

Support Vector Machine

In the present study, a freely downloadable package of
SVM, SVM_light http://www.cs.cornell.edu/People/tj/
svm_light/ was used to implement SVM. The prediction of
subcellular localization is a multi-class classification
problem, thus, 1 vs rest (1-v-r) approach was adopted,
where, one class of proteins were labeled positive and pro-
teins of remaining classes were labeled negative for the
training of SVM model.

Feature Vectors

Composition based features

Amino acid composition (AAC) is a fraction of 20 types of
amino acids present in a protein sequence. It generates an
input vector of 20 dimensions. Furthermore, to capture
effectiveness of the signals present at N-terminals, amino
acid composition of residues present at N-terminal (20
residues) along with whole sequence composition was
calculated that eventually resulted an input vector of 40
dimensions (referred as AAC-NTerm).

Evolutionary information in the form of PSSM profiles

An attempt was made to use PSI-BLAST generated PSSM
profile as an input feature for the training of SVM model
[33]. For each sequence, PSI-BLAST search was carried out
against non-redundant dataset available at SWISSPROT.
After three iterations with cut-off E-value of 0.001, it gen-
erated a PSSM having the highest score as a part of the pre-
diction process. The matrix consisted of 20 x M elements,
where M is the length of the target sequence, and each ele-
ment represents the frequency of occurrence of each of the
20 amino acids at one position in the alignment [29].

Further, in order, to make an input of fixed length, each
element of the matrix (20 x M) was first scaled to the
range of 0-1 using sigmoid function. Then, these normal-
ized PSSMs (20 x M) were used to generate a 400-dimen-
sional input vector by adding all the elements of rows in
the PSSM corresponding to the same amino acids in the
sequence. Finally, composition was calculated by dividing
each element by the length of the protein sequence which
provided a matrix of 20 x 20 elements.

Similarity search based module

Besides using PSI-BLAST to generate PSSM, it was also
used to carry out similarity based search against the local
in-built database of different localizations. For BaC2597,
BaC1198 and BaC491 dataset, new modules were gener-
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ated by carrying out similarity based search against the
local datasets of 2597, 1198 and 491 proteins respec-
tively. Three iterations of PSI-BLAST were carried out at a
cut-off E value of 1 x 10-5. First, the dataset was divided
into 5 sets, then four sets were used to build the database
and the remaining fifth set was used for searching. This
cycle was repeated five times so that each set can be used
for searching the corresponding database of four sets. This
module could predict any of the localizations, depending
upon the similarity of the query protein to the proteins
present in the database. The module would return
"unknown subcellular localization" if no significant simi-
larity was obtained.

Five-fold cross-validation

The performance of the modules constructed in this
report was evaluated using 5-fold cross-validation tech-
nique. In this technique, the dataset was divided into 5
sets consisting of nearly equal number of sequences.
These 5 sets were further portioned into training and test
sets as shown in Figure S1 [see Additional file 1]. The
training and testing was carried out five times at one par-
ticular values of C and vy, each time using one distinct set
for testing and the remaining four sets for training. The
final performance was obtained by averaging the perform-
ance of all five test sets.

The optimization of SVM model was carried out by select-
ing the well-known three types of kernel functions (such
as linear, polynomial, RBF) with their corresponding opti-
mization parameter selection search. For linear kernel, the
search was carried out for the best value of C parameter;
the values for parameters C and y for RBF; and C and d for
polynomial kernel to achieve high accuracy. While testing
the value for y parameter, regularization parameter C was
kept at default value. Once the best parameters for both y
and C were found, then we did the fine tuning search sur-
rounding the best values within the range of + 5.

Evaluation parameters

To assess the predictive performance, evaluation parame-
ters such as accuracy and Matthew correlation coefficient
(MCC) were calculated using equation 1 and 2.

_ h(x)
Accuracy (x) = Exp(x) (1)
e p(x) n(x)-u(x) o(x)
MCC (x) \/[p x)+u(x)] [p(x)+a(x)] [n(x)+u(x)] [n(x)+o(x)]

Where, x can be any subcellular location, Exp(x) is the
number of sequences observed in location x, p(x) is the
number of correctly predicted sequences of location «x,

http://www.biomedcentral.com/1471-2105/9/503

n(x) is the number of correctly predicted sequences not of
location x, u(x) is the number of under-predicted
sequences and o(x) is the number of over-predicted
sequences.

Abbreviations

SVM: Support Vector Machine; PSSM: Position specific
scoring matrix; AAC: Amino acid compositions; RBF:
Radial basis function; MCC: Matthews Correlation Coeffi-
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