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Abstract

Background: Post translational modifications (PTMs) occur in the vast majority of proteins and
are essential for function. Prediction of the sequence location of PTMs enhances the functional
characterisation of proteins. Glycosylation is one type of PTM, and is implicated in protein folding,
transport and function.

Results: We use the random forest algorithm and pairwise patterns to predict glycosylation sites.
We identify pairwise patterns surrounding glycosylation sites and use an odds ratio to weight their
propensity of association with modified residues. Our prediction program, GPP (glycosylation
prediction program), predicts glycosylation sites with an accuracy of 90.8% for Ser sites, 92.0% for
Thr sites and 92.8% for Asn sites. This is significantly better than current glycosylation predictors.
We use the trepan algorithm to extract a set of comprehensible rules from GPP, which provide
biological insight into all three major glycosylation types.

Conclusion: We have created an accurate predictor of glycosylation sites and used this to extract
comprehensible rules about the glycosylation process. GPP is available online at http://

comp.chem.nottingham.ac.uk/glyco/.

Background

Most proteins do not perform their function without
undergoing some form of post translational modification
(PTM) [1]. PTMs occur after the mRNA has been trans-
lated into peptide sequence and the polypeptide has
begun to fold [2-4]. The importance of PTMs in protein
function makes their characterisation of particular interest
[2-4]. Accurate prediction, using computational methods,
of sites in a protein sequence where PTM occurs would
facilitate protein annotation and would contribute to
efforts in functional genomics.

Glycosylation [2-4], a common PTM, plays a role in pro-
tein folding, transport and half-life, as well as being
involved in cell-cell interactions and antigenicity. Glyco-

sylation is an enzymatic process, with the exception of gly-
cation, and involves the addition of sugars to the protein
to build up glycan chains. There are four types of glyco-
sylation: N-linked, O-linked, C-mannosylation and GPI
(glycophosphatidyl-inositol) anchor attachment. C-man-
nosylation involves the addition of a-mannopyranosyl to
the indole of tryptophan. GPI anchors concern membrane
anchoring of a protein by the addition of GPI near the C-
terminus. N-linked and O-linked glycosylation are the
most common and this study focuses on these modifica-
tions.

N-linked glycosylation consists of the addition of a pre-
assembled glycan chain to Asn. This occurs co-translation-
ally and influences protein folding. After its addition, the
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glycan chain undergoes a maturation process, which can
produce a glycan of the high mannose, hybrid or complex
types. The sequence motif Asn-Xxx-Ser/Thr [5], or in some
rare cases Asn-Xxx-Cys, where Xxx is any amino acid
except Pro, is required for N-glycosylation, although not
sufficient on its own. O-linked glycosylation consists of
the stepwise build-up of various sugars on Ser or Thr resi-
dues. O-glycosylation has no known consensus sequence
[5]. However, Pro is often present around O-glycosylation
sites [6] and O-glycosylation occurs more often in the B-
strands of proteins [5].

Several glycosylation predictors have been produced [7-
10]. Whilst these are not directly comparable, due to
development on different datasets, the best predictors
appear to be NetOglyc 3.1 [11], which is reported to pre-
dict correctly 76% of glycosylated residues and 93% of
non-glycosylated residues, and Oglyc [10] with a reported
accuracy of 85% correctly classified instances. NetOglyc
uses both sequence and predicted structural information
(predictions of secondary structure and accessible surface
area) to train a back propagation neural network. Oglyc
uses support vector machines trained on a combination of
physical properties of amino acids and a binary represen-
tation of the sequence. In this study we attempt to
improve the prediction of glycosylation sites, using a new
machine learning algorithm well suited to prediction
from protein sequence data.

The random forest algorithm [12] is based on decision
trees. A decision tree consists of paths and nodes, with
each node using a rule to decide between two or more
paths. A rule is typically of the form 'If A then do B', where
A is a condition relating to the descriptors of the input
data and B is a step on the path through the trees. The last
rule gives the classification of the input data example. Sev-
eral decision trees are developed using a random selection
of inputs and random feature selection at each node to
grow the trees. The trees then vote on the class for a given
input. There is no previous research into predicting glyco-
sylation using random forests, although the algorithm has
been widely used, including for prediction of protein-pro-
tein interactions [13,14], for analysis of microarray data
[15] and identification [16] and prediction [17] of the
function of SNPs (single nucleotide polymorphisms). The
algorithm has been used for prediction of protein struc-
ture from NMR data [18] and amino acid sequence [19].
The random forest algorithm has several features [15],
which make it suitable for applications such as the predic-
tion of glycosylation sites. It can be used on a mixture of
discrete and continuous descriptors, to classify binary or
multi-class data sets and can cope with datasets where
there are more variables than observations. The algorithm
does not over-fit and continues to be successful, even
when there is a large amount of noise in the data.

http://www.biomedcentral.com/1471-2105/9/500

However, the models generated by random forest can be
challenging to interpret. Therefore, we have employed
trepan [20], an algorithm originally designed to allow the
comprehension of neural networks. It has been adapted
for use with other machine learning algorithms [21].
Trepan uses the machine learning algorithm as an "Ora-
cle". By querying the Oracle with the training data and its
own generated examples, trepan induces a decision tree
using m of n rules (see methods), thus giving a compre-
hensible picture of an otherwise opaque machine learning
algorithm.

In this paper, using the database of glycosylation sites
OGLYCBASE version 6.00 [22], we analyse the amino acid
frequencies around glycosylation sites. Using the O-
unique dataset http://www.cbs.dtu.dk/databases/OGLY
CBASE/O-Unique.seq we apply the random forest algo-
rithm implemented in weka [23], combined with infor-
mation about pairwise patterns, to predict the location of
glycosylation sites in a given protein. Pairwise pattern
information has previously been used for protein
sequence analysis: for example, to predict whether a
coiled coil region adopts a leucine zipper structure [24]
and to assist in the prediction of protein secondary struc-
ture from amino acid sequence [25]. We also experiment
with the addition of predicted secondary structure, pre-
dicted surface accessibility, and hydrophobicity of the
amino acids in an effort to increase the prediction accu-
racy. Our prediction program is known as GPP (glycosyla-
tion prediction program) and is available on-line at: http:/
/comp.chem.nottingham.ac.uk/glyco/. We would like to
interpret the models for the random forest algorithm, and
thus gain some biological insight into glycosylation.
Whilst random forest produces individual rules that are
human readable, in the case of GPP for each of the three
types of glycosylation there are ten models of ten trees
each. There are redundancies and potentially even con-
flicts between the different models. We aggregate these
models into a single decision tree using the trepan algo-
rithm [20], providing clear rules for each glycosylation

type.

Results and discussion

Frequency Analysis

We conduct the frequency analysis using the OGLYCBASE
dataset. This was used, rather than O-unique, because it
has a greater volume and range of sequences allowing sta-
tistically significant differences to the background to be
more visible. There is also a wider range of sequences than
O-unique and it is useful to observe whether there are
trends across the whole spectrum of glycol-proteins i.e. is
our method likely to be useful for predicting more than
just the mammalian glycosylation sites found in O-
unique. The consensus sequence for Asn glycosylation is
clearly exhibited in the frequency table (Table 1 and Addi-
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Table I: Frequencies of selected amino acids surrounding modified Asn residues

position -7 -6 -5 -4 -3 -2 -1 | 2 3 4 5 6 7
C 12 9 12 12 10 4 5 I 5 17 I 8 16 9
D 13 23 10 8 9 13 7 8 0 14 6 17 12 19
M 13 2 10 6 3 5 3 5 0 6 4 5 2 4
P 13 22 15 20 7 15 I I 0 6 31 18 18 14
Q 9 10 10 16 15 21 7 8 I I 13 16 9 I
S 20 22 25 16 16 14 24 23 102 32 23 28 I 32
T 14 26 15 23 17 17 15 17 151 16 16 13 19 22

Frequency is reported as the number of occurrences in the set of 261 instances of modified Asn residues. Statistically significant increases over the
expected frequencies are represented in bold; significant decreases are represented by italics. The full table containing all amino acids is included in

additional file I.

tional file 1). The only amino acids in evidence at the +2
position are Ser, Thr and Cys, with low numbers of Pro at
the +1 position. At the -6 position there is an increase in
Asp and at the -5 position there is a significant increase in
Met. Met is hydrophobic in nature, and is the only such
amino acid to be increased around glycosylated Asn resi-
dues. At the -2 position Gln is significantly increased. Cys
is increased at the +3 position, indicating that Cys assists
glycosylation at this position. There is an increase in Pro
at the +4 position, which is perhaps surprising, as Pro dis-
favours glycosylation when found at +1 in almost all cases
[5]. It may be that Pro helps create a structural conforma-
tion favourable for glycosylation when found at this posi-
tion.

Around modified Ser residues there is known to be an
abundance of Pro, Ser and Thr and the frequency analysis
(Table 2 and Additional file 2) shows increases of Ser and
Thr across the sequence window and increases in Pro at
positions -6, -3, -1, 2, 3 and 4. Of those positions where
Pro is increased, -1 and +3 present the greatest increases.
There is an increase in Ala around the glycosylation site at
position -1 perhaps suggesting small amino acids are pre-
ferred here. There is also a decrease in Phe at this position.
Leu is decreased at -6, -2, +2, and +7, and Lys at +3 and +4.
This suggests that these amino acids may have an unfa-
vourable effect on glycosylation.

Modified Thr residues (Table 3 and Additional file 3)
exhibit elevations in Thr at all positions except +7 and Pro
at all odd numbered positions. There is an increase in Ser
at the -1 position. This suggests that where Thr and Ser gly-
cosylation sites are clustered together, they are almost
always consecutive in sequence. Pro is particularly
increased at the +3 position, suggesting this is important
for glycosylation, as was shown by others [6]. There is a
decrease in Ile at position -1 and an increase at -2. Gly is
increased downstream at positions -5 and -2, and
upstream at positions +1, +4 and +7. Gly is also decreased
at -3 and +3. Gln is decreased at the -1 position, as is Lys,
which is also decreased at -2, and +1, 2 and 3. There is a
general decrease in Leu around the glycosylation site, par-
ticularly at the -1 and +1 positions. Arg is decreased at -3,
-1and +3

Pairwise Patterns

The pairwise patterns for each residue type were ranked by
weight to identify those most likely to be found around
modified residues. These patterns have significant fre-
quencies around unmodified residues, as well as around
modified residues. The weights of some patterns are very
similar, especially those for Ser, and statistical fluctuations
due to the relatively small size of the dataset mean that the
rank order of these patterns may not be exact.

Table 2: Frequencies of selected amino acids surrounding modified Ser residues

position -7 -6 -5 -4 -3 -2 -1 | 2 3 4 5 6 7
A 22 36 24 36 29 30 37 31 34 21 26 30 25 19
D 6 12 6 18 14 10 6 4 3 10 I 8 5 5
E 15 19 22 19 23 24 8 16 10 13 10 I 9 6
G 19 26 30 17 20 22 27 40 27 27 16 23 19 41
P 31 38 35 35 41 34 46 28 40 51 42 34 32 35
S 56 42 43 54 53 56 47 48 60 43 56 41 48 49
T 58 43 46 41 48 34 62 61 48 50 58 51 51 47

Frequency is reported as the number of occurrences in the set of 388 instances of modified Ser residues. Statistically significant increases over the
expected frequencies are represented in bold; significant decreases are represented by italics. The full table containing all amino acids is included in

additional file 2.
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Table 3: Frequencies of selected amino acids surrounding modified Thr residues

position -7 -6 -5 -4 -3 -2 -1 | 2 3 4 5 6 7

G 52 40 108 42 2] 122 32 101 40 16 106 30 37 112
| 20 16 16 33 23 40 14 17 17 13 18 29 14 18
P 77 6l 8l 67 99 62 128 103 68 167 59 105 59 89
R 33 22 17 28 8 13 21 I 25 9 15 30 30 16
S 8l 67 65 68 74 70 89 67 76 74 63 59 52 70
T 101 168 96 130 117 115 107 95 118 131 127 95 156 87
w 2 10 4 ) 2 4 2 2 5 2 3 0 0 0

Frequency is reported as the number of occurrences in the set of 2010 instances of modified Thr residues. Statistically significant increases over the
expected frequencies are represented in bold; significant decreases are represented by italics. The full table containing all amino acids is included in

additional file 3.

Around Asn residues (Table 4) the consensus sequence for
Asn glycosylation was visible, with the patterns
....... N.T..... (rank 02, weight 3.35) and .......N.S..... (rank
01, weight 4.78) as the top two patterns identified. Other
patterns have substantially lower weights indicating the
significance of the consensus sequence. Further patterns
in the list indicate that Gln at -2 may be significant, as well
as Ser, Ala and Arg at various positions. Gln at -2 is also
increased in the frequency analysis above and so may be a
significant factor. However, there is no significant increase
of Ser, Ala and Arg at corresponding positions in the fre-
quency analysis, so it is possible this is only evident as part
of a pairwise pattern.

The most significant pattern around Ser is Pro at the +3
position, which is in line with the frequency analysis.
Other patterns include Pro Ser, Ile and Thr at various posi-

Table 4: The 20 most significant patterns for glycosylated
residues.

Asn Pattern (weight)  Thr Pattern (weight)  Ser Pattern (weight)

.NS.... (4.78) P T.. (3.39) ..5.P.... (0.98)
~NT...(3.35) STP (217) N.....S...... (0.90)
..... QN..... (1.78) S...S..... (0.89)
....... N.....Q (1.27) oS (0.87)
....... N.....S (1.18) oS (0.86)
R.N..... (1.0) T (1.43) wnnS...P. (0.83)
...... AN....... (1.0) Tl (1.39) wP.S...... (0.82)
I...N...... (1.08) STPe (125) . SA...... (0.80)
e NLLF.(108) ... T...M (1.25) onnS...H. (0.80)
S..N...... (1.05) TP (124 L ST..... (0.79)
SN (095) . TE..... (1.23) SN (0.79)
~R.N...... (0.92) WMT (122) ST (0.77)
~FN.... (092) Q... T (1.15) SR (0.77)
“P.N.....(089) ... P (L11) Sl.... (0.76)
I....N...... (0.88) MoTn (10) ES....... (0.76)
N...A.. (0.88) PRI (100 IS....... (0.74)
SN..L (088) .. AT..... (1.0) e S.P. (0.73)
RN.....(0.86) ... T.A...(1.0) e SA (0.73)
....... NV..... (0.82) 5.Se
....... N.S.... (0.81) P...

tions indicating that these amino acids may play a prom-
inent role when linked with either Ser or Thr. Many of the
patterns around Ser residues have similar weights,
although Pro at +3 is markedly more significant.

Whilst no consensus sequence has been shown for Thr,
around Thr residues (Table 3) there are correlations
between the patterns, which suggest one or more
sequence motifs may enhance the propensity for glyco-
sylation. The majority of the patterns in the top 20 contain
one of Ile, Thr, Pro or Ser, suggesting that these amino
acids favour glycosylation. Given the frequency, and the
analysis above (Table 3) it is likely that at least one or
more of these amino acids is required for Thr glycosyla-
tion. The most prominent pattern is of Pro and Thr at the
+3 and +5 positions, respectively. This could indicate
either a motif that encourages glycosylation or the impor-
tance of the clustering of Ser and Thr glycosylation sites
together given the significance of Pro in the neighbour-
hood of both. There are also several patterns with high sig-
nificance involving Glu always upstream of the
glycosylation site, although no significant increase of this
was found in the frequency analysis.

Prediction accuracy

We measured the prediction accuracy of GPP trained
using the pattern weight and sequence only, and using
additional structural information. For O-linked glycosyla-
tion sites the change in accuracy with additional informa-
tion was minimal. For N-linked glycosylation an increase
in accuracy was observed with the addition of predicted
surface accessibility information. There was also a much
smaller increase with the addition of predicted secondary
structure information (Table 5). The prediction of Thr
sites was more accurate than that of Ser sites. The Mat-
thews correlation coefficient, specificity and overall accu-
racy were higher. However, the sensitivity was higher for
the Ser site predictions. This was also the case in for pre-
dictions of Ser and Thr carried out with additional infor-
mation. In comparison to naive bayes, the prediction by
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Table 5: Accuracy of prediction of glycosylation sites with random forest and naive bayes algorithms

Random Forest Naive Bayes

Dataset (size) Correctly Sensitivity (%) Specificity (%) Matthews Correctly Sensitivity (%) Specificity (%) Matthews
Classified Correlation Classified Correlation
Instances (%) Coefficient Instances (%) Coefficient

Ser 90.8 96.1 88.9 0.8l 83.9 64.4 92.6 0.61

Ser + SA 9I.1 95.5 89.6 0.82 82.3 60.5 923 0.58

Ser + Hydro  89.9 96.4 87.5 0.79 82.7 64.8 90.9 0.59

Ser + SS 91.7 96.3 90.1 0.83 82.4 62.9 91.3 0.58

Thr 92.0 93.6 924 0.84 86.8 74.8 933 0.70

Thr + SA 91.8 91.4 93.2 0.83 85.8 725 93.5 0.69

Thr + Hydro  91.1 91.8 922 0.82 85.9 73.0 933 0.69

Thr + SS 91.0 91.8 92.1 0.82 87.2 74.7 94.6 0.72

Asn 92.8 96.6 91.8 0.85 90.3 83.8 94.6 0.79

Asn + SA 94.0 95.7 94.3 0.88 89.3 81.9 94.5 0.77

Asn + Hydro 924 95.2 91.9 0.84 90.1 82.5 94.8 0.78

Asn + SS 93.2 96.4 924 0.86 89.3 79.8 94.9 0.76

Hydro = Hydrophobicity data; SA = predicted surface accessibility; SS = predicted secondary structure.

random forest is superior. All predictions by naive bayes
have a substantial loss in sensitivity and a much lower
Matthews correlation coefficient.

We first compare the results to the NetOglyc [8], Oglyc
[10] and NetNglyc http://www.cbs.dtu.dk/services
NetNGlyc/ prediction servers (Table 6). The comparison
with O-glycosylation predictors comes with the caveat

that they may have been trained and tested with different
data, which included differing ratios of positive and nega-
tive instances. We also had a slightly different focus than
these predictors, in that we do not restrict ourselves to
mucin glycosylation sites. For NetOglyc, we use data pub-
lished in Julenius et al. [11]. The accuracy measures
reported did not include correctly classified instances; so
we calculated this from the information published. No

Table 6: A comparison of the GPP predictor and other glycosylation prediction programs.

GPP NetOglyc NetNglyc Oglyc CKSAAP [27] EnsembleGly [26] Scan Site
Ser CClI 90.8 91.8 N/A N/R 83.1 N/R N/A
Ser Sensitivity 96.1 66.7 N/A N/R 80.7 N/R N/A
Ser Specificity 88.9 95.3 N/A N/R 85.6 N/R N/A
Ser MCC 0.8l 0.62 N/A N/R 0.671 N/R N/A
Thr CCI 92.0 84.9 N/A N/R 8l1.4 N/R N/A
Thr Sensitivity 93.6 81.5 N/A N/R 80.3 N/R N/A
Thr Specificity 92.4 89.5 N/A N/R 825 N/R N/A
Thr MCC 0.84 0.67 N/A N/R 0.63 N/R N/A
Asn CCI 92.8 N/A 76.7 N/A N/A 95.0 79.8
Asn Sensitivity 96.6 N/A 439 N/A N/A 98.0 727
Asn Specificity 91.8 N/A 95.7 N/A N/A 77.00 81.9
Asn MCC 0.85 N/A 0.49 N/A N/A 0.84 0.54
Overall CCI 91.42 88.62 N/A 87.02 N/A 89.0 N/A
Overall Sensitivity 94.92 76.02 N/A 92.02 N/A 59.0 N/A
Overall Specificity 90.72 92.82 N/A 78.02 N/A 68.00 N/A
Overall MCC 0.832 0.662 N/A 0.712 N/A 0.64 N/A
a. combined accuracy for Ser and Thr
b. Specificity for EnsembleGly was calculated as T,/T,+F,. See text for comparison.
N/A = not applicable; N/R = not reported; CCl = % correctly classified instances; MCC = Matthews Correlation Coefficient
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published results are available for NetNglyc; so we sub-
mitted the sequences in the O-unique dataset to the
NetNglyc web server and calculated the accuracy measures
described above. We also compare predictions for the Asn
dataset to a basic pattern search for the consensus
sequence carried out by scansite [26]. Li et al. [10] did not
give the Matthews correlation coefficient for the Oglyc
predictions. Therefore, we calculated it from the reported
data and also use the measures of correctly classified
instances, sensitivity and specificity for this comparison.
We converted the values provided by Li et al. into percent-
ages. Oglyc only report the combined accuracy; separate
accuracy information for Ser and Thr was not available.
The comparison with Oglyc was carried out against their
dataset 2, which produce the best results for their predic-
tor. The GPP predictor has a higher correlation coefficient
and sensitivity than NetNglyc. Scansite correctly predicts
most positive instances of Asn glycosylation and has a
higher sensitivity and specificity than NetNglyc. However,
GPP is more accurate and has higher Matthews correlation
coefficient, sensitivity and specificity. Our prediction of
Thr sites is better in all measures than that of NetOglyc.
For Ser prediction our overall accuracy is comparable,
although we have a higher Matthews correlation coeffi-
cient. NetOglyc has a higher specificity and a lower sensi-
tivity than GPP. There is a higher ratio of negatives to
positives in the Ser data set compared to that for Asn and
Thr. This affects the pattern weights, bringing them closer
together and making it more difficult for the random for-
est to discriminate between modified and unmodified res-
idues. There are also more types of sugar in more equal
proportions in the Ser dataset, creating a more difficult
task for the random forest. The Asn dataset does not expe-
rience similar effects: its consensus sequence motif is eas-
ily picked out (and augmented) by the random forest
algorithm. There are no data for separate Ser and Thr pre-
dictions available for Oglyc [10]. Their overall prediction
accuracy of 87.4% (correctly classified instances) is less
than the overall accuracy of GPP, and we also score better
in sensitivity and specificity.

Two more recent predictions servers, EnsembleGly by
Caragea et al. [26] and CKSAAP by Chen et al. [27], were
published during the completion of this work. Caragea et
al. use ensembles of support vector machines to predict O-
and N-linked glycosylation sites. Caragea et al. calculate
sensitivity as S, = T,/ (T,+F,). We convert this measure into
a percentage. Calculating this measure for GPP, for Asn
prediction, S, = 87.2; for Ser, S, = 81.3; for Thr, S, = 87.5;
and for the combined O-linked predictions, S, = 84.4.
GPP has a greater Matthews correlation coefficient for
both N- and O-linked prediction (only an overall score for
O-linked is given). For N-linked sites they have a greater
accuracy and sensitivity, but GPP has greater specificity
and Matthews correlation coefficient, indicating Ensem-

http://www.biomedcentral.com/1471-2105/9/500

bleGly has a greater number of false negative predictions.
For O-linked sites, GPP scores better for sensitivity, specif-
icity and Matthews correlation coefficient. Chen et al. pre-
dict mucin glycosylation sites using k-spaced pairwise
patterns and support vector machines. This method has
some similarities with our own and the accuracy of the
two methods is comparable. However, GPP is more accu-
rate for both Ser and Thr predictions.

Rule extraction

Trepan identifies the consensus motif for Asn glycosyla-
tion (figure 1 and additional file 4) as the most prominent
rules in the decision tree. However, subsequent rules are
somewhat misleading as they allow glycosylation without
the consensus sequence being present. This is probably an
artefact of the generation of additional data by trepan.
This approach is reliant on the distribution of the training
data and will highlight patterns additional to the consen-
sus sequence. The tree corresponding to Thr glycosylation
(figure 2 and additional file 5) shows features in line with

1
Position 10 =T

2 3
Position 10 = S

Class
Glycosylated

4 5
Position 10 = G

Class
Glycosylated

6 7
Class Not Position 06 = Q
Glycosylated Position 01 = N

I
Figure |
Asn glycosylation rules. A subset of the complete decision
tree covering all the rules for Asn glycosylation (the com-
plete tree is available as additional file 4). Each node is num-
bered in the order it was added to the tree. All rules are | of
A, B...N so only the relevant features are shown. The amino
acids are represented using the single letter code and the
positions are indicated with respect to a sequence window of
length 15, with the target residue at position 08.
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1

Position 01 = U
Position 07 = S

2 3

Class Position 08 = U
Glycosylated

4 5

Class Not Position 05 = C
Glycosylated

6 7/

Class Not Position 06 = C
Glycosylated

8 9

Class Not Position 11 = P
Glycosylated Position 02 = S

10 11
Position 01 = L Position 11 = |

42 43 12 13

Class Not Position 13 =T Class Position 11 = A
Glycosylated Position 09 = S Glycosylated
I 1
Figure 2

Thr glycosylation rules. A subset of the complete decision tree encompassing all the rules produced for Thr glycosylation
(the complete tree is available as additional file 5). Each node is numbered in the order it was added to the tree. All rules are |
of A, B...N so only the relevant features are shown. The amino acids are represented using the single letter code. The amino
acids are represented using the single letter code amino acid and the positions are indicated with respect to a sequence win-
dow of length |5, with the target residue at position 08.
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the statistical data. Pro at residue +3 increases glycosyla-
tion when accompanied by a Ser or Thr. The end of the
sequence seems to be given undue importance. However,
other rules are in line with the frequency analysis. Cys
seems to strongly discourage glycosylation, whilst Ser, Thr
and Pro encourage it when accompanied by various other
amino acids. Some rules may be inexact, due to the lim-
ited data in O-unique that trepan can base its derived
examples on. This is also true for the Ser tree (figure 3 and
additional file 6). The tree for Ser is similar to the one for
Thr, although more complicated. Once again the end of
the sequence is implicated as is the presence of Pro at var-
ious positions. Cys again seems to block glycosylation,
whilst Ser, Thr, Glu, and Pro all encourage it when present
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at various positions along the sequence, especially in con-
junction.

Conclusion

The random forest algorithm was used to predict glyco-
sylation sites, based on pairwise sequence patterns and
the amino acid sequence. The program improved over the
best prediction programs currently available, with signifi-
cant increases in accuracy for the prediction of Thr and
Asn glycosylation sites. Neither the addition of structural
data, hydrophobicity information nor surface accessibility
data improved the prediction accuracy of O-linked glyco-
sylation, although N-linked glycosylation prediction is
improved by the addition of surface accessibility data.

1

Position 01 =U
Position 13 =P

2 3

Class
Glycosylated

Position 08 = U

4 5

Class Not Position 02 =
Glycosylated Position 09 =

I
— WU

6 7
Position 01 = N Position 01 = C

42 43

8 9

Class
Glycosylated

Position 01 =T

Class Not Position 11 = C
Glycosylated

Figure 3

Ser glycosylation rules. A subset of the rules produced for Ser (the complete tree is available as additional file 6) showing
the importance of the +2 position in glycosylation of Ser. Each node is numbered in the order it was added to the tree. All
rules are | of A, B...N so only the relevant features are shown. The amino acids are represented using the single letter code
and the positions are indicated with respect to a sequence window of length 15, a sequence window of length 15 with the tar-

get residue at position 08.
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However, it may be possible to improve prediction accu-
racy further through the inclusion of information on pro-
tein disorder and information on the orientation of
membrane proteins. It may also be possible to increase
accuracy by extending the initial data set, or by consider-
ing separately proteins whose PTM is catalysed by the
same enzyme. Another option would be to produce pre-
diction programs for each specific glycan type, or to clas-
sify each glycosylation site by type of glycan after
prediction. Our use of the trepan algorithm allows us to
extract comprehensible rules describing features charac-
teristic of a glycosylation site.

Methods

The dataset

The data for frequency analysis is taken from OGLYCBASE
6.00 [22] available online from http://www.cbs.dtu.dk/
databases/ OGLYCBASE/. The OGLYCBASE database con-
tains both experimentally verified and putative instances
of N-, O-, and C-linked glycosylation sites. It comprises
242 protein sequences and 2413 verified glycosylation
sites. The C-mannosylation data were not considered in
our investigations, because there are too few experimen-
tally verified sites in the dataset. Although several
enzymes catalyse the attachment of a glycan to Ser and
Thr, we have considered all cases in our dataset, with the
expectation that the sequence patterns surrounding the
glycosylated residue may nevertheless be similar, or at the
very least that the machine learning algorithms may be
able to detect and learn different sets of patterns within
the dataset. For training and evaluation of GPP by ten-fold
cross-validation, we use the O-unique dataset. This is a
subset of OGLYCBASE and was used for the training of
NetOGlyc. It contains only mammalian proteins and is
non-redundant. Our predictions were based on only
those glycosylation sites that have been experimentally
verified. Unverified sites can sometimes be unreliable and
false results may confound the predictions. The informa-
tion retained from the database consisted of the sequence,
database reference and the location in the sequence of the
modified residues that have been experimentally verified.
The both datasets were then split into three, according to
whether the modified residues are Ser, Thr or Asn. Within
the O-unique dataset, the Ser data set contains 1219
instances (395 positive and 824 negative), the Thr dataset
contains 1068 instances (370 positive and 698 negatives)
and the Asn dataset contains 589 instances (200 positive
and 389 negatives). After removing duplicate sequence
windows from the OGLYCBASE datasets, the Ser dataset
contains 7285 instances (349 positive 6936 negative) The
Thr dataset contains 6389 instances (695 positive and
5694 negative) and the Asn dataset contains 3508
instances (261 positives and 3247 negatives). Each
instance was considered as the potentially modified resi-
due and seven residues on either side, to give a 15 amino

http://www.biomedcentral.com/1471-2105/9/500

acid sequence window. This choice of window size was
based on previous work [10], providing reasonable com-
putational tractability in determining pairwise patterns in
the data, and still maintaining sufficient information to
predict glycosylation site location. In this work, we use the
single letter code to represent the amino acids in a categor-
ical fashion. The weight of each instance derived from the
patterns was represented by a numerical attribute. The
random forest algorithm can develop trees using a mix-
ture of discrete and continuous data. So no additional
processing of the data was necessary before presenting the
data to weka to train the random forest algorithm.

Frequency Analysis

After removing all duplicate sequence windows of size 15
from OGLYCBASE, we determined the frequency of each
type of amino acid at each positioning the window. This
was carried out for both modified and unmodified sites
for the Ser, Thr, and Asn datasets and on all of these com-
bined. The frequencies of the modified sites were consid-
ered to be significant if the difference between the
expected frequency and the actual frequency was greater
than 3, where is the standard deviation. The expected
frequency of the residue i at position j was calculated as:

Eij = Fij Nmod/Nunmod (1)

where N,,; is the number of sequence windows centred
on modified residues, N,,,,,4 is the number of windows
centred on unmodified residues and Fj; is the frequency of
occurrence of residues i at position j in the unmodified
windows. The standard deviation was estimated assuming
a binomial distribution. We focus on frequent patterns in
modified sequences, as there is no obvious reason to
anticipate that strong negative sequence motifs have
evolved to evade recognition by enzymes catalysing glyc-
osylation.

The frequency of each possible unique pairwise arrange-
ment of amino acids in the window was calculated. Pat-
terns below a given frequency threshold were excluded
from the final pattern set. To optimise the threshold for
pattern exclusion a single data set was prepared for each
residue type consisting of all positives and an equal
number of negatives; the threshold was increased incre-
mentally and each resulting pattern set was used for pre-
diction. The thresholds that produced the best accuracy
were used in the final prediction program. This gave
thresholds of 22 for Asn, 31 for Ser and 15 for Thr.

Each pattern is given a weighting, to provide a measure of
the probability that a sequence containing that pattern is
a member of the modified class. For a pattern x, the pat-
tern weight W, is calculated as F,/F, where F,, is the fre-
quency of modified sequence windows in which pattern x
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occurs and F, is the frequency of unmodified windows in
which this pattern occurs. Each sequence window is com-
pared against all of the significant patterns for that type of
glycosylation site. Based on the patterns found, the
sequence is given a pattern weight Weed.:

k
W= W, [k )
x=1

where W, is the weight of pattern x, and k is the number
of patterns found in the sequence. The weight and the
sequence window are presented in the form of a string of
letters (the single letter code for amino acid representa-
tion) comprising the sequence window and a numerical
value (the weight) making use of the capability of weka
[23] to handle a mixture of continuous and categorical
data.

Predicted secondary structure information was combined
with the pairwise pattern information described above.
The program PsiPred [29] was used to predict the second-
ary structure of the residue at the centre of each sequence
window and this was then placed after the window
sequence and the corresponding weight from pattern
analysis. The surface accessibility was predicted, using the
SABLE program [30], as a number between 0 and 100,
with 0 representing fully buried and 100 fully exposed.
The data obtained from SABLE were added to the central
residue of the corresponding instances in the training
data. The hydrophobicity value of each central residue
was added to the corresponding instance in the training
data. These hydrophobicity values were taken from the lit-
erature [31]. The data flow through the prediction pro-
gram is shown in figure 4.

Training the prediction program

Training of the prediction program has two main compo-
nents. Firstly, a set of patterns is generated from the train-
ing data for each of the three types of glycosylation site.
This is then used to provide a weighting to each instance
in the dataset. Secondly, the random forest is trained on
the data and associated weights. Multiple random forests
(ten in this work) are trained, with each voting to deter-
mine the class of each test instance. Each of the random
forests was trained using a data set comprising all positive
instances from the cross validation fold and an equal
number of randomly chosen negative instances, this data-
set being generated from the training data. We use multi-
ple forests to allow for as complete as possible
representation of negative instances in the training data
without the negatives completely overwhelming the posi-
tives in the dataset. The pattern sets were created from the
entire training data within a cross validation fold. This
entire procedure is summarised in figure 5. The accuracy
of the prediction was evaluated by cross validation. The
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| PSGDDATSEAATGPS | | 0.873 | ‘ Helix ‘

Input Add Pattern Weights Add structural
4 data
PSGDDATSEAATGPS,0.873 H
Random Forest *

Not Modified

Modified

Output ]

’ PSGDDATSEAATGPS, Modified '

Figure 4
The flow of data through the prediction program.

data were divided randomly into ten sections and the
above training procedure was carried out using nine of
these, the tenth providing a test set using all instances.
This was repeated ten times on each occasion with a dif-
ferent section of the data acting as the test set. The meas-
ures of accuracy used to assess the prediction program are
as follows. Sensitivity, expressed as a percentage, is calcu-
lated as Tp,/(Tp+Fy) x 100, where Tpis the number of true
positive predictions and Fy is the number of false negative
predictions. Specificity, expressed as a percentage, is calcu-
lated as Ty/(Fp+Ty) x 100, where Ty is the number of true
negative predictions and Fpis the number of false positive
predictions. The number of correctly classified instances is
given as a percentage. We use the Matthews correlation
coefficient [32] to compare the accuracy of our prediction
program with that of the NetNglyc http://
www.cbs.dtu.dk/services/NetNGlyc/ and NetOglyc [11]
glycosylation predictors. The Matthews correlation coeffi-
cient is calculated as follows:

MCC = (TPTN)—(FPEN)
JIN+FN)(TN +Fp)(Tp+FN)(Tp+Fp)

3)

We use the number of correctly classified instances, the
sensitivity and the specificity to compare our work with
Oglyc [10].

In order to test the significance of the differences between
the different methods of prediction, a paired t test [33]
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1219 Ser sequence segments

Y

9 Training folds
containing a
ratio of positives

- to negatives of;
Ser 0.48:1

Asn 0.54:1

Thro.51:1
Pattern generation

!

Assign Weights

'

Y

1 Test fold
With a ratio of
positives to
negatives
similar to the
training folds.

10 Training sets of all positives and
an equal number of negatives

10 Random forests

Y

Output: the random forests vote
to determine the class of each
test instance.

000,

Figure 5
The cross-validation of the GPP prediction program, illustrated for the Ser dataset. This procedure is repeated 10

times with each fold in turn being used as the test set in order to conduct a cross validation. The 10 training sets are drawn
from the sum of the 9 folds of training data and are used to train 10 random forests.
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was conducted on 30 duplicate experiments for pairs of
methods. Given a set of results X; from method A and a set
of results Y; from method B, each containing n data points,
t is calculated as:

4)

where X is the mean of X and Y is the mean of Y,
X; = (Xi —)_(); Y, = (Yi —17) and p is the probability of

obtaining a value as large or larger than the observed t. If
p is below 0.05 then the difference of means is significant
at the 5% level. The t test was calculated using the R statis-
tics package.

For the purposes of comparison we also conducted the
above procedure substituting the naive bayes algorithm
for random forest. The naive bayes algorithm is based on
Bayes rule, which states that for a given input vector
xy......X, the probability of observing a class M is

P(M|xy,.....,x,) = P(x1,.....,x,| M)P(M)/P(xy,......%,,)

Whilst it is theoretically possible to estimate the probabil-
ity for each class M, in practice the conditional probabili-
ties are not usually known and must be estimated from
the data. For this reason the naive bayes algorithm makes
the assumption that the conditional probabilities are
independent given the class in order to simplify equation
5 to:

P(x[M) = (P(x,))-..,(P(x,)) (6)

Although this is a rough approximation of the probability
for a given class, the naive bayes classifier has proven to be
reasonably robust, because it only matters that the true
class receives the highest probability, not that the proba-
bility itself is correct. We used the implementation of
naive bayes in weka [23]. As a further comparison we also
carried out a basic pattern search using scansite [28],
which classifies as positive all sites that have the consen-
sus sequence. This was performed on the entirety of O-
unique, since no training is required for scansite.

Extraction of Rules

Trepan is a method originally used to extract comprehen-
sible rules from neural networks. Trepan uses an oracle
function to represent the network and derives a decision
tree from the classifications made by the oracle function.

http://www.biomedcentral.com/1471-2105/9/500

However, it can be used for rule extraction from any
method that performs binary classification. We use here a
modified version of trepan implemented in Matlab [21],
with GPP as the oracle function. Thus, we derive a deci-
sion tree based on the classification by GPP of the training
data, and additional examples created by trepan. The
additional examples are based on the distribution of the
attributes in the training data and they ensure a pre-set
minimum number of examples reach each node in the
tree. The splitting test at each node is an m of n test. For
each node in the tree there are n features. If m of these fea-
tures are evident in a given instance, this instance is
deemed to satisfy the m of n rule for this node. In practice
here we find rules only with m = 1 and n < 3, i.e. simple
predicates involving one or two possibilities. Nodes of the
tree are expanded based on a priority calculated as the
number of examples misclassified by the node. Those
with highest priority are expanded first, since they have
the most potential to increase the accuracy of the tree.
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Additional material

Additional file 1

The frequencies of amino acids surrounding modified and unmodified
Asn residues. Full tables containing all amino acids (as opposed to the
partial data presented in Table 1 of the paper). Statistically significant
increases over the expected frequencies are starred; significant decreases
are labelled with a 'd".

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-500-S1.csv|

Additional file 2

The frequencies of amino acids surrounding modified and unmodified
Ser residues. Full table containing all amino acids (as opposed to the par-
tial data presented in Table 2 of the paper). Statistically significant
increases over the expected frequencies are starred; significant decreases
are labelled with a 'd".

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-500-S2.csv]

Additional file 3

The frequencies of amino acids surrounding modified and unmodified
Thr residues. Full table containing all amino acids (as opposed to the par-
tial data presented in Table 3 of the paper). Statistically significant
increases over the expected frequencies are starred; significant decreases
are labelled with a 'd".

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-500-S3.csv|

Page 12 of 13

(page number not for citation purposes)


http://www.biomedcentral.com/content/supplementary/1471-2105-9-500-S1.csv
http://www.biomedcentral.com/content/supplementary/1471-2105-9-500-S2.csv
http://www.biomedcentral.com/content/supplementary/1471-2105-9-500-S3.csv

BMC Bioinformatics 2008, 9:500

Additional file 4

The complete decision tree covering all the rules for Asn glycosylation.
Full decision tree, extending the subset shown in Figure 1 in the paper.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-9-500-S4.png]|

Additional file 5

The complete decision tree covering all the rules for Thr glycosylation.
Full decision tree, extending the subset shown in Figure 2 in the paper.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-9-500-S5.png|

Additional file 6

The complete decision tree covering all the rules for Ser glycosylation.
Full decision tree, extending the subset shown in Figure 3 in the paper.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-9-500-S6.png|
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