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Abstract

Background: Recently, microarray data analyses using functional pathway information, e.g., gene set enrichment
analysis (GSEA) and significance analysis of function and expression (SAFE), have gained recognition as a way to
identify biological pathways/processes associated with a phenotypic endpoint. In these analyses, a local statistic is
used to assess the association between the expression level of a gene and the value of a phenotypic endpoint.
Then these gene-specific local statistics are combined to evaluate association for pre-selected sets of genes.
Commonly used local statistics include t-statistics for binary phenotypes and correlation coefficients that assume
a linear or monotone relationship between a continuous phenotype and gene expression level. Methods applicable
to continuous non-monotone relationships are needed. Furthermore, for multiple experimental categories,
methods that combine multiple GSEA/SAFE analyses are needed.

Results: For continuous or ordinal phenotypic outcome, we propose to use as the local statistic the coefficient
of multiple determination (i.e., the square of multiple correlation coefficient) R2 from fitting natural cubic spline
models to the phenotype-expression relationship. Next, we incorporate this association measure into the GSEA/
SAFE framework to identify significant gene sets. Unsigned local statistics, signed global statistics and one-sided p-
values are used to reflect our inferential interest. Furthermore, we describe a procedure for inference across
multiple GSEA/SAFE analyses. We illustrate our approach using gene expression and liver injury data from liver
and blood samples from rats treated with eight hepatotoxicants under multiple time and dose combinations. We
set out to identify biological pathways/processes associated with liver injury as manifested by increased blood
levels of alanine transaminase in common for most of the eight compounds. Potential statistical dependency
resulting from the experimental design is addressed in permutation based hypothesis testing.

Conclusion: The proposed framework captures both linear and non-linear association between gene expression
level and a phenotypic endpoint and thus can be viewed as extending the current GSEA/SAFE methodology. The
framework for combining results from multiple GSEA/SAFE analyses is flexible to address practical inference
interests. Our methods can be applied to microarray data with continuous phenotypes with multi-level design or
the meta-analysis of multiple microarray data sets.
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Background

Microarray technology profiles the expression levels of
thousands of genes simultaneously, providing a snapshot
of transcript levels in the cells/tissues being studied. Anal-
ysis of microarray data typically involves examining thou-
sands of genes with relatively small sample sizes, and thus
is challenging for statisticians [1,2]. Moreover, deriving
useful biological knowledge from these gene sets is often
a long and arduous task. Recently, however, methods
have been developed that incorporate existing knowledge
of biological pathways/processes into the analysis. For
example, gene set enrichment analysis (GSEA) tests
whether a known set of genes is associated with a pheno-
typic difference [3]. In GSEA, an enrichment score (ES) for
a predefined gene set, usually a known biological path-
way/process, is calculated and statistical significance is
evaluated. GSEA was refined by [4] and a more general
framework, significance analysis of function and expres-
sion (SAFE) was proposed by [5]. Furthermore, ES vectors
for gene sets can be defined for individual samples and
used for classification [6]. In these procedures, an associa-
tion measure between a phenotypic endpoint and expres-
sion levels is calculated and subsequently used as the basis
for further evaluation of the association between gene sets
and the same phenotypic endpoint. Additional work on
GSEA type methods can be found in [7-11].

Numerous statistics have been proposed to identify differ-
entially expressed genes when the phenotype is binary
[12-17]. All these statistics can be used to measure the
association between gene expression levels and a binary
phenotype. When a phenotypic endpoint is continuous,
correlation analysis between gene expression and the phe-
notypic variable emerges naturally. A correlation meas-
urement needs to be selected based on the goal of the
investigation, biological interpretation, statistical proper-
ties and computational feasibility. The commonly used
Pearson product-moment correlation coefficient meas-
ures linear association, whereas the non-parametric Spear-
man correlation measures monotone trend. A brief
summary of several commonly used correlation measure-
ments and their limitations can be found in [18]. Alterna-
tively, the standardized Z-type statistics resulting from
univariate Cox proportional hazard model has been pro-
posed as the local statistics for the situation where contin-
uous survival time with censoring is the phenotypic
endpoint [5].

In biological research using microarray technology, gene
expression data are often collected under multiple experi-
mental conditions, along with traditional pathological
endpoints [19]. One practical inferential goal is to identify
biological pathways/processes that are associated with the
endpoint and thus gain insight into biological mecha-
nisms of tissue response to the experimental conditions.
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Under the framework of GSEA/SAFE, inference is based
on assessing the association between expression levels of
predefined sets of genes and the phenotypic endpoint.
When associations between the phenotypic endpoint and
the gene expressions are likely to be non-linear or non-
monotone, the local statistics, which is the measurement
of gene specific association to the endpoint, should be
able to capture these, while a linear or monotone situa-
tion should still be accommodated. We propose to use the
coefficient of multiple determination R2? from a natural
cubic spline model [20]. The spline model allows us to
capture potential non-linear and non-monotone trends.
The quantity R? is then used as the correlation in GSEA/
SAFE to identify gene sets that are associated with the phe-
notypic endpoints.

When experimental conditions include multiple catego-
ries, different biological mechanisms might be expected
and separate association analyses for each category are
desired before aggregating to arrive at the final conclu-
sion. We carry out separate enrichment analysis in each
category and propose an ad hoc procedure to combine the
results.

In this article, the words "association" and "correlation"
are used interchangeably in most situations.

Results and discussion

We describe the methods for separate analysis in each cat-
egory in Section 2.1 and 2.2, then inference across catego-
ries in Section 2.3. The methods are then illustrated using
National Center of Toxicogenomics (NCT) compendium
data in Section 2.4.

The relevant R code is available at http://peo

ple.umass.edu/rlin/niehs/r2/R2GSEA.R.

2.1 Non-linear association measurement

In all methods for the evaluation of gene sets discussed in
the introduction, the association measure between a gene
set and an endpoint is built from the association measures
between individual genes and the endpoint. We would
like a gene specific association measure to have several
properties. First, it should be scale free, i.e., it would not
change when data are linearly transformed. This property
guarantees that in data preprocessing, different bases in
log transformation (e.g., log, or log, ) give the same infer-
ential conclusion. Second, it should accommodate non-
linear or non-monotone associations between variables.
Third, it should allow limited data points. Fourth, it
should be easy to compute and interpret. These consider-
ations exclude the usage of many non-linear correlation
functions and measures, e.g., [21]. We propose to use the
coefficient of multiple determination R? in natural cubic
spline regression models to measure the gene specific
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association. This quantity can be interpreted as the frac-
tion of the variation in endpoints that can be explained by
the gene expression data. When the association is linear,
this quantity is approximately equal to the square of Pear-
son correlation.

For experimental category ¢, ¢ = 1, 2, U, C, we denote Y
as the continuous or ordinal endpoint measurement of
sample i, and Xj; as the expression level of gene g;in sam-
ple i. The respective experimental condition of sample i is
denoted as e . The category can be defined by tumor
types, compounds, etc., and e] can contain other experi-
mental factors, e.g., time and dose. Let 1/ be the random
noise satisfying E[ tf | = 0. For convenience, the super-
script ¢ is suppressed in X, Y, e and ¢ without causing con-
fusion in the sequel. We assume equation (1), i.e., the
endpoint depends on experiment conditions in a way that
is functionally related to gene expression levels:

Y; | Xij 8j.e,€5=Y; | Xij 8j.€4= fc,gj(Xij)"'eij

We define

PR (Yi—}/i(xij))z
ST (ri-Y)?

RZ =R*Y,X;)=1-

to assess the association between X; and Y, where
j/(xij) = fclgj(xij) can be estimated by regression method

accommodating possible non-linear trends. Here we use
natural cubic splines, which are cubic splines with linear
extension out of the boundary knots [20,22]. This flexible
approach guarantees that both non-linear and linear
trends are well captured. When a linear trend is the only
desired type of association, we can simply change the
splines into linear terms and the proposed methods can
still be used.

The calculation of the quantity Rf, j has two main steps:

* Specify inside knots at b evenly spread quantiles of X;.
Generate B-spline basis matrix for natural cubic spline
B(X)); « (b+2) from X; (b + 1 spline terms and one intercept
term). We used ns() function in the splines package of R
[23].
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* Regress Y on B(X;) and obtain the R Cz j value. We use QR

decomposition routine gr() in R directly to avoid extrane-
ous computation for other statistics such as coefficient
estimates, standard errors, etc., that would occur if using
the linear model regression routine Im().

The piecewise cubic splines approach, unlike the regular b
+ 1 degree polynomials, automatically provides the
roughness penalty [24], which control the degree of rip-
ples in fitted curve. Gene specific quantiles are easy to
compute and guarantee enough sample points between
knots. Some alternative ways, e.g., using global quantiles
of all X;, do not have this property and would make poor
fitting for some genes. For the number of knots to be used
in splines model, "a minimum of 5 points should be
between knot locations" has been suggested [25]. The
selection of b depends on the available sample size and
desired flexibility in capturing non-linear trend.

2.2 Adapted GSEA procedure

Given a gene set in an array, there have been two types of
set specific global statistics [8]: "self-contained" one using
only genes in the set and "competitive" one using all
genes in the array. Approaches proposed in [26,27]
belong to the first type and GSEA/SAFE approach belongs
to the second type. Computationally, when there are only
a small number of gene sets to test, "self-contained"
approaches are much faster by avoiding the genes out of
the sets.

GSEA method is designed to test whether a pre-built gene
set is associated with the phenotype. Its kernel Kol-
mogorov-Smirnov statistic detects the difference of gene
positions in the ranked gene list between one gene set and
its complementary set. The method can thus highlight a
gene set that has similar associations (and ranks) for each
gene in the set. When the identified set of genes cluster
close to the bottom of the ranked list ordered by associa-
tion strength, the set is likely to be of limited interest to
biologists [27-29]. Also, the method is biased toward
those well-studied gene sets [8].

Belonging to the "self-contained" type, Goeman et al.
(2004)'s approach [26] proposed to fit a random effect
model for each gene set and has the potential to accom-
modate non-linear terms conveniently. It assumed the
coefficients of genes are independent and otherwise a
proper covariance matrix needs to be set up. When used
with non-linear terms, the independence assumption thus
need to be justified or more exploration on the proper
covariance matrix specification will be expected. Once
independence assumption holds or proper covariance
matrix can be specified, the approach will be very attrac-
tive in computation.
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GSEA/SAFE (and SAM-GS [27]) calculate one measure-
ment for each gene and then for each gene set, accumulate
the genes' signals into one for the whole gene set. For each
gene, there is only one association measurement. Goeman
et al. (2004) fits models directly for each gene set. The
coefficients of the same gene in different gene sets could
then be different and do not have direct interpretation of
association strength, while there exist many other advan-
tages for "self contained" approaches [8].

We construct the global statistics measuring the associa-
tion between the phenotype and the pre-built sets of

genes based on RZ‘I j as local statistics. We adapt the mod-

ified version of GSEA [4] where genes with stronger asso-
ciation are assigned higher weight. The method does not
require the independence assumption between genes. In
each category ¢ we define enrichment score (ES) for gene
set s:

¢ Rank all J genes to form list L = {g,, ..., g/} decreasing in

2
RZ;.

e Evaluate the fraction of genes in s ("hits") weighted by
RCZ, j and the fraction of genes not in s ("misses") present

up to a given position k in L.

RZ
¢j 2
Ppi(s.c,k) = z NR,whereNR=ZRw-,

gj€s.jsk gj€s

Pmiss(sf ¢ k)

1 . .
E ———— ,where N is the number of genes in s.
-N

8125, j<k S

e ES(s, c) is the signed maximum deviation from zero of
Ppi(s, ¢, k) - Pi(s, ¢, k) over k.

For a ranked gene list based on Ri j, our inferential inter-

est is on the top of the list, rather than both extremes as
when ranking is based on t-statistics or Pearson correla-
tions. This feature makes those sets with both positively
and negatively correlated genes easier to identify than if
using signed correlation measurements. Gene sets cluster-
ing at the top of the list will have positive maximum devi-
ation and those clustering at the bottom of the list will
have negative maximum deviation. Consequently, we use
one sided p-values rather than two-sided p-values to indi-
cate the significance of gene sets. A gene set cluster at the
bottom of the list, which is off our interest, will have a p-
value close to 1 and will not be highlighted. A signed local
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statistics, unsigned ES and two-side p-values were used in

[4].

We calculate these p-values with permutations. We per-
mute the phenotypic endpoint variable Y 1000 times to
generate 1000 permuted data sets and calculate the ES val-
ues for each permutation. These ES values form the null
distribution of ES to estimate the p-value of the observed
ES value. This permutation method retains the correlation
structure among the genes. More discussion on the per-
mutation details is deferred to Section 2.4.2.

2.3 Inference across experimental categories

In the standard framework of GSEA/SAFE, analysis is car-
ried out only for one category. However, with multiple
categories of experimental settings, "identifying biological
pathways" that are associated with phenotypic changes in
most categories" is a practically important inferential goal.
When association patterns differ under different catego-
ries, pooling data is not a good option for either biological
interpretation or statistical inference.

For a gene set s, separate analyses in C categories generate
a p-value vector of length C. At first glance, Fisher's
method of combining p-values [30] could be used along
with false discovery rate (FDR) to select a threshold
[31,32]. However, the goal of our method is to identify
gene sets that are related to phenotypic changes for most
of the categories, while Fisher's method could lead to very
high significance even if strong association is observed in
only one category. Therefore, we propose a subjective but
stringent criterion to evaluate gene sets across categories.

Let P,  be the p-value of set s for category c. To call one set
significant across the C categories, we require at least M of
C p-values P, P,,, U, P, -beless than p,, 1 <M < C. In
this study, we assume that the values of M and C are
known fixed integers and will drop them from notations
for convenience. Formally, the sets identified are defined
as:

c
Alpg) ={s: D I(Po < po) = M} ={s: Py < po}
c=1
where P, ) is the M smallest of the C p-values P, ;, P,
U, P, . By adjusting the value of p,, we can control the
number of sets that meet the criteria.

Under a global null hypothesis, the gene set is not associated
with phenotypic changes in any category and f_ g (Xj) in
equation (1) equal to zero for each ¢; all C p-values inde-
pendently have a Uniform(0,1) distribution. A direct cal-

culation of the type I error rate « based on the proposed
rule, using p, is
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- (C
alpo) < Z[m ](po)m(l ~po)°™"
m=M
An example given in Section 2.4 calculates o(p,) in similar
way for more complicated practical inferential goal. One
benefit of this approach is that it does not require p-values
in very high precision, avoiding computational burden in
permutation based hypothesis testing. See Section 2.4.2
for further discussion.

For each p,, a conservative estimation of the FDR bound
can be given by the definition [31]:

FDR(p,) < SXT‘A(T’O)

’

where S is the number of gene sets and |A]| is the cardinal-
ity of A. The bound is inflated because it assumes that
none of S gene sets are associated with the phenotypic
changes. When |A| = 0, i.e., none of the gene sets is iden-
tified, FDR is 0 by definition. Since in most of cases, a(p,)
is so small that this bound is small enough for practical
usage. When more advanced FDR control methods are
desired, extra assumptions, e.g., the independence
between gene sets might be needed.

We note that under the global null hypothesis, it is
straightforward to show that random variable P; ,, fol-
lows the Beta(M - 1, C - M) distribution. We can use p-val-
ues of observed P ) to select gene sets and evaluate the
type I error rate, which provides an equivalent alternative
to equation (3). By this approach, the set-specific FDR can
be calculated based on the empirical distribution of set-
specific p-values [31,32].

One alternative approach for inference across categories is
to control the category specific FDR and then combine the
results. Depending on the goal, the unions or intersec-
tions of C lists of gene sets identified by proper FDR
thresholds can be used. However, approaches to estimate
the FDR usually require very precise estimation of p-val-
ues [33] and 1000 permutations can produce p-values
with the granularity up to 0.001. Several methods have
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been proposed on this issue: assuming the normalized
null of ES for different sets are the same and pooling them
to obtain a global null distribution with much finer gran-
ularity [3,4]; using a linear combination of t-statistics as
the global statistic, which asymptotically has normal dis-
tribution [7]; using more permutations (eg., 10,000
times) to generate a set-specific null distribution [5].
However, asymptotic results for R2 (and thus ES) may not
be available as discussed further in additional file 1, sec-
tion 1. For a large data set with many categories, 10,000
permutations would constitute a substantial computa-
tional burden. More importantly, it is unclear how the cat-
egory-wise FDRs should be combined into one
interpretable summary statistic. To the best of our knowl-
edge, no literature is available on this issue.

2.4 Analysis of NCT compendium data

The National Center for Toxicogenomics (NCT) compen-
dium data were recently developed at National Institute of
Environmental Health Science (NIEHS), NIH. Agilent
c¢DNA oligonucleotide microarrays were used to profile
the expression level of 20500 genes from both the liver
and blood of male rats (Rattus norvegicus, F344/N strain)
treated with 8 hepatotoxic compounds: bromobenzene,
1, 2-dichlorobenzene, 1; 4-dichlorobenzene, diquat
dibromide (diquat), galactosamine, monocrotaline, n-
nitrosomorpholine and thioacetamide, each at multiple
time-dose combinations. These 8 compounds target dif-
ferent cell types and regions in the liver, and thus each
compound in each tissue is considered a category. There
were 4-6 replicates per condition and a total of 318
treated animals. Table 1 lists the data structure. Many
pathological phenotypic endpoints were collected for the
samples and we use a liver injury indicator, alanine
transaminase (ALT) level as the outcome variable Y in the
following analysis. More details on experimental design,
histopathology, and clinical chemistry can be found in
[34].

In microarray data analysis, expression ratios are often log
transformed for analysis convenience. Since ALT levels
range from generally less than 100 units (I.U/ml) in vehi-
cle treated animals to several thousand units after expo-
sure to a hepatotoxicant, log transformation of ALT levels

Table I: NCT compendium microarray data. In time rows, the numbers from 0 to 3 indicate vehicle, low, medium and high doses.

Compound 1.2.Di 1.4.Di Brom Diqu Gala Mono N-Nitr Thio

6 Hrs 0-3 0-3 0-3 04 0-3 0-3 0-3 0-3

24 Hrs 0-3 0-3 0-3 04 0-3 0-3 0-3 0-3

48 Hrs 0-3* 0-3 0-3 04 0-3 0-2tf 0-3 0-3
Replicates 4 4 4 6 4 4 4 4
Array totals 34 36 36 72 36 32 36 36

Diquat dibromide has 4 levels. Array numbers do not include vehicle treated animals, which were used as baseline in cDNA microarray. *: Two
animals in high dose group died before 48 hours. t: All four animals in high dose group died before 48 hours.
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is also necessary. In the following, we use gene expression
level to refer to the log, ratio of gene expression levels of
treated rats to the control rats. Similarly, we use ALT level
to refer to the log, , ratio of ALT levels of treated rats to the
mean of those in respective group of vehicle treated rats
(see Table 1). The different log transformation bases are
for reading and presenting convenience only and do not
change our inferential conclusion as noted in Section 2.1.
Figure 1 show some examples of observed non-linear and
non-monotone relationships between ALT level and gene
expression levels. A smoothing line using all data is pro-
vided as baseline in the figure; the different compounds
depart from this smooth line in different patterns, indicat-
ing compound specific spline fittings should be used.

We assume that the ALT depends on time and dose in a
way that is functionally related to gene expression levels,
i.e., ¢;in equation 1 contains time and dose information.
We let b, the number of inside knots as described in Sec-
tion 2.1, equal 4. It is close to the maximum number we
can afford with 32-72 samples per compound, following
the suggestion "a minimum of 5 points should be
between knot locations" [25]. With the degrees of free-
dom equal 5 (4 inside knots), the model is flexible
enough to capture major biologically plausible departures
from linear or monotone trend. The same spline space has

log1o(ALT ratio)

logo(Msn expression ratio)

Figure |
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been used in [13] to calculate a gene's posterior "probabil-
ity" of differential expression through logistic regression.

Without gold criteria for the performance improvement
using the proposed splines model and R2in GSEA, we use
Figure 2 as a qualitative support. we calculate the square
of the Pearson correlation (r2) between ALT and each
gene, which is equal to the R2 from a simple linear model.
We plot the 20500 genes' percentiles based on 2 and on
our proposed R? for one compound, diquat in liver (Fig-
ure 2, panel 1). The percentiles/ranks of genes are very
important for identifying either differentially expressed
genes or gene sets associated with phenotypic changes.
The departure of the dots from the diagonal in the figure
indicates a large difference in the percentiles/ranks based
on the two quantities and the necessity of accommodating
non-linear trends. To eliminate the possibility that the
departure is simply due to the extra degrees of freedom in
non-linear model, we randomly permuted the ALTs and
calculated R? - 12 for all genes (Figure 2, panel 2). The
range of observed R? - 12 is much wider than that of ran-
domly permuted data set. For genes that have a large
observed R? - 2 values, their non-linear association is bet-
ter captured by using R? and ranks would change greatly
by using non-linear model. Similar patterns were
observed for the other compounds in both tissues.

0 |
A
o -

e
S |
PF
1
< 7
S u |
O)O
o
10
S

logo(Smu1 expression ratio)

log,o(ALT ratio) vs log,(gene expression ratio). Examples of non-monotone relationship in liver between expression
levels of two genes and ALT. Each color represents one compound, and symbols (O, A, +) indicate the low, medium and high
doses respectively. For the compound (diquat) with four dose levels, symbol "x" indicates the highest dose. Time information
is not indicated. The smoothing line is fitted using all data, with natural cubic splines.
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Percentiles based on r°
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(a) Percentiles based on R?

Figure 2
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1.0

0.6
|

Random R%-r®
04
\

0.0
|

0.0 0.2 04 0.6 0.8 1.0
(b) Observed R%r

(a) Genes' percentiles based on R2and the square of Pearson correlation (r2). Gray dots show (R?, r?) and the solid
line is a smoothing (lowess) line. The dashed line is y = x. (b) Observed R2- r2vs randomly generated R2 - r2. The dashed line is

y =X

To build enrichment scores (ES) indicating the associa-
tions between ALT and gene sets from R2, pre-built gene
sets are needed. A total of 466 pre-built gene sets are pre-
pared with methods detailed in additional file 1, section
2. In our implementation, each compound is analyzed
separately in each tissue. As described in Section 2.2, we
obtain 466 p-values (one per gene set) for each of 8 com-
pounds per tissue under the null hypothesis that the gene
expression levels in the tissue are not associated with ALT
for this compound.

Let P/ be the p-value of set s for compound c in liver and

P2 in blood. To call one set significant, we require at
least 6 of 8 (a subjective definition of "most") p-values
Psfl,sz,---,PSL,8 be less than p, i.e., M = 6, C = 8. In this
article, we use p, = 0.05 and 0:1 such that the number of

identified gene sets are manageable.
Using formula (3),

,(0.05) = 05(0.05) = 4.0 x 107, ;(0.1) = @(0.1) = 2.3 x
10

To identify gene sets that are associated with ALT changes
in both liver and blood, we require that at least 6 of 8 p-

value pairs (P;?C, Pfc) satisfy that both values are less

than p,,.

8
Aps(po) ={s: D 1Pl < py and PY, < p) 2 6}
c=1

By definition, we have A;5(p) < AL(po), Ars(Po) = Ap(Po)
and if po < ph. Al(po) < A(P5), I =L, B, LB. Generally, we

have

,5(0.05) < 2,(0.05) = 4.0 x 107, a5(0.1) < ¢ (0.1) = 2.3
x 10-5

In NCT compendium data, no direct associations were
observed between gene expressions in liver and in blood.
This can due to different response mechanisms to stres-
sors or time lag between liver and blood, which can not be
verified with sparse time points. With this observation, we
can further assume the independence of gene expressions
between tissues. Under the null hypothesis that the gene
set is not associated with liver injury for any compound
and tissue, we have independence between the tissues and
the compounds. Similar to formula (3), type I error rate is
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8 8
as(po) < (p0)° +(7 JX(pSV x(1-pp) + ( 6 ]x(p§)6 x(1-pp)?
a;5(0.05)=7x10",0,5(0.1) =2.8x107"!

2.4.1 Analysis results

In general, sets are more significant in liver than in blood.
Using p, = 0.05, we identified 38 gene sets (A;(0.05)) in
liver and 2 gene sets (Az(0.05)) in blood. Five sets are
identified for A, 5(0.1) while none of them attain the crite-
ria of A;5(0.05). The FDR bound (Equation 4) for all
reported A(p,), I = L, B, LB, py=0.05, 0.1 are smaller than
4 x 104. Biological interpretation of these sets are pro-
vided in additional file 1, section 3.

We note that by setting p, = 0.05 and 0:1, we have used a
relatively conservative approach to select a small number
of the most significant sets that represent good candidates
for further study. For completeness, we provide all inter-
mediate results from step 2 in the additional file 2 (and
available upon request).

We also carried out a two-way (gene expression and ALT)
clustering analysis using software Cluster [35] for each of
the 5 sets from A;5(0.1). Heat maps are provided in the
additional file 3. One can see that liver and blood have
different patterns of gene expression, supporting our pro-
cedure of analyzing liver and blood separately. In addi-
tion, this difference suggests that it would be difficult to
use blood gene expression to predict liver gene expression
or vice versa in this data set. Some identified sets contain
both genes positively or negatively correlated to ALT, indi-
cating that in calculating ES values for general GSEA/SAFE
procedure, genes should be ranked according the absolute
value of their associations to the phenotypic endpoint.

When using Pearson correlation to account for linear
association, an identified set can have many genes linearly
associated to the phenotype and so these associated genes
are likely to associate each other linearly. We present in
Figure 3 rich association relations between genes with one
of identified sets, glycolysis and gluconeogenesis with liver
gene expression data in monocrotaline. The figures for
other compounds are provided in the additional file 4.
The figures show that for the genes in the same biological
pathway, linear functions are far from enough to describe
the association patterns between genes. Both positive,
negative and non-monotone association between genes
are observed in the presented pathway. This observation
indicates that we need to be careful in using signed asso-
ciation measurements to build global statistics. Rather
than cumulating the association strength of genes in the
set, it is possible that positive and negative associations
will cancel out each other.

http://www.biomedcentral.com/1471-2105/9/481

2.4.2 Permutation size and method

Permutations have been widely used in microarray data
analysis to establish the null distribution of the test statis-
tics [4,5,36]. The number of permutations chosen
depends on statistical assumptions and the inferential
goal and procedure. The aggregation method assuming
the same null for all gene sets requires much fewer (1,000)
permutations [4] than would a gene set specific null
(10,000) [5]. However, the same null assumption does
not always hold and when computationally affordable,
we prefer to use gene set specific null [5]. In this study, we
use gene set specific null approach with only 1000 permu-
tations due to computational restrains. Using the example
shown in the manual of R package SAFE [37] in Biocon-
ductor [38] released with [5], we observe that the Yeku-
tieli-Benjamini's resampling based FDR estimate [39] for
a specific set [32] can range from 0.09 to 0.38 with differ-
ent random seeds and a permutation size 1000. This illus-
trates the need to use a large number of permutations
when setting the threshold based on a quantity requiring
a good estimate of the p-value and motivated us to check
whether permutation number 1000 is large enough in our
study.

In our study, we bounded FDR rather than providing the
set-specific FDR. With a relatively large threshold p, (0.05
and 0.1), the compound-tissue-wise p-value estimation
does not require high precision. We checked the reproduc-
ibility of our results with another 1000 permutations
using a different random seed (Table 2). The identified
gene sets from two runs are quite consistent except for
Ap(0.05) where the identified sets marginally satisfy the
selection criterion.

We randomly permuted the outcome variable ALT to gen-
erate the null distribution of ES. However, for a particular
compound, samples taken at the same time point shared
one control group. This raises the possibility that the
observed association between ALT and gene expression
might be influenced by the resulting statistical depend-
ency. To evaluate this possibility, we redid the permuta-
tion while keeping the dependency structure. For
example, in case of compound 1,4-dichlorobenzene,
there are 3 dose levels and 3 time points, 4 replicates for
each dose-time combination. The 12 samples for each
time point sharing the same controls comprise a group.
We randomly matched groups of ALT levels with groups
of gene expression levels. There are a total of 3! = 6 possi-
ble group matches. In each matched group of 12 samples,
we then randomly permuted ALT levels. Among the eight
compounds, two did not have balanced subgroups for
this type of permutation. We thus used only the other 6
compounds and ran this two-stage permutation 1000
times to generate 1000 "null" data sets per compound per
tissue.
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Figure 3

Mono

Rich association types between genes in gene set glycolysis and gluconeogenesis. X-axis is the expression level of the
gene Gé6pc which has the largest standard deviation in the gene set. Y-axis is the expression level for all genes in the set. Natu-
ral cubic splines with 4 inner knots at quartiles are fitted using G6pc as the predictor variable. Data for monocrotaline in liver

are used.

Since we only have 6 compounds in the new permuta-
tions, we cannot apply the "6 of 8" criterion to identify
associated sets in the new permutation results. However,
the Pearson correlation and Spearman rank correlation of
P (and Z) values between the two permutations in each
compound and tissue are all higher than 0.96, indicating
the strong consistency of results between the two different
permutation strategies. Thus our identified sets based on

Table 2: The number of identified sets and overlaps of two runs.

Random seed | Random seed 2 Overlap
|A,(0.05)] 38 37 36
|A(0.05)] 2 5 2
|A5(0.05)] 0 0 0
|AL(0.1)] 74 70 68
|As(0.1)] 28 30 27
[A(0.1)] 5 5 5

p-values would be almost the same with the two permuta-
tions methods.

Conclusion

We present an inferential framework for selecting gene
sets that are associated with a continuous phenotypic end-
point for microarray data with multiple categories of
experimental conditions. We proceed in three steps: 1)
compute gene specific R? between gene expression and
endpoints for each individual category; 2) score the asso-
ciation of sets of genes with endpoints based on the gene
specific association measurements; 3) combine category
specific inference results to identify sets of genes that are
associated with endpoint in most of the categories. When
the phenotype is binary, many statistics used for identify-
ing differentially expressed genes can be used in step 1.
However, these statistics might not work well for continu-
ous and non-linear/non-monotonic relationships
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between endpoint and gene expression. Based on natural
cubic spline regression, our proposed R2 not only captures
non-linear associations between endpoint and gene
expression but also accommodates any existing linear
association between the two variables. In step 2, we adapt
the framework of GSEA/SAFE using our R? as the associa-
tion measurement. The combination of steps 1 and 2 can
be regarded as a special case of the GSEA/SAFE procedure
in a generalized sense. In step 3, we combine the results
from multiple categories for each gene set and give a con-
servative FDR upper bound. This step depends on a sub-
jective choice of threshold that can be tailored to the
inferential goal. Different thresholds would result in dif-
ferent numbers of significant sets.

Assuming that the experimental information is fully rep-
resented by gene expression levels (Equation 1), we calcu-
late the gene specific R2 separately for each category. For
some genes, this assumption might be violated if the
curves relating gene expression level and endpoints are
different for the same category at different experimental
conditions. In this case, a pooled approach inside each
category might yield reduced R2 values. However, limited
sample size of the category might not allow splitting the
data into subcategories. Also, the curve (X, Y;) itself is
driven by the experimental conditions, e.g., time and
dose. If we fix all these factors, then pairs (Xj; Y;) may dis-
tribute around an average point and we would not be able
to capture the main association trend.

We use the quantity R2 to screen strong associations
between endpoint and gene expression levels rather than
to select the best model for predicting the endpoint from
the gene expression level. Since the spline's degrees of
freedom is fixed, it is not necessary to use a penalty term
to control over-fitting. Finer model adjustment for pur-
poses beyond screening can be considered after associated
gene sets are identified.

We illustrate our method using the NCT compendium
data in which the expression values from 20,500 genes in
both rat liver and blood were analyzed at 3-4 dose levels
and 3 time points for 8 hepatotoxicants. We are interested
in identifying pre-defined gene sets that are associated
with liver injury indicated by the ALT activity level in
blood for most of the 8 hepatotoxicants. For this compen-
dium data, we did observe non-linear association between
ALT and gene expression. This might be due to the fact
that ALT level increases as the degree of liver injury
increases and, on the other side, the gene expression levels
can be either up-regulated or down-regulated.

In the data example, we fixed 4 inner knots at 20%, 40%,
60%, and 80% quantiles of the gene expression. This
model space was selected by manually examining scatter

http://www.biomedcentral.com/1471-2105/9/481

plots between gene expression levels and ALT levels. We
believe that this model space is rich enough to account for
biologically plausible non-linear/non-monotonic trend.
If extra degrees of freedom are desired, a graph similar to
Figure 2 can be used to evaluate the benefits. Although our
proposed R2 can capture non-linear associations between
ALT and gene expression and lead to biologically mean-
ingful inferences, computational feasibility restricts us
from considering more complicated models, e.g., with
two or more genes jointly in the model. While a high R2
indicates strong association, a low R? does not always
imply no association. Also, weak association may not be
well captured by R2. However, this concern is alleviated in
GSEA/SAFE procedure, because the method is designed to
accumulate the weak local signals from individual genes
into a stronger global signal at gene set level.

We compare the R2 from a non-linear model and a linear
model in Figure 2 to illustrate the need for using a non-
linear model. Further performance comparison based on
identified sets is difficult without knowing the true state of
nature of whether a specific gene set is associated with the
phenotypic endpoint. Also, we believe that in our case, it
will not provide a very helpful reference to pursue a com-
putational simulation, which has to include arguable
assumptions that expressions of genes from one pathway
follow some convenient multivariate distribution (e.g.,
multivariate normal distribution) and the outcome varia-
ble follows a skew distribution. As shown in the addi-
tional file 1, section 1, the null distributions of R2 will be
very sensitive to these assumptions.

In summary, we describe a framework of GSEA/SAFE for
microarray data in which the gene expression data were
generated under multiple categories of experimental con-
ditions and the phenotypic endpoint was continuous. The
proposed association measure R2 successfully captured
non-linear trends between the gene expression levels and
endpoint. The R was then incorporated into the GSEA/
SAFE procedure in per category analysis. The usage of R2
has the advantage over the t-statistics or Pearson correla-
tion in identifying the gene sets with both genes positively
and negatively correlated to endpoints. Inference across
categories serves to identify gene sets, and the correspond-
ing functional pathways whose alteration plays a role in
related biological mechanism. Our method is general and
can be applied to GSEA/SAFE analysis of microarray data
with other continuous phenotype or multiple GSEA/SAFE
analyses.

Finally, it is important to note that, in GSEA/SAFE analy-
ses, global statistics is usually designed to test whether the
distribution of local statistics within a gene set is different
from that of genes outside the gene set. Proper local statis-
tics and global statistics should be selected carefully to
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avoid the situation where a gene set is statistically signifi-
cant but actually clusters in a region of weak association
in the gene list and is off biological interest. In this article,
we have used unsigned local statistics R?, signed global
statistics and one-side p-value to eliminate this possibil-

ity.
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