
BioMed CentralBMC Bioinformatics

ss
Open AcceResearch article
Computational cluster validation for microarray data analysis: 
experimental assessment of Clest, Consensus Clustering, Figure of 
Merit, Gap Statistics and Model Explorer
Raffaele Giancarlo*, Davide Scaturro and Filippo Utro

Address: Dipartimento di Matematica ed Applicazioni, Universitá di Palermo, Via Archirafi 34, 90123 Palermo, Italy

Email: Raffaele Giancarlo* - raffaele@math.unipa.it; Davide Scaturro - dscaturro@math.unipa.it; Filippo Utro - utro@math.unipa.it

* Corresponding author    

Abstract
Background: Inferring cluster structure in microarray datasets is a fundamental task for the so-called -omic
sciences. It is also a fundamental question in Statistics, Data Analysis and Classification, in particular with regard
to the prediction of the number of clusters in a dataset, usually established via internal validation measures.
Despite the wealth of internal measures available in the literature, new ones have been recently proposed, some
of them specifically for microarray data.

Results: We consider five such measures: Clest, Consensus (Consensus Clustering), FOM (Figure of Merit), Gap
(Gap Statistics) and ME (Model Explorer), in addition to the classic WCSS (Within Cluster Sum-of-Squares) and
KL (Krzanowski and Lai index). We perform extensive experiments on six benchmark microarray datasets, using
both Hierarchical and K-means clustering algorithms, and we provide an analysis assessing both the intrinsic ability
of a measure to predict the correct number of clusters in a dataset and its merit relative to the other measures.
We pay particular attention both to precision and speed. Moreover, we also provide various fast approximation
algorithms for the computation of Gap, FOM and WCSS. The main result is a hierarchy of those measures in
terms of precision and speed, highlighting some of their merits and limitations not reported before in the
literature.

Conclusion: Based on our analysis, we draw several conclusions for the use of those internal measures on
microarray data. We report the main ones. Consensus is by far the best performer in terms of predictive power
and remarkably algorithm-independent. Unfortunately, on large datasets, it may be of no use because of its non-
trivial computer time demand (weeks on a state of the art PC). FOM is the second best performer although, quite
surprisingly, it may not be competitive in this scenario: it has essentially the same predictive power of WCSS but
it is from 6 to 100 times slower in time, depending on the dataset. The approximation algorithms for the
computation of FOM, Gap and WCSS perform very well, i.e., they are faster while still granting a very close
approximation of FOM and WCSS. The approximation algorithm for the computation of Gap deserves to be
singled-out since it has a predictive power far better than Gap, it is competitive with the other measures, but it
is at least two order of magnitude faster in time with respect to Gap. Another important novel conclusion that
can be drawn from our analysis is that all the measures we have considered show severe limitations on large
datasets, either due to computational demand (Consensus, as already mentioned, Clest and Gap) or to lack of
precision (all of the other measures, including their approximations). The software and datasets are available
under the GNU GPL on the supplementary material web page.
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Background
The recent advent of high density arrays of oligonucle-
otides and cDNAs has had a deep impact on biological
and medical research. Indeed, the new technology enables
the acquisition of data that is proving to be fundamental
in many areas of the biological sciences, ranging from the
understanding of complex biological systems to clinical
diagnosis (see for instance the Stanford Microarray Data-
base [1]).

Due to the large number of genes involved in each exper-
iment, cluster analysis is a very useful exploratory tech-
nique for identifying genes that exhibit similar expression
patterns, which may highlight groups of functionally
related genes. This leads, in turn, to two well established
and rich research areas. One deals with the design of new
clustering algorithms and the other with the design of new
internal validation measures that should assess the bio-
logical relevance of the clustering solutions found.
Despite the vast amount of knowledge available in those
two areas in the general data mining literature [2-9], gene
expression data provide unique challenges, in particular
with respect to internal validation measures. Indeed, they
must predict how many clusters are really present in a
dataset, an already difficult task, made even worse by the
fact that the estimation must be sensible enough to cap-
ture the inherent biological structure of functionally
related genes. Despite their potentially important role,
both the use of classic internal validation measures and
the design of new ones, specific for microarray data, do
not seem to have great prominence in bioinformatics,
where attention is mostly given to clustering algorithms.
The excellent survey by Handl et al. [10] is a big step for-
ward in making the study of those techniques a central
part of both research and practice in bioinformatics, since
it provides both a technical presentation as well as valua-
ble general guidelines about their use for post-genomic
data analysis. Although much remains to be done, it is,
nevertheless, an initial step.

For instance, in the general data mining literature, there
are several studies, e.g., [11], aimed at establishing the
intrinsic, as well as the relative, merit of a measure. To this
end, the two relevant questions are:

(A) What is the precision of a measure, i.e., its ability to
predict the correct number of clusters in a data set? That is
usually established by comparing the number of clusters
predicted by the measure against the number of clusters in
the gold solution of several datasets, the gold solution
being a partition of the dataset in classes that can be
trusted to be correct, i.e., distinct groups of functionally
related genes. A more precise explanation of the meaning
of gold solution in our setting is provided when we

present the datasets used for our experiments in the
Results and Discussion section.

(B) Among a collection of measures, which is more accu-
rate, less algorithm-dependent, etc.,?. Precision versus the
use of computational resources, primarily execution time,
would be an important discriminating factor.

Although those classic studies are also of great relevance
for bioinformatics, there is an acute need for analogous
studies conducted on internal measures introduced
recently and specifically designed for analysis of microar-
ray data. We address both types of questions for several
particularly prominent such measures, characterized by
the fact that, for their prediction, they make use of noth-
ing more than the dataset available: Clest [12], Consensus
[13], FOM [14] Gap [15] and ME [16]. Because of their
simplicity and computational efficiency, we also study
WCSS [6] and KL [17]. The heuristic method supporting
the use of WCSS as an internal measure has roots in the
statistics community folklore [15].

Initial studies of the mentioned measures, in connection
with both Questions (A) and (B), have been done, prima-
rily, in the papers in which they were originally proposed.
Our study carries further those studies by providing more
focused information about using those measures for the
analysis of gene expression data. For Question (A), our
analysis provides further insights into the properties of the
mentioned measures, with particular attention to time.
For Question (B), we provide the first comparative analy-
sis involving all of those measures that accounts for both
precision and time. This is particularly relevant in regard
to the "resampling-based" methods, i.e., Clest, Consensus
and ME. In fact, (1) those three measures are excellent rep-
resentatives of methods in the class (see Handl et al. and
[18,19]); (2) Dudoit and Fridlyand mention that it would
be desirable to relate Clest and ME but no comparison
seems to be available in the literature; (3) although it is
quite common to include Clest and Gap in comparative
analysis for novel measures, Consensus is hardly consid-
ered, although our experiments show that it should defi-
nitely be included. Based on our analysis, we add to the
state of the art valuable guidelines for the choice of which
of the seven measures to use for microarray data analysis.
Moreover, we also provide, as an additional contribution
for FOM, Gap and WCSS, several good and fast approxi-
mation algorithms, i.e., the new algorithms have the same
predictive power of the mentioned measures, while being
faster. Particularly relevant is the approximation algo-
rithm we propose for Gap. It is at least two orders of mag-
nitude faster than the original measure and with a better
prediction power.
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Results and discussion
Experimental setup
Data sets
Technically speaking, a gold solution for a dataset is a par-
tition of the data in a number of classes known a priori.
Membership in a class is established by assigning the
appropriate class label to each element. In less formal
terms, the partition of the dataset in classes is based on
external knowledge that leaves no ambiguity on the actual
number of classes and on the membership of elements to
classes. Although there exist real microarray datasets for
which such an a priori division is known, in a few previous
studies of relevance here, a more relaxed criterion has
been adopted to allow also datasets with high quality par-
titions that have been inferred by analyzing the data, i.e.,
by the use of internal knowledge via data analysis tools
such as clustering algorithms. In strict technical terms,
there is a difference between the two types of "gold solu-
tions". For their datasets, Dudoit and Fridlyand elegantly
make clear that difference and we closely follow their
approach here.

Each dataset is a matrix, in which each row corresponds to
an element to be clustered and each column to an experi-
mental condition. The six datasets, together with the acro-
nyms used in this paper, are reported next. For
conciseness, we mention only some relevant facts about
them. The interested reader can find additional informa-
tion in Handl et al., for the Leukemia dataset, in Dudoit
and Fridlyand for the Lymphoma and NCI60 datasets and
in Di Gesú et al. [20], for the remaining ones. In all of the
referenced papers, the datasets were used for validation
studies. Moreover, in those papers, the interested reader
can find additional pointers to validation studies using
the same datasets.

CNS Rat
The dataset gives the expression levels of 112 genes during
rat central nervous system development. It is a 112 × 17
data matrix studied by Wen et al. [21]. There are no a priori
known classes for this dataset, but the analysis by Wen et
al. suggests a partition of the genes into six classes, four of
which are composed of biologically, functionally-related,
genes. We take that to be the gold solution, which is the
same one used for the validation of FOM.

Leukemia
The dataset is the one used by Handl et al. in their survey
of computational cluster validation to illustrate the use of
some measures. It is a 38 × 100 data matrix, where each
row corresponds to a patient with acute leukemia and
each column to a gene. For this dataset, there is an a priori
partition into three classes and we take that as the gold
solution.

Lymphoma
The dataset comes from the study of Alizadeh et al. [22]
on the three most common adult lymphoma tumors. It is
an 80 × 100 matrix, where each row corresponds to a tis-
sue sample and each column to a gene. There is an a priori
partition into three classes and we take that as the gold
solution. The dataset has been obtained from the original
microarray experiments as described by Dudoit and Fridl-
yand.

NCI60
This dataset originates from a microarray study in gene
expression variation among the sixty cell lines of National
Cancer Institute anti-cancer drug screen [23]. It is a 57 ×
200 data matrix, where each row corresponds to a cell line
and each column to a gene. There is an a priori partition of
the dataset into eight classes and we take that as the gold
solution. The dataset has been obtained from the original
microarray experiments as described by Dudoit and Fridl-
yand.

Yeast
The dataset is part of that studied by Spellman et al. [24]
and it is a 698 × 72 data matrix. There are no a priori
known classes for this dataset, but the analysis by Spell-
man et al. suggests a partition of the genes into five func-
tionally-related classes. We take that to be the gold
solution, which has been used by Shamir amd Sharan for
a case study on performance of clustering algorithms [25].

PBM
The dataset contains 2329 cDNAs with a fingerprint of
139 oligos. This gives a 2329 × 139 data matrix. According
to Hartuv et al. [26], the cDNAs in the dataset originated
from 18 distinct genes, i.e., the a priori classes are known.
The partition of the dataset into 18 groups was obtained
by lab experiments at Novartis in Vienna. Following that
study, we take those classes and the class labels assigned
to the elements as the gold solution. It was used by Hartuv
et al. to test their clustering algorithm.

Clustering algorithms and their stability
We use a suite of clustering algorithms. Among the hierar-
chical methods [27] Hier-A (Average Link), Hier-C (Com-
plete Link), and Hier-S (Single Link). Moreover, we use K-
means [27], both in the version that starts the clustering
from a random partition of the data and in the version
where it takes as part of the input an initial partition pro-
duced by one of the chosen hierarchical methods. The
acronyms of those versions are K-means-R, K-means-A, K-
means-C and K-means-S, respectively.

We also point out that K-means-R is a randomized algo-
rithm that may provide different answers on the same
input dataset. That might make the values of many of the
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measures we are studying depend critically on the partic-
ular execution of the algorithm. Such a dependence is
important for WCSS, KL and FOM. For those measures
and their approximations, we have repeated five times the
computation of the relevant curves, on all datasets, with
K-means-R. We observed only negligible differences from
run to run. Therefore, in what follows, all reported results
refer to a single run of the algorithms, except for the cases
in which an explicit Monte Carlo simulation is required.

Similarity/Distance Functions
All of our algorithms use Euclidean distance in order to
assess similarity of single elements to be clustered. Such a
choice is natural and conservative, as we now explain. It
places all algorithms in the same position without intro-
ducing biases due to distance function performance,
rather than to the algorithm. Moreover, time course data
have been properly standardized (mean equal to zero and
variance equal to one), so that Euclidean distance would
not be penalized on those data. This is standard proce-
dure, e.g., [14], for those data. The results we obtain are
conservative since, assuming that one has a provably
much better similarity/distance function, one can only
hope to get better estimates than ours (else the used dis-
tance function is not better than Euclidean distance after
all). As it is clear from the upcoming discussion and con-
clusions, such better estimates will cause no dramatic
change in the general picture of our findings. The choice
is also natural, in view of the debate regarding the identi-
fication of a proper similarity/distance function for clus-
tering gene expression data and the number of such
measures available. The state of the art as well some rele-
vant progress in the identification of such measure is well
presented in [28].

Hardware
All experiments for the assessment of the precision of each
measure were performed in part on several state-of-the-art
PCs and in part on a 64-bit AMD Athlon 2.2 GHz bi-proc-
essor with 1 GB of main memory running Windows Server
2003. All the timing experiments reported were per-
formed on the bi-processor, using one processor per run.
The usage of different machines for the experimentation
was deemed necessary in order to complete the full set of
experiments in a reasonable amount of time. Indeed, as
detailed later, some measures require weeks to complete
execution on Yeast and PBM, the two largest datasets we
have used. We also point out that all the Operating Sys-
tems supervising the computations have a 32 bits preci-
sion.

Question (A)-Intrinsic precision of the internal measures
In this section we present experiments with the aim to
shed some light on Question (A). As discussed in the
Methods section, for most measures, the prediction of the
"optimal" number k* of clusters is based on the visual
inspection of curves and histograms. For conciseness, we
provide all the relevant material in the supplementary
material web site [29] (Figures section). Here we limit our-
selves to produce summary tables, based on our analysis
of the relevant curves and experiments. We report a sepa-
rate table for each measure, (see Tables 1, 2, 3, 4, 5, 6, 7,
8). We anticipate that the next subsection addresses the
relative merits of each measure and a global summary
table is reported, but only for the best performers. That is,
for each measure, we report the experimental parameters
(e.g., clustering algorithm) only if in that setting the pre-
diction of k* has been reasonably close to the gold solu-
tion (at most an absolute value difference of one between
the predicted number and the real number) in at least four
of the six datasets we have used. Table 9 is a summary of

Table 1: Results for WCSS and its approximations

Precision Timing

CNS Rat Leukemia NCI60 Lymphoma Yeast PBM CNS Rat Leukemia NCI60 Limphoma

K-means-R 4 ➌ 3 8 ④ - 2.4 × 103 2.0 × 103 8.4 × 103 8.4 × 103

K-means-A 4 ➌ ⑦ 6 ➎ - 2.3 × 103 1.3 × 103 5.4 × 103 5.8 × 103

K-means-C ⑤ ➌ ➑ 8 ④ - 1.7 × 103 1.3 × 103 5.0 × 103 4.0 × 103

K-means-S 3 ④ ⑦ 8 24 - 2.6 × 103 1.6 × 103 7.3 × 103 7.4 × 103

R-R0 ⑤ ④ ⑨ ➌ ④ - 1.2 × 103 8.0 × 102 4.1 × 103 3.0 × 103

R-R5 ➏ 5 ⑨ 5 ④ - 1.2 × 103 8.0 × 102 4.6 × 103 3.2 × 103

R-R2 ⑦ 5 15 ④ ④ - 1.3 × 103 8.0 × 102 5.3 × 103 3.2 × 103

Hier-A 10 ➌ 3 6 ➎ - 1.1 × 103 4.0 × 102 2.1 × 103 1.9 × 103

Hier-C 10 ➌ ⑦ 8 9 - 7.0 × 102 4.0 × 102 1.7 × 103 1.4 × 103

Hier-S 8 10 ⑦ 9 - - 2.6 × 103 6.0 × 102 3.2 × 103 3.8 × 103

Gold solution 6 3 8 3 5 18 - - - -

A summary of the results for WCSS on all algorithms and on all datasets. The columns under the label precision indicate the number of clusters 
predicted by WCSS, while the remaining four indicate the timing in milliseconds for the execution of the corresponding experiment. Cells with a 
dash indicate that WCSS did not give any useful indication.
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those results. The reader interested mainly in a compara-
tive analysis of the various measures may wish to skip this
subsection.

Moreover, in what follows, for each cell in a table display-
ing precision results, a number in a circle with a black
background indicates a prediction in agreement with the
number of classes in the dataset, while a number in a cir-
cle with a white background indicates a prediction that
differs, in absolute value, by 1 from the number of classes
in the dataset; when the prediction is one cluster, i.e. Gap
statistics, this symbol rule is not applied because the pre-
diction means no cluster structure in the data; a number
not in a circle indicates the remaining predictions. As
detailed in each table, cells with a dash indicate that either
the experiment was stopped, because of its high computa-
tional demand, or that the measure gives no useful indica-
tion. The timing results are reported only on the four
smallest datasets. Indeed, for Yeast and PBM, the compu-
tational demand is such on some measures that either

they had to be stopped or they took weeks to complete.
For those two datasets, the experiments we report were
done using more than one machine.

WCSS and its approximations
For each algorithm, each of the WCSS approximations
(denoted WCSS-R-R0, WCSS-R-R2, WCSS-R-R5, respec-
tively), and each dataset, we have computed WCSS for a
number of cluster values in the range [2,30]. The relevant
plots are in the Figures section at the supplementary mate-
rial web site: Fig. S1 for the K-means algorithms and
WCSS approximations and Fig. S2 for the hierarchical
algorithms.

As outlined in the Methods section, given the relevant
WCSS curve, k* is predicted as the abscissa closest to the
"knee" in that curve. The values resulting from the appli-
cation of this methodology to the relevant plots are
reported in Table 1 together with timing results for the rel-
evant datasets.

Table 2: Results for KL

Precision Timing

CNS Rat Leukemia NCI60 Lymphoma Yeast PBM CNS Rat Leukemia NCI60 Limphoma

K-means-R 4 27 3 22 29 24 2.7 × 103 3.4 × 103 9.3 × 103 9.0 × 103

K-means-A 25 ➌ 3 ➁ 7 16 2.3 × 103 2.4 × 103 5.7 × 103 6.2 × 103

K-means-C 2 ➌ ⑦ ➁ 26 24 3.0 × 103 2.6 × 103 5.0 × 103 5.8 × 103

K-means-S 4 ④ 12 8 13 16 4.0 × 103 2.9 × 103 8.0 × 103 8.5 × 103

Hier-A ⑦ ➌ 3 ➁ 17 12 1.9 × 103 6.0 × 102 2.1 × 103 2.5 × 103

Hier-C 10 ➌ 2 ➁ 16 15 1.6 × 103 1.1 × 103 2.5 × 103 2.1 × 103

Hier-S 21 7 ⑦ 9 15 25 3.4 × 103 1.3 × 103 3.7 × 103 4.9 × 103

Gold solution 6 3 8 3 5 18 - - - -

A summary of the results for KL on all algorithms and on all datasets. The columns under the label precision indicate the number of clusters 
predicted by KL, while the remaining four indicate the timing in milliseconds for the execution of the corresponding experiment.

Table 3: Results for G-Gap

Precision Timing

CNS Rat Leukemia NCI60 Lymphoma Yeast PBM CNS Rat Leukemia NCI60 Limphoma

K-means-R ⑦ ➌ 4 ④ ⑥ 5 2.4 × 103 2.0 × 103 8.3 × 103 8.4 × 103

K-means-A 4 ➌ 1 ➁ ⑥ 4 2.3 × 103 1.3 × 103 5.3 × 103 5.8 × 103

K-means-C ⑤ ➌ 2 8 ⑥ 5 1.7 × 103 1.3 × 103 5.0 × 103 4.0 × 103

K-means-S 3 ➌ 1 1 1 1 2.6 × 103 1.6 × 103 7.3 × 103 7.4 × 103

R-R0 2 7 2 ④ ➎ 4 1.2 × 103 8.0 × 102 4.0 × 103 3.0 × 103

R-R5 ⑤ ④ 2 ➁ ④ 6 1.2 × 103 8.0 × 102 4.5 × 103 3.2 × 103

R-R2 3 ➁ 2 ➁ ➎ 6 1.3 × 103 8.0 × 102 5.2 × 103 3.2 × 103

Hier-A ⑦ ➌ 1 ➁ 3 1 1.1 × 103 4.0 × 102 2.0 × 103 1.9 × 103

Hier-C ⑦ ➌ 2 ➁ 7 4 7.0 × 102 4.0 × 102 1.7 × 103 1.4 × 103

Hier-S ⑤ ➌ 1 1 1 5 2.6 × 103 6.0 × 102 3.2 × 103 3.8 × 103

Gold solution 6 3 8 3 5 18 - - - -

A summary of the results of G-Gap, on all algorithms and on all datasets. The columns under the label precision indicate the number of clusters 
predicted by the measure, while the remaining four indicate the timing in milliseconds for the execution of the corresponding experiment.
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We have that WCSS performs well with K-means-C and K-
means-A, on the first five datasets, while it gives no rea-
sonably correct indication on PBM. It is a poor performer
with the other clustering algorithms. Those facts give
strong indication that WCSS is algorithm-dependent.
Finally, the failure of WCSS, with all algorithms, to give a
good prediction for PBM indicates that WCSS may not be

of any use on large datasets having a large number of clus-
ters.

As for its approximations, it is evident that they perform
better than the original WCSS curve (obtained via all
other clustering algorithms we have experimented with).
That is, they are among the best performers in Table 1.
Moreover, depending on the dataset, they are from a few

Table 4: Results for Clest

Precision Timing

CNS Rat Leukemia NCI60 Lymphoma Yeast CNS Rat

Clest-FM-K-means-R 8 ④ ➑ ➁ ④ 1.2 × 106

Clest-FM-K-means-A 18 7 12 15 13 1.4 × 106

Clest-FM-K-means-C 12 5 12 11 ④ 1.5 × 106

Clest-FM-K-means-S 24 8 13 15 1 1.8 × 106

Clest-FM-Hier-A 10 6 10 13 24 1.1 × 106

Clest-FM-Hier-C 10 ④ ⑨ 15 8 1.1 × 106

Clest-FM-Hier-S 20 10 15 15 1 1.1 × 106

Clest-Adj-K-means-R ⑤ ④ 3 ➁ 2 1.1 × 106

Clest-Adj-K-means-A 12 ➌ 3 ➁ ➎ 1.4 × 106

Clest-Adj-K-means-C 9 ➁ 2 ➁ ④ 1.4 × 106

Clest-Adj-K-means-S 20 6 13 6 10 1.8 × 106

Clest-Adj-Hier-A 13 ➌ 3 ➁ 11 1.1 × 106

Clest-Adj-Hier-C 9 ④ 2 ➁ ④ 1.1 × 106

Clest-Adj-Hier-S 4 7 ⑨ 7 26 1.1 × 106

Clest-F-K-means-R ➏ ➌ 15 ➁ ④ 1.2 × 106

Clest-F-K-means-A 8 6 10 14 11 1.4 × 106

Clest-F-K-means-C 9 5 12 ➌ ④ 1.5 × 106

Clest-F-K-means-S 21 10 15 15 1 1.8 × 106

Clest-F-Hier-A ⑦ 7 10 15 27 1.1 × 106

Clest-F-Hier-C 9 ➌ 13 ➌ ➎ 1.1 × 106

Clest-F-Hier-S 28 10 15 15 1 1.1 × 106

Gold solution 6 3 8 3 5 -

A summary of the results for Clest on all algorithms and the first four datasets, with use of three external indexes. The columns under the label 
precision indicate the number of clusters predicted by Clest, while the remaining one indicates the timing in milliseconds for the execution of the 
corresponding experiment. For PBM, the experiments were terminated due to their high computational demand (weeks to complete). Therefore, 
the resulting column is omitted from the table. For the Leukemia, NCI60 and Lymphoma datasets, the timing experiments are not reported because 
incomparable with those of CNS Rat and of the other measures. The corresponding columns are eliminated from the table.

Table 5: Results for Consensus

Precision Timing

CNS Rat Leukemia NCI60 Lymphoma Yeast CNS Rat Leukemia NCI60 Lymphoma

K-means-R ➏ ④ ⑦ ➌ ⑥ 1.0 × 106 1.3 × 106 3.4 × 106 3.0 × 106

K-means-A ⑦ ➌ ➑ ➌ ⑥ 1.3 × 106 1.6 × 106 3.0 × 106 2.6 × 106

K-means-C ➏ ➌ ➑ ④ ⑥ 1.3 × 106 1.8 × 106 2.9 × 106 2.6 × 106

K-means-S ⑦ ④ 10 ➁ ⑥ 1.5 × 106 1.8 × 106 3.2 × 106 2.8 × 106

Hier-A ⑦ ➌ ➑ ➌ ➎ 9.2 × 105 7.9 × 105 2.0 × 106 1.9 × 106

Hier-C ➏ ④ ➑ 5 ⑥ 8.7 × 105 6.9 × 105 2.0 × 106 2.0 × 106

Hier-S 2 8 10 ➌ 10 9.4 × 105 8.0 × 105 2.0 × 106 1.7 × 106

Gold solution 6 3 8 3 5 - - - -

A summary of the results for Consensus on all algorithms and the first five datasets. The columns under the label precision indicate the number of 
clusters predicted by Consensus, while the remaining four indicate the timing in milliseconds for the execution of the corresponding experiment. 
For PBM, the experiments were terminated due to their high computational demand and the corresponding column has been removed from the 
table.
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times to an order of magnitude faster than the K-means
algorithms.

Overall, the best performers are K-means-C and WCSS-R-
R0. The relative results are reported in Table 9 for compar-
ison with the performance of the other measures.

KL
Following the same experimental set-up of WCSS, we
have computed the KL measure, for each dataset and each
algorithm. The results, summarized in Table 2, are rather
disappointing: the measure provides some reliable indica-
tion, accross algorithms, only on the Leukemia and the
Lymphoma datasets. Due to such a poor performance, no
results are reported in Table 9 for comparison with the
performance of the other measures.

Gap and its geometric approximation
For each dataset and each clustering algorithm, we com-
pute three versions of Gap, namely Gap-Ps, Gap-Pc and
Gap-Pr, for a number of cluster values in the range [1,30].
Gap-Ps uses the Poisson null model, Gap-Pc the Poisson
null model aligned with the principal components of the
data while Gap-Pr uses the permutational null model (see
Methods section). For each of them, we perform a Monte
Carlo simulation, 20 steps, in which the measure returns
an estimated number of clusters for each step. Each simu-
lation step is based on the generation of 10 data matrices
from the null model used by the measure. At the end of
each Monte Carlo simulation, the number with the major-
ity of estimates is taken as the predicted number of clus-
ters. Occasionally, there are ties and we report both
numbers. The relevant histograms are displayed at the
supplementary material web site (Figures section): Figs.

Table 6: Results for FOM

Precision Timing

CNS Rat Leukemia NCI60 Lymphoma Yeast PBM CNS Rat Leukemia NCI60 Lymphoma

K-means-R ⑦ ➌ 6 9 ④ - 2.9 × 104 1.9 × 105 1.3 × 106 6.7 × 105

K-means-A ⑦ ➌ 6 6 ④ - 2.2 × 104 9.3 × 104 5.5 × 105 2.7 × 105

K-means-C ⑦ 8 ➑ ④ ④ - 1.9 × 104 9.4 × 104 5.5 × 105 2.6 × 105

K-means-S ➏ ➌ ➑ 8 ④ - 2.9 × 104 1.0 × 105 7.1 × 105 3.6 × 105

R-R0 10 5 ⑦ ④ 7 - 2.6 × 103 3.1 × 104 1.7 × 105 5.3 × 104

R-R5 ➏ ➌ ⑦ 5 ➎ - 3.9 × 103 3.7 × 104 2.1 × 105 7.6 × 104

R-R2 8 5 ➑ 5 ➎ - 3.4 × 103 3.8 × 104 2.2 × 105 7.2 × 104

Hier-A ⑦ ➌ ⑦ 6 ⑥ - 1.6 × 103 7.5 × 103 5.1 × 104 1.8 × 104

Hier-C 10 ④ ⑦ 7 ➎ - 1.6 × 103 7.7 × 103 4.5 × 104 1.8 × 104

Hier-S 3 7 ⑦ 9 - - 1.6 × 103 7.4 × 103 4.9 × 105 1.7 × 104

Gold solution 6 3 8 3 5 18 - - - -

A summary of the results for FOM on all algorithms and on all datasets. The columns under the label precision indicate the number of clusters 
predicted by FOM, while the remaining four indicate the timing in milliseconds for the execution of the corresponding experiment. Cells with a 
dash indicate that FOM did not give any useful indication.

Table 7: Results for G-FOM

Precision Timing

CNS Rat Leukemia NCI60 Lymphoma Yeast PBM CNS Rat Leukemia NCI60 Lymphoma

K-means-R ⑦ 5 6 8 ⑥ 7 2.9 × 104 1.9 × 105 1.3 × 106 6.7 × 105

K-means-A 2 ➌ ⑦ ➁ ⑥ 6 2.2 × 104 9.3 × 104 5.5 × 105 2.7 × 105

K-means-C 2 ④ 2 ④ 7 6 1.9 × 104 9.4 × 104 5.5 × 105 2.6 × 105

K-means-S 3 5 2 ➁ ⑥ 8 2.9 × 104 1.0 × 105 7.1 × 105 3.6 × 105

R-R0 2 7 2 5 7 4 2.6 × 103 3.1 × 104 1.7 × 105 5.3 × 104

R-R5 4 ④ 2 6 ⑥ 4 3.9 × 103 3.7 × 104 2.1 × 105 7.6 × 104

R-R2 ⑦ 5 2 5 8 4 3.4 × 103 3.8 × 104 2.2 × 105 7.2 × 104

Hier-A 3 ➌ ⑦ ➁ 8 2 1.6 × 103 7.5 × 103 5.1 × 104 1.8 × 104

Hier-C 10 ④ 2 ④ 8 2 1.6 × 103 7.7 × 103 4.5 × 104 1.8 × 104

Hier-S ⑦ ➁ 2 ➁ 2 2 1.6 × 103 7.4 × 103 4.9 × 105 1.7 × 104

Gold solution 6 3 8 3 5 18 - - - -

A summary of the results for G-FOM on all algorithms and on all datasets. The columns under the label precision indicate the number of clusters 
predicted by G-FOM, while the remaining four indicate the timing in milliseconds for the execution of the corresponding experiment. Cells with a 
dash indicate that G-FOM did not give any useful indication.
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S3-S8 for Gap-Ps, Figs. S9-S13 for Gap-Pc and Figs. S14-
S19 for Gap-Pr. The results are summarized in Table T1 at
the supplementary material web page (Tables section).
For PBM and Gap-Pc, each experiment was terminated
after a week, since no substantial progress was being made
towards its completion.

The results for Gap are somewhat disappointing, as Table
T1 shows, and therefore given only for completeness at
the supplementary material web site. However, a few
comments are in order, the first one regarding the null
models. Tibshirani et al. find experimentally that, on sim-

ulated data, Gap-Pc is the clear winner over Gap-Ps (they
did not consider Gap-Pr). Our results show that, as the
dataset size increases, Gap-Pc incurs into a severe time
performance degradation, due to the repeated data trans-
formation step. Moreover, on the smaller datasets, no null
model seems to have the edge. Some of the results are also
somewhat puzzling. In particular, although the datasets
have cluster structure, many algorithms return an estimate
of k* = 1, i.e., no cluster structure in the data. An analo-
gous situation was reported by Monti et al. In their study,
Gap-Ps returned k* = 1 on two artificial datasets. Fortu-
nately, an analysis of the corresponding Gap curve

Table 8: Results for DIFF-FOM

Precision Timing

CNS Rat Leukemia NCI60 Lymphoma Yeast PBM CNS Rat Leukemia NCI60 Lymphoma

K-means-R 4 ➌ 4 ➌ 3 4 2.9 × 104 1.9 × 105 1.3 × 106 6.7 × 105

K-means-A ⑦ ➌ 3 6 3 8 2.2 × 104 9.3 × 104 5.5 × 105 2.7 × 105

K-means-C ⑦ ➌ ⑦ ④ 3 5 1.9 × 104 9.4 × 104 5.5 × 105 2.6 × 105

K-means-S ⑦ ➌ 12 8 3 10 2.9 × 104 1.0 × 105 7.1 × 105 3.6 × 105

R-R0 10 ④ 17 ④ 3 3 2.6 × 103 3.1 × 104 1.7 × 105 5.3 × 104

R-R5 4 ➌ 11 ➌ 3 4 3.9 × 103 3.7 × 104 2.1 × 105 7.6 × 104

R-R2 ⑦ ➌ 17 ➌ 3 7 3.4 × 103 3.8 × 104 2.2 × 105 7.2 × 104

Hier-A ⑦ ➌ 3 6 3 25 1.6 × 103 7.5 × 103 5.1 × 104 1.8 × 104

Hier-C 9 ➌ ⑦ 7 3 7 1.6 × 103 7.7 × 103 4.5 × 104 1.8 × 104

Hier-S 20 7 22 9 7 20 1.6 × 103 7.4 × 103 4.9 × 105 1.7 × 104

Gold solution 6 3 8 3 5 18 - - - -

A summary of the results for DIFF-FOM on all algorithms and on all datasets. The columns under the label precision indicate the number of clusters 
predicted by DIFF-FOM, while the remaining four indicate the timing in milliseconds for the execution of the corresponding experiment. Cells with 
a dash indicate that DIFF-FOM did not give any useful indication.

Table 9: Summary of results for the best performing measures

Precision Timing

CNS Rat Leukemia NCI60 Lymphoma Yeast CNS Rat Leukemia NCI60 Lymphoma

WCSS-K-means-C ⑤ ➌ ➑ 8 ④ 1.7 × 103 1.3 × 103 5.0 × 103 4.0 × 103

WCSS-R-R0 ⑤ ④ ⑨ ➑ ④ 1.2 × 103 8.0 × 102 4.1 × 103 3.0 × 103

G-Gap-K-means-R ⑦ ➌ 4 ④ ⑥ 2.4 × 103 2.0 × 103 8.3 × 104 8.4 × 103

G-Gap-R-R5 ⑤ ④ 2 ➁ ④ 1.2 × 103 8.0 × 102 4.5 × 104 3.2 × 103

FOM-K-means-C ⑦ 8 ➑ ④ ④ 1.9 × 104 9.4 × 104 5.5 × 105 2.6 × 105

FOM-K-means-S ➏ ➌ ➑ 8 ④ 2.9 × 104 1.0 × 105 7.1 × 105 3.6 × 105

FOM-R-R5 ➏ ➌ ⑦ 5 ➎ 3.9 × 103 3.7 × 104 2.1 × 105 7.6 × 104

FOM-Hier-A ⑦ ➌ ⑦ 6 ⑥ 1.6 × 103 7.5 × 103 5.1 × 104 1.8 × 104

DIFF-FOM-K-means-C ⑦ ➌ ⑦ ④ 3 1.9 × 104 9.4 × 104 5.5 × 105 2.6 × 105

Clest-F-K-means-R ➏ ➌ 15 ➁ ④ 1.2 × 106 - - -
Clest-FM-K-means-R 8 ④ ➑ ➁ ④ 1.2 × 106 - - -
Consensus-K-means-R ➏ ④ ⑦ ➌ ⑥ 1.0 × 106 1.3 × 106 3.4 × 106 3.0 × 106

Consensus-K-means-A ⑦ ➌ ➑ ➌ ⑥ 1.3 × 106 1.6 × 106 3.0 × 106 2.6 × 106

Consensus-K-means-C ➏ ➌ ➑ ④ ⑥ 1.3 × 106 1.8 × 106 2.9 × 106 2.6 × 106

Consensus-K-means-S ⑦ ④ 10 ➁ ⑥ 1.5 × 106 1.8 × 106 3.2 × 106 2.8 × 106

Consensus-Hier-A ⑦ ➌ ➑ ➌ ➎ 9.2 × 105 7.9 × 105 2.0 × 106 1.9 × 106

Consensus-Hier-C ➏ ④ ➑ 5 ⑥ 8.7 × 105 6.9 × 105 2.0 × 106 2.0 × 106

Gold solution 6 3 8 3 5 - - - -

A summary of the best performances obtained by each measure. The PBM dataset has been excluded because no measure gave useful information 
about its cluster structure.
Page 8 of 19
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:462 http://www.biomedcentral.com/1471-2105/9/462
showed that indeed the first maximum was at k* = 1 but a
local maximum was also present at the correct number of
classes, in each dataset. We have performed an analogous
analysis of the relevant Gap curves to find that, in analogy
with Monti et al., also in our case most curves show a local
maximum at or very close to the number of classes in each
dataset, following the maximum at k* = 1. An example
curve is given in Fig. 1. From the above, one can conclude
that inspection of the Gap curves and domain knowledge
can greatly help in disambiguating the case k* = 1. We also
report that experiments conducted by Dudoit and Fridly-
and and, independently by Yan and Ye [30], show that
Gap tends to overestimate the correct number of clusters,
although this does not seem to be the case for our datasets
and algorithms. The above considerations seem to suggest
that the automatic rule for the prediction of k* based on
Gap is rather weak.

As for G-Gap, the geometric approximation of Gap, we
have computed, for each algorithm and each dataset, the
corresponding WCSS curve and its approximations in the
interval [1,30]. We have then applied the rule described in
the Methods section to get the value of k*. The results are
summarized in Table 3. As it is evident from the table, the
overall performance of G-Gap is clearly superior to Gap,
irrespective of the null model. Moreover, depending on
the dataset, it is from two to three orders of magnitude

faster. The best performers are K-means-R and WCSS-R-
R0. The relative results are reported in Table 9 for compar-
ison with the performance of the other measures.

Clest
For CNS Rat and Yeast and each clustering algorithm, we
compute Clest for a number of cluster values in the range
[2,30] while, for Leukemia, NCI60 and Lymphoma, the
ranges [2,10], [2,15] and [2,15] are used, respectively, due
to the small size of the datasets. Moreover, although
experiments have been started with PBM, no substantial
progress was made after a week of execution and, for each
clustering algorithm, the corresponding experiment was
terminated. Following the same experimental set-up of
Dudoit and Fridlyand, for each cluster value k, we perform
20 resampling steps and 20 iterations. In each step, 66%
of the rows of the data matrix are extracted, uniformly and
at random, to create a learning set, to be given to the clus-
tering algorithm to be clustered in k groups. As one of its
input parameters, Clest requires the use of an external
index E to establish the level of agreement between two
partitions of a dataset. We use each of the following: the
FM index [31], Adj (the Adjusted Rand index) [32] and F
(the F-index) [33].

The results are summarized in Table 4, where the timing
results for the Leukemia, NCI60 and Lymphoma datasets
were excluded since the experiments were performed on a
smaller interval of cluster values with respect to CNS Rat.
This latter interval is the standard one we are using to
make consistent comparisons across measures and algo-
rithms.

The results show that Clest has severe time demand limi-
tations on large datasets. It also seems to achieve a better
performance, accross algorithms with Adj and F. Moreo-
ver, it is clearly algorithm-dependent, with K-means-R
being the best performer with both FM and F. Those
results are reported in Table 9 for comparison with the
performance of the other measures.

ME
For each of the first five datasets and each clustering algo-
rithm, we compute ME for a number of cluster values in
the range [2,30]. Following the same experimental set-up
of Ben-Hur et al., for each cluster value k, we perform 100
iterations. In each step, we compute two datasets to be
given to the algorithm to be clustered in k groups. Each
dataset is created by extracting uniformly and at random
80% of the rows. The prediction of k* is based on the plot
of the corresponding histograms, as illustrated in the
Methods section. As for the external indexes, we have used
the same three used for Clest. The histograms obtained
from such an experimentation are reported at the supple-
mentary material web site in Figs. S20-S124. As for PBM,

A Gap CurveFigure 1
A Gap Curve. The Gap-Pc curve on the Leukemia dataset, 
with use of the Hier-S algorithm. At each point, error bars 
indicate the variation of the curve accross simulations. The 
curve shows a first maximum at k = 1, yielding a prediction of 
k* = 1, the next maximum is at k = 4, which is very close to 
the number of classes k* = 3.
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the computations were stopped because of their computa-
tional demand. A summary of the results is given in Table
T2 at the supplementary material web site for complete-
ness only. Indeed, the performance of ME was rather dis-
appointing, with the exception of Leukemia and
Lymphoma, accross algorithms and external indexes.

Consensus
For each of the first five datasets and each clustering algo-
rithm, we compute Consensus for a number of cluster val-
ues in the range [2,30]. Following the same experimental
set-up of Monti et al., for each cluster value k, we perform
500 resampling steps. In each step, 80% of the rows of the
matrix are extracted uniformly and at random to create a
new dataset, to be given to the clustering algorithm to be
clustered in k groups. The prediction of k* is based on the
plot of two curves, Δ(k) and Δ'(k), as a function of the
number k of clusters. Both curves are defined in the Meth-
ods section. As suggested by Monti et al., the first curve is
suitable for hierarchical algorithms while the second suits
non-hierarchical ones. We did not experiment for PBM,
since Consensus was very slow (execution on each algo-
rithm was terminated after a week). Contrary to Monti et
al. indication, we have computed the Δ(k) curve for all
algorithms on the first five datasets, for reasons that will
be self-evident shortly. The corresponding plots are avail-
able at the supplementary material web site (Figures sec-
tion) as Figs. S125-S134. We have also computed the Δ(k)
curve for the K-means algorithms, on the same datasets.
Since those curves are nearly identical to the Δ(k) ones,
they are omitted. In order to predict the number of clus-
ters in the datasets, we have used, for all curves, the rule
reported and explained in the Methods section: take as k*
the abscissa corresponding to the smallest non-negative
value where the curve starts to stabilize; that is, no big var-
iation in the curve takes place from that point on. We per-
formed such an analysis on the Δ(k) curves and the results
are summarized in Table 5, together with the correspond-
ing timing results.

As for the precision of Consensus, all algorithms perform
well, except for Hier-S. The results also show that the Δ
curve may be adequate for all algorithms. This contradicts
the recommendation by Monti et al. and a brief explana-
tion of the reason is given in the Methods section.

In conclusion, Consensus seems to be limited by time
demand that makes it not applicable to large datasets.
However, on small and medium sized datasets, it is
remarkably precise across algorithms. In fact, except for
Hier-S, the performance of Consensus is among the best
and reported in Table 9 for comparison with the perform-
ance of the other measures.

FOM and its extensions and approximations
For each algorithm, each of the FOM approximations
(denoted FOM-R-R0, FOM-R-R2, FOM-R-R5, respec-
tively) and each dataset, we have followed the same meth-
odology outlined for WCSS. The relevant plots are in Figs.
S135-S136 at the supplementary material web site (Fig-
ures section). The values resulting from the application of
this methodology to the relevant plots are reported in
Table 6 together with timing results for the relevant data-
sets. Using the same experimental setting, we have also
computed the k* predicted by G-FOM and DIFF-FOM, the
extensions of FOM proposed here. The results are in
Tables 7 and 8, respectively. As those results show, G-FOM
did not perform as well as the other two. Moreover, both
FOM and DIFF-FOM are algorithm-dependent and give
no useful indication on large datasets. As for the approxi-
mations of FOM, i.e., FOM-R-R0, FOM-R-R2, FOM-R-R5,
they compare very well with the K-means algorithms in
terms of precision and they are an order of magnitude
faster. The best performing methods, both for FOM and
DIFF-FOM, are reported in Table 9 for comparison with
the performance of the other measures.

Question (B): relative merits of each measure
The discussion here refers to Table 9. It is evident that the
K-means algorithms have superior performance with
respect to the hierarchical ones, although Hier-A has an
impressive and unmatched performance with Consensus.
The approximation algorithms we have proposed for both
WCSS and FOM are among the best performers. G-Gap
and DIFF-FOM also guarantee, with a proper choice of
algorithms, a good performance. In particular, G-Gap is
orders of magnitude faster than Gap and more precise.

However, Consensus and FOM stand out as being the
most stable across algorithms. In particular, Consensus
has a remarkable stability performance accross algorithms
and datasets.

For large datasets such as PBM, our experiments show that
all the measures are severely limited due either to speed
(Clest, Consensus, Gap-Pc) or to precision as well as
speed (the others). In our view, this fact stresses even
more the need for good data filtering and dimensionality
reduction techniques since they may help reduce such
datasets to sizes manageable by the measures we have
studied.

It is also obvious that, when one takes computer time into
account, there is a hierarchy of measures, with WCSS
being the fastest and Consensus the slowest. We see from
Table 9 that there is a natural division of methods in two
groups: slow (Clest, Consensus, Gap) and fast (the other
measures). Since there are at least two orders of magni-
tude of difference in time performance between the two
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groups, it seems reasonable to use one of the fast meth-
ods, for instance G-Gap, to limit the search interval for k*.
One can then use Consensus in the narrowed interval.
Although it may seem paradoxical, despite its precision
performance, FOM does not seem to be competitive in
this scenario. Indeed, it is only marginally better than the
best performing of WCSS and G-Gap but at least an order
of magnitude slower in time.

When one does not account for time, Consensus seems to
be the clear winner since it offers good precision perform-
ance accross algorithms at virtually the same price in
terms of time performance.

Conclusion
Prior to this research, all the measures we have considered
here were perceived as adequate for inferring the number
of clusters in a dataset, in particular for gene expression
data. This study provides further insights into the relative
merits of each of the measures we have considered, from
which more accurate and useful guidelines for their use
can be inferred. Moreover, extensions and approxima-
tions of those measures have also been proposed and they
turn out to be competitive, both in time and precision. We
have also offered a comparison among three resampling-
based prediction methods that is not available elsewhere
in the literature.

Overall, Consensus results to be the method of choice,
although the fast algorithms may be of great help in lim-
iting the search interval for k*.

It is also to be stressed that no measure performed well on
large datasets. In view of this finding, data reduction tech-
niques such as filtering and dimensionality reduction
become even more important for class discovery in micro-
array data. Another promising avenue of research is to
design fast approximation algorithms for the computa-
tion of the slowest measures, in particular Consensus.
Finally, we remark that Gap, Clest, ME and Consensus
have various parameters that a user needs to specify.
Those choices may affect both time performance and pre-
cision. Yet, no experimental study, addressing the issue of
parameter selection for those methods, seems to be avail-
able in the literature.

Methods
Internal measures
WCSS and its approximations
Consider a set of n items G = {g1,..., gn}, where gi is speci-
fied by m numeric values, referred to as features or condi-
tions, 1 ≤ i ≤ n. That is, each gi is an element in m-
dimensional space. Let D be the corresponding n × m data
matrix, let C = {c1,..., ck} be a clustering solution for G pro-
duced by a clustering algorithm and let

where  is the centroid of cluster cr. Then, we have:

Assume now to have kmax clustering solutions, each with a
number of clusters in [1, kmax]. Assume also that we want
to use WCSS to estimate, based on those solutions, what
is the real number k* of clusters in our dataset. Intuitively,
for values of k <k*, the value of WCSS should be substan-
tially decreasing, as a function of the number of clusters k.
Indeed, as we get closer and closer to the real number of
clusters in the data, the compactness of each cluster
should substantially increase, causing a substantial
decrease in WCSS. On the other hand, for values of k* > k,
the compactness of the clusters will not increase as much,
causing the value of WCSS not to decrease as much. The
following heuristic approach comes out [15]: Plot the val-
ues of WCSS, computed on the given clustering solutions,
in the range [1, kmax]; choose as k* the abscissa closest to
the "knee" in the WCSS curve. Fig. 2 provides an example.
Indeed, the dataset in Fig. 2(a) has two natural clusters
and the "knee" in the plot of the WCSS curve in Fig. 2(b)
indicates k* = 2.

The approximation of the WCSS curve proposed here is
based on the idea of reducing the number of executions by
a clustering algorithm A for the computation of WCSS(k),
for each k in a given interval [1, kmax]. In fact, given an inte-
ger R > 0, the approximate algorithm to compute WCSS
uses algorithm A to obtain a clustering solution with k
clusters only for values of k multiples of R. We refer to R
as the refresh step. For all other k's, a clustering solution is
obtained by merging two clusters in a chosen clustering
solution already available. The procedure below gives the
high level details. It takes as input R, A, D and kmax. Algo-
rithm A must be able to take as input a clustering solution
with k clusters and refine it to give as output a clustering
solution with the same number of clusters.

Procedure WCSS-R(R, A, D, kmax)

(1) Compute a clustering solution  with kmax clusters

using algorithm A on dataset D. Compute WCSS(kmax)

using .

(2) For k := kmax - 1 down to k = 1, execute steps (2.a) (2.b)
and (2.c).
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(2.a) (Merge) Merge the two clusters in Pk+1 with mini-

mum Euclidean distance between centroids to obtain a

temporary clustering solution  with k clusters.

(2.b) (Refresh) If (R = 0) or (k mod R > 0) set Pk equal to

. Else compute new Pk based on . That is,  is given

as input to A, as an initial partition of D in k clusters, and
Pk is the result of that computation.

(2.c) Compute WCSS(k) using Pk.

Technically, the main idea in the approximation scheme
is to interleave the execution of a partitional clustering
algorithm A with a merge step typical of agglomerative
clustering. The gain in speed is realized by having a fast
merge step, based on k + 1 clusters, to obtain k clusters
instead of a new full fledged computation, starting from
scratch, of the algorithm A to obtain the same number of
clusters. The approximation scheme would work also for
hierarchical algorithms, provided that they comply with
the requirement that, given in input a dataset, they will
return a partition into k groups. However, in this circum-
stance, the approximation scheme would be a nearly exact
replica of the hierarchical algorithm. In conclusion, we
have proposed a general approximation scheme, where
the gain is realized when the merge step is faster than a
complete computation of a clustering algorithm A. We
have experimented with K-means-R and with values of the

refresh step R = 0, 2, 5, i.e., the partitional clustering algo-
rithm is used only once, every two and five steps, respec-
tively.

KL
KL is based on WCSS, but it is automatic, i.e., a numeric
value for k* is returned. Let

DIFF(k) = (k - 1)2/mWCSS(k - 1) - k2/mWCSS(k)
(3)

Recall from the previous subsection the behavior of
WCSS, as a function of k and with respect to k*. Based of
those considerations, we expect the following behavior
for DIFF(k):

(i) for k <k*, both DIFF(k) and DIFF(k + 1) should be large
positive values.

(ii) for k > k*, both DIFF(k) and DIFF(k + 1) should be
small values, and one or both might be negative.

(iii) for k = k*, DIFF(k) should be large positive, but
DIFF(k + 1) should be relatively small (might be nega-
tive).

Based on these considerations, Krzanowski and Lai pro-
posed to choose the estimate on the number of clusters as
the k maximizing:

′Pk

′Pk ′Pk ′Pk

An example of number of cluster prediction with the use of WCSSFigure 2
An example of number of cluster prediction with the use of WCSS. (a) Dataset. (b) Plot of the values of WCSS with 
the use of K-means-R on the dataset displayed in (a). The "knee" in the plot indicates the correct number of clusters in the 
dataset: k* = 2.
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That is,

Notice that KL(k) is not defined for the important special
case of k = 1, i.e., no cluster structure in the data.

Gap and its geometric approximation
The measures presented so far are either useless or not
defined for the important special case k = 1. Tibshirani et
al. [15] brilliantly combine techniques of hypothesis test-
ing in statistics with the WCSS heuristic, to obtain Gap, a
measure that can deal also with the case k = 1. In order to
describe the method, we need to recall briefly null models
used to test for the hypothesis of no cluster structure in a
dataset, i.e., the null hypothesis. We limit ourselves to
introduce the two that find common use in microarray
data analysis [15], in addition to another closely related
and classic one [34]:

(M.1) Ps (The Poisson Model). The items can be represented
by points that are randomly drawn from a region R in m-
dimensional space. In order to use this model, one needs
to specify the region within which the points are to be uni-
formly distributed. The simplest regions that have been
considered are the m-dimensional hypercube and hyper-
sphere enclosing the points specified by the matrix D.
Other possibilities, in order to make the model more data-
dependent, is to choose the convex hull enclosing the
points specified by D.

(M.2) Pc (The Poisson Model Aligned with Principal Compo-
nents of the Data). This is basically as (M.1), except that the
region R is a hypercube aligned with the principal compo-
nents of the data matrix D.

In detail, assume that the columns of D have mean zero
and let D = UXVT be its singular value decomposition.
Transform via D' = DV. Now, use D' as in (M.1) with sam-
pling in a hypercube R to obtain a data set Z'. Back trans-
form via Z = Z'VT to obtain a new dataset.

(M.3) Pr (The Permutational Model). Given the data matrix
D, one obtains a new data matrix D' by randomly permut-
ing the elements within the rows and/or the columns of
D. In order to properly implement this model, care must
be taken in specifying a proper permutation for the data
since some similarity and distance functions may be
insensitive to permutations of coordinates within a point.

That is, although D' is a random permutation of D, it may
happen that the distance or similarity among the points in
D' is the same as in D, resulting in indistinguishable data-
sets for clustering algorithms.

The intuition behind Gap is brilliantly elegant. Recall that
the "knee" in the WCSS curve can be used to predict k*.
Unfortunately, the localization of such a point may be
subjective. Now, consider the WCSS curves in Fig. 3. That
is, the plot is obtained with use of the WCSS(k) values.
The curve in green is the WCSS computed with K-means-
R on the CNS Rat dataset. The curve in red is the average
WCSS curve, computed on ten datasets generated from the
original data via the Ps null model. As it is evident from
the figure, the red curve has a nearly constant slope: an
expected behavior on datasets with no cluster structure in
them. The vertical lines indicate the gap between the null
model curves and the real curve. Since WCSS is expected
to decrease sharply up to k*, on the real dataset, while it
has a nearly constant slope on the null model datasets, the
length of the vertical segments is expected to increase up
to k* and then to decrease. In fact, in Fig. 3, we see that k*
= 7, a value very close to the number of classes (six) in the

KL k
DIFF k

DIFF k
( ) |

( )
( )

|=
+1

(4)

k max KL kk kmax
* arg ( )= ≤ ≤2 (5)

A geometric interpretation of GapFigure 3
A geometric interpretation of Gap. The curve in green 
is the WCSS computed with K-means-R on the CNS Rat 
dataset. The curve in red is the average WCSS curve, com-
puted on ten datasets generated from the original data via 
the Ps null model. The vertical lines indicate the gap between 
the null model curves and the real curve. Since WCSS is 
expected to decrease sharply up to k*, on the real dataset, 
while it has a nearly constant slope on the null model data-
sets, the length of the vertical segments is expected to 
increase up to k* and then to decrease. In fact, we get k* = 7, 
a value very close to the number of classes (six) in the data-
set.
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dataset. Normalizing the WCSS curves via logs and
accounting also for the simulation error, such an intuition
can be given under the form of the procedure reported
next, where � is the number of simulation steps and the
remaining parameters are as in procedure WCSS-R.

Procedure GP(�, A, D, kmax)

(1) For 1 ≤ i ≤ �, compute a new data matrix Di, using the
chosen null model. Let D0 denote the original data matrix.

(1.a) For 0 ≤ i ≤ � and 1 ≤ k ≤ kmax, compute a clustering
solution Pi,k on Di using algorithm A.

(2) For 0 ≤ i ≤ � and 1 ≤ k ≤ kmax, compute log(WCSS(k))
on Pi,k and store the result in matrix SL[i, k].

(2.a) For 1 ≤ k ≤ kmax, compute

.

(2.b) For 1 ≤ k ≤ kmax, compute the standard deviation

sd(k) of the set of numbers {SL[1, k],... SL[�, k ]} and let

.

(3) Return as k* the first value of k such that Gap(k) ≤
Gap(k + 1) - s(k + 1).

The prediction of k* is based on running a certain number
of times the procedure GP taking then the most frequent
outcome as the prediction. We also point out that further
improvements and generalizations of Gap have been pro-
posed in [30].

The geometric interpretation of Gap and the behavior of
the WCSS curve accross null models suggests the fast
approximation G-Gap. The intuition, based on experi-
mental observations, is that one can skip the entire simu-
lation phase of Gap, without compromising too much the
accuracy of the prediction of k*. Indeed, based on the
WCSS curve, the plot of the log WCSS curve one expects,
for a given clustering algorithm and null model, is a
straight line with a slope somewhat analogous to that of
the log WCSS curve and dominating it. Therefore, one can
simply identify the "knee" in the WCSS by translating the
end-points of the log WCSS curve on the original dataset
by a given amount a, to obtain two points gs and ge. Those
two points are then joined by a straight line, which is used
to replace the null model curve to compute the segment
lengths used to predict k*, i.e, the first maximum among
those segment lenghts as k increases. An example is pro-
vided in Fig. 4 with the WCSS curve of Fig. 3. The predic-
tion is k* = 7, which is very close to the correct k* = 6. We
point out that the use of the WCSS curve in the figure is to

make clear the behavior of the segment lengths, which
would be unnoticeable with the log WCSS curve, although
the result would be the same.

Clest

Clest estimates k* by iterating the following: randomly
partition the original dataset in a learning set and training
set. The learning set is used to build a classifier  for the
data, then to be used to derive "gold standard" partitions
of the training set. That is, the classifier is assumed to be a
reliable model for the data. It is then used to assess the
quality of the partitions of the training set obtained by a
given clustering algorithm. Clest generalizes in many
respects an approach proposed by Breckenridge [35] and
can be regarded as a clever combination of hypothesis
testing and resampling techniques. We detail it in the fol-
lowing procedure. With reference to GP, the four new
parameters it takes as input are: (a) an external index E,
i.e., a function that quantifies how similar two partitions
are; (b) pmax, a "significance level" threshold; (c) dmin, a

minimum allowed difference between "computed and
expected" values; (d) H, the number of resampling steps;

Gap( ) [ , ] [ , ]k SL i k SL k
i

= −=∑1 0
1

s k sd k( ) ( ) ( )= +1 1



An example of number of cluster prediction with the use of G-GapFigure 4
An example of number of cluster prediction with the 
use of G-Gap. The G-Gap Heuristic. The curve in green is a 
WCSS curve obtained on the CNS Rat dataset with the use 
of the K-means algorithm. The line in red is obtained by pro-
jecting upward the end points of the WCSS curve by a units 
and then joining them. It is a heuristic approximation of 
WCSS for a null model. The vertical lines have the same role 
as in Gap and the rule to identify k* is the same, yielding a 
value k* = 7, a value very close to the correct number of 
classes(six) in the dataset.
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(e) a classifier  used to obtain the "gold standard" par-
titions of the training set.

(1) For 2 ≤ k ≤ kmax, perform steps (1.a)-(1.d).

(1.a) For 1 ≤ h ≤ H, split the input dataset in L and T, the
learning and training sets, respectively.

Cluster the elements of L in k clusters using algorithm A
and build a classifier . Apply  to T in order to obtain
a "gold solution" GSk. Cluster the elements of T in k

groups GAk using algorithm A.

Let SIM[k, h] = E(GSk, GAk).

(1.b) Compute the observed similarity statistic tk =
median(SIM[k, 1],..., SIM[k, H]).

(1.c) For 1 ≤ b ≤ �, generate (via a null model), a data
matrix D(b), and repeat steps (1.a) and (1.b) on D(b).

(1.d) Compute the average of these H statistics, and

denote it with . Finally, compute the p-value pk of tk and

let dk = tk -  be the difference between the statistic

observed and its estimate expected value.

(2) Define a set K = {2 ≤ k ≤ kmax : pk ≤ pmax and dk ≥ dmin}

(3) Based on K return a prediction for k* as: if K is empty
then k* = 1, else k* = argmax k ∈ K dk

ME
Let f denote a sampling ratio, i.e., the percentage of items
one extracts from sampling a given dataset. The idea sup-
porting ME is that the inherent structure in a dataset has
been identified once one finds a k such that partitions into
k clusters produced by a clustering algorithm are similar,
when obtained by repeatedly subsampling the dataset.
This idea can be formalized by the following algorithm,
that takes as input parameters analogous to Clest except
for f and Subs, this latter being a subsampling scheme that
extracts f percentage items from D. It returns as output an
(kmax - 1) × H array SIM, analogous to the one computed
by Clest and whose role here is best explained once that
the procedure is presented.

Procedure ME(f, H, A, E, D, Subs, kmax)

(1) For 2 ≤ k ≤ kmax and 1 ≤ h ≤ H, perform steps (1.a)-(1.c).

(1.a) Compute two subsamples D(1) and D(2) of D, via
Subs.

(1.b) For each D(i), compute a clustering solution GAk,i
with k clusters, using algorithm A, 1 ≤ i ≤ 2.

(1.c) Let  be GAk,1, but restricted to the elements

common to D(1) and D(2). Let  be defined analo-

gously. Let SIM[k, h] = E( , ).

Once that the SIM array is computed, its values are histo-
grammed, separately for each value of k, i.e., by rows. The
optimal number of clusters is predicted to be the lowest
value of k such that there is a transition of the SIM value
distribution from being close to one to a wider range of
values. An example is given in Fig. 5, where the transition
described above takes place at k = 2 for a correct prediction
of k* = 2.

Consensus
Consensus is also based on resampling techniques. In
analogy with WCSS, one needs to analyze a suitably
defined curve in order to find k*. It is best presented as a
procedure. With reference to GP, the two new parameters
it takes as input are a resampling scheme Sub, i.e., a way to
sample from D to build a new data matrix, and the
number H of resampling iterations.

Procedure Consensus(Sub, H, A, D, kmax)

(1) For 2 ≤ k ≤ kmax, initialize to empty the set M of con-
nectivity matrices and perform steps (1.a) and (1.b).

(1.a) For 1 ≤ h ≤ H, compute a perturbed data matrix D(h)

using resampling scheme Sub; cluster the elements in k
clusters using algorithm A and D(h). Compute a connectiv-
ity matrix M(h) and insert it into M.

(1.b) Based on the connectivity matrices in M, compute a

consensus matrix .

(2) Based on the kmax - 1 consensus matrices, return a pre-
diction for k*.

The resampling scheme in this case extracts, uniformly
and at random, a given percentage of the rows of D. As for
the connectivity matrix M(h), one has M(h)(i, j) = 1 if items
i and j are in the same cluster and zero otherwise. Moreo-
ver, we also need to define an indicator matrix I(h) such
that I(h)(i, j) = 1 if items i and j are both in D(h)and it is zero

otherwise. Then, the consensus matrix  is defined as



Procedure Clest ( , , , , , , , , )H A E D k p dmax max min

 

t k
0

t k
0

GAk′ ,1

GAk′ ,2

GAk′ ,1 GAk′ ,2

( )k

( )k
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a properly normalized sum of all connectivity matrices in
all perturbed datasets:

Based on , Monti et al. define a value A(k) measur-
ing the level of stability in cluster assignments, as reflected
by the consensus matrix. Formally,

where CDF is the empirical cumulative distribution
defined over the range [0, 1] as follows:

with l equal to 1 if the condition is true and 0 otherwise.
Finally, based on A(k), one can define:

Moreover, Monti et al. suggested the use of the function Δ'
for non-hierarchical algorithms. It is defined as Δ
although one uses A'(k) = maxk' ∈ [2, k] A(k'). Based on the
Δ or Δ' curve, the value of k* is obtained using the follow-
ing intuitive idea, based also on experimetal observations.

(i) For each k ≤ k*, the area A(k) markedly increases. This
results in an analogous pronounced decrease of the Δ and
Δ' curves.

(ii) For k > k*, the area A(k) has no meaningful increases.
This results in a stable plot of the Δ and Δ' curves.
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( )
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I h
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An example of number of cluster prediction with the use of MEFigure 5
An example of number of cluster prediction with the use of ME. Consider the computation of the ME algorithm on 
the dataset of Fig. 2(a). The histograms plotting the SIM values distribution for increasing values of k are shown above. The 
transition allowing for the prediction of k* takes place at k = 2 for a correct prediction of k* = 2.
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From this behaviour, the "rule of thumb" to identify k* is:
take as k* the abscissa corresponding to the smallest non-
negative value where the curve starts to stabilize; that is,
no big variation in the curve takes place from that point
on. An example is given in Fig. 6.

As pointed out in the previous section, our recommenda-
tion to use the Δ curve instead if the Δ' curve for non-hier-
archical algorithms contradicts the recommendation by
Monti et al. The reason is the following: A(k) is a value
that is expected to behaves like a non-decreasing function
of k, for hierarchical algorithms. Therefore Δ(k) would be
expected to be positive or, when negative, not too far from
zero. Such a monotonicity of A(k) is not expected for non-
hierarchical algorithms. Therefore, another definition of Δ
is needed to ensure a behavior of this function analogous
to the hierarchical algorithms. We find that, for the parti-
tional algorithms we have used, A(k) displays nearly the
same monotonicity properties of the hierarchical algo-
rithms. The end result is that the same definition of Δ can
be used for both types of algorithms. To the best of our
knowledge, Monti et al. defined the function Δ', but their
experimentation was limited to hierarchical algorithms.

FOM and its extensions and approximations
FOM is a family of internal validation measures intro-
duced by Ka Yee Yeung et al. specifically for microarray
data and later extended in several directions by Datta and
Datta [36]. Such a family is based on the jackknife
approach and it has been designed for use as a relative
measure assessing the predictive power of a clustering
algorithm, i.e., its ability to predict the correct number of

clusters in a dataset. Experiments by Ka Yee Yeung et al.
show that the FOM family of measures satisfies the fol-
lowing properties, with a good degree of accuracy. For a
given clustering algorithm, it has a low value in corre-
spondence with the number of clusters that are really
present in the data. Moreover, when comparing clustering
algorithms for a given number of clusters k, the lower the
value of FOM for a given algorithm, the better its predic-
tive power. We now review this work, using the 2-norm
FOM, which is the most used instance in the FOM family.

Assume that a clustering algorithm is given the data matrix
D with column e excluded. Assume also that, with that
reduced dataset, the algorithm produces a set of k clusters
C = {c1,..., ck}. Let D(g, e) be the expression level of gene g
and mi(e) be the average expression level of condition e for
genes in cluster ci.

The 2-norm FOM with respect to k clusters and condition
e is defined as:

Notice that FOM(e, k) is essentially a root mean square
deviation. The aggregate 2-norm FOM for k clusters is
then:

FOM( , ) ( ( , ) ( ))e k
n

D x e m ei

x ci

k

i

= −
∈=
∑∑1 2

1

(7)

FOM FOM( ) ( , ).k e k
e

m

=
=

∑
1

(8)

An example of number of cluster prediction with the use of ConsensusFigure 6
An example of number of cluster prediction with the use of Consensus. The experiment is derived from the CNS 
Rat dataset, with use of the K-means-R clustering algorithm. The plots of the CDF curves is shown in (a), yielding a monotoni-
cally increasing value of A as a function of k. The plot of the Δ' curve is shown in (b), where the flattening effect corresponding 
to k* is evident for k ≥ k* = 6.
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Both formulae (7) and (8) can be used to measure the pre-
dictive power of an algorithm. The first gives us more flex-
ibility, since we can pick any condition, while the second
gives us a total estimate over all conditions. So far, (8) is
the formula mostly used in the literature. Moreover, since
the experimental studies conducted by Ka Yee Yeung et al.
show that FOM(k) behaves as a decreasing function of k,
an adjustment factor has been introduced to properly
compare clustering solutions with different numbers of
clusters. A theoretical analysis by Ka Yee Yeung et al. pro-
vides the following adjustment factor:

When (9) divides (7), we refer to (7) and (8) as adjusted
FOMs. We use the adjusted aggregate FOM for our experi-
ments and, for brevity, we refer to it simply as FOM.

The use of FOM in order to establish how many clusters
are present in the data follows the same heuristic method-
ology outlined for WCSS, i.e., one tries to identify the
"knee" in the FOM plot as a function of the number of
clusters. An example is provided in Fig. 7. Such an analogy
between FOM and WCSS immediately suggest to extend
some of the knowledge available about WCSS to FOM, as
follows:

• The approximation of FOM is based on exactly the same
ideas and schemes presented for the approximation of
WCSS. Indeed, FOM(e, k) in equation (7) can be approx-
imated in exactly the same way as WCSS(k). Then, one
uses equation (8) to approximate FOM. We denote those
approximations as FOM-R.

• The G-Gap idea can be extended verbatim to FOM to
make it automatic and to obtain G-FOM.

• The KL technique can be extended to FOM, although the
extension is subtle. Indeed, a verbatim extension of it
would yield poor results (experiments not shown).
Rather, consider formula (3), with WCSS(k) substituted
by FOM(k). As k increases towards k*, DIFF(k) increases to
decrease sharply and then assume nearly constant values
as it moves away from k*. Fig. 7 provides a small example
of this behavior. So, one can take as k* the abscissa corre-
sponding to the maximum of DIFF(k) in the interval [3,
kmax]. We refer to this method as DIFF-FOM.
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An example of number of cluster prediction with the use of FOMFigure 7
An example of number of cluster prediction with the 
use of FOM. The FOM curve computed on the Leukemia 
dataset with K-means-R. As for WCSS, the "knee" in the plot 
indicates the correct number of clusters in the dataset: k* = 
3.
Page 18 of 19
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:462 http://www.biomedcentral.com/1471-2105/9/462
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

References
1. Stanford Microarray DataBase   [http://genome-www5.stan

ford.edu/]
2. Everitt B: Cluster Analysis London: Edward Arnold; 1993. 
3. Hansen P, Jaumard P: Cluster Analysis and Mathematical Pro-

gramming.  Mathematical Programming 1997, 79:191-215.
4. Hartigan JA: Clustering Algorithms John Wiley and Sons; 1975. 
5. Jain AK, Murty MN, Flynn PJ: Data Clustering: a Review.  ACM

Computing Surveys 1999, 31(3):264-323.
6. Kaufman L, Rousseeuw PJ: Finding Groups in Data: An Introduction to

Cluster Analysis New York: Wiley; 1990. 
7. Mirkin B: Mathematical Classification and Clustering Kluwer Academic

Publisher; 1996. 
8. Rice JA: Mathematical Statistics and Data Analysis Wadsworth; 1996. 
9. Hastie T, Tibshirani R, Friedman J: The Elements of Statistical Learning

Springer; 2003. 
10. Handl J, Knowles J, Kell DB: Computational Cluster Validation

in Post-genomic Data Analysis.  Bioinformatics 2005,
21(15):3201-3212.

11. Milligan GW, Cooper MC: An examination of procedures for
determining the number of clusters in a data set.  Psy-
chometrika 1985, 50:159-179.

12. Dudoit S, Fridlyand J: A Prediction-based Resampling Method
for Estimating the Number of Clusters in a Dataset.  Genome
Biol 2002, 3(7):RESEARCH0036.

13. Monti S, Tamayo P, Mesirov J, Golub T: Consensus Clustering: A
resampling-based Method for Class Discovery and Visualiza-
tion of Gene Expression Microarray Data.  Machine Learning
2003, 52:91-118.

14. Yeung KY, Haynor DR, Ruzzo WL: Validating Clustering for
Gene Expression Data.  Bioinformatics 2001, 17:309-318.

15. Tibshirani R, Walther G, Hastie T: Estimating the Number of
Clusters in a Dataset via the Gap Statistics.  Journal Royal Statis-
tical Society B 2001, 2:411-423.

16. Ben-Hur A, Elisseeff A, Guyon I: A Stability Based Method for
Discovering Structure in Clustering Data.  Pac Symp Biocomput
2002:6-17.

17. Krzanowski W, Lai Y: A Criterion for Determining the Number
of Groups in a Dataset Using Sum of Squares Clustering.  Bio-
metrics 1985, 44:23-34.

18. McLachlan GJ, Khan N: On a resampling approach for tests on
the number of clusters with mixture model-based clustering
of tissue samples.  J Multivar Anal 2004, 90:90-105.

19. Kapp A, Tibshirani R: Are clusters found in one dataset present
in another dataset?  Biostatistics 2007, 8:9-31.

20. Di Gesú V, Giancarlo R, Lo Bosco G, Raimondi A, Scaturro D: Gen-
clust: A Genetic Algorithm for Clustering Gene Expression
Data.  BMC Bioinformatics 2005, 6:289.

21. Wen X, Fuhrman S, Michaels GS, Carr GS, Smith DB, Barker JL, Som-
ogyi R: Large Scale Temporal Gene Expression Mapping of
Central Nervous System Development.  Proc of The National
Academy of Science USA 1998, 95:334-339.

22. Alizadeh A, Eisen M, Davis R, Ma C, Lossos I, Rosenwald A, Boldrick
J, Sabet H, Tran T, Yu X, Powell J, Yang L, Marti G, Moore T, Hudson
JJ, Lu L, Lewis D, Tibshirani R, Sherlock G, Chan W, Greiner T,
Weisenburger D, Armitage J, Warnke R, Levy R, Wilson W, Grever
M, Byrd J, Botstein D, Brown P, Staudt L: Distinct types of diffuse
large B-cell lymphoma identified by gene expression profil-
ing.  Nature 2000, 403:503-511.

23. NCI 60 Cancer Microarray Project   [http://genome-www.stan
ford.edu/NCI60]

24. Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB,
Brown PO, Botstein D, Futcher B: Comprehensive Identification
of Cell Cycle Regulated Genes of the Yeast Saccharomyces
Cerevisiae by Microarray Hybridization.  Mol Biol Cell 1998,
9:3273-3297.

25. Shamir R, Sharan R: Algorithmic Approaches to Clustering
Gene Expression Data.  In Current Topics in Computational Biology
Edited by: Jiang T, Smith T, Xu Y, Zhang MQ. Cambridge, Ma: MIT
Press; 2003:120-161. 

26. Hartuv E, Schmitt A, Lange J, Meier-Ewert S, Lehrach H, Shamir R: An
algorithm for Clustering of cDNAs for Gene Expression
Analysis Using Short Oligonucleotide Fingerprints.  Genomics
2000, 66:249-256.

27. Jain A, Dubes R: Algorithms for Clustering Data Englewood Cliffs: Pren-
tice-Hall; 1988. 

28. Priness I, Maimon O, Ben-Gal I: Evaluation of Gene-expression
Clustering via Mutual Information Distance Measure.  BMC
Bioinformatics 2007, 8:111.

29. Suppelementary material web site   [http://www.math.unipa.it/
~raffaele/suppMaterial/benchmarking/benchmarking/Index.html]

30. Yan M, Ye K: Determining the Number of Clusters with the
Weighted Gap Statistics.  Biometrics 2007, 63:1031-1037.

31. Fowlkes E, Mallows C: A Method for Comparing Two Hierar-
chical Clusterings.  Journal of the American Statistical Association
1983, 78:553-584.

32. Hubert L, Arabie P: Comparing Partitions.  Journal of Classification
1985, 2:193-218.

33. Rijsbergen CV: Information Retrieval second edition. London: Butter-
worths; 1979. 

34. Gordon AD: Null Models in Cluster Validation.  In From Data to
Knowledge: Theoretical and Practical Aspects of Classification Springer
Verlag; 1996:32-44. 

35. Breckenridge JN: Replicating Cluster Analysis: Method, Con-
sistency, and Validity.  Multivariate Behavioral Research 1989,
24(2):147-161.

36. Datta S, Datta S: Comparisons and validation of Statistical
Clustering Techniques for Microarray Gene Expression
Data.  Bioinformatics 2003, 19:459-466.
Page 19 of 19
(page number not for citation purposes)

http://genome-www5.stanford.edu/
http://genome-www5.stanford.edu/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15914541
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15914541
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12184810
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12184810
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11301299
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11301299
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11928511
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11928511
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16613834
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16613834
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16336639
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16336639
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16336639
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10676951
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10676951
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10676951
http://genome-www.stanford.edu/NCI60
http://genome-www.stanford.edu/NCI60
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9843569
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9843569
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9843569
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10873379
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10873379
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10873379
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17397530
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17397530
http://www.math.unipa.it/~raffaele/suppMaterial/benchmarking/benchmarking/Index.html
http://www.math.unipa.it/~raffaele/suppMaterial/benchmarking/benchmarking/Index.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17425640
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17425640
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12611800
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12611800
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12611800
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results and discussion
	Experimental setup
	Data sets
	CNS Rat
	Leukemia
	Lymphoma
	NCI60
	Yeast
	PBM

	Clustering algorithms and their stability
	Similarity/Distance Functions
	Hardware

	Question (A)-Intrinsic precision of the internal measures
	WCSS and its approximations
	KL
	Gap and its geometric approximation
	Clest
	ME
	Consensus
	FOM and its extensions and approximations

	Question (B): relative merits of each measure

	Conclusion
	Methods
	Internal measures
	WCSS and its approximations

	KL
	Gap and its geometric approximation
	Clest
	ME
	Consensus
	FOM and its extensions and approximations
	Availability

	Competing interests
	Authors' contributions
	Acknowledgements
	References

