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Abstract

Background: The local connectivity and global position of a protein in a protein interaction
network are known to correlate with some of its functional properties, including its essentiality or
dispensability. It is therefore of interest to extend this observation and examine whether network
properties of two proteins considered simultaneously can determine their joint dispensability, i.e.,
their propensity for synthetic sick/lethal interaction. Accordingly, we examine the predictive power
of protein interaction networks for synthetic genetic interaction in Saccharomyces cerevisiae, an
organism in which high confidence protein interaction networks are available and synthetic sick/
lethal gene pairs have been extensively identified.

Results: We design a support vector machine system that uses graph-theoretic properties of two
proteins in a protein interaction network as input features for prediction of synthetic sick/lethal
interactions. The system is trained on interacting and non-interacting gene pairs culled from large
scale genetic screens as well as literature-curated data. We find that the method is capable of
predicting synthetic genetic interactions with sensitivity and specificity both exceeding 85%. We
further find that the prediction performance is reasonably robust with respect to errors in the
protein interaction network and with respect to changes in the features of test datasets. Using the
prediction system, we carried out novel predictions of synthetic sick/lethal gene pairs at a genome-
wide scale. These pairs appear to have functional properties that are similar to those that
characterize the known synthetic lethal gene pairs.

Conclusion: Our analysis shows that protein interaction networks can be used to predict
synthetic lethal interactions with accuracies on par with or exceeding that of other computational
methods that use a variety of input features, including functional annotations. This indicates that
protein interaction networks could plausibly be rich sources of information about epistatic effects
among genes.

Background emergence and organization of function at the genome
Successful prediction of gene function from disparate data  level, and lead to the understanding of disease mecha-
sources is an important challenge in the post-genomicera.  nisms or prediction of drug targets. Functional organiza-
Methods to do so can illuminate new mechanisms for the  tion of genes is often dramatically revealed by their
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positions in biomolecular networks and the topological
constraints that these positions entail. Much work has
been done on using graph properties of protein interac-
tion networks (PINs) to elucidate gene and protein func-
tion, particularly in the baker's yeast Saccharomyces
cerevisiae for which high quality genome-scale interaction
maps (or graphs) can be constructed. In these interaction
graphs, nodes represent individual proteins and edges
represent their physical binding. Several previous reports
find interesting correlations between network properties
and aspects of biological function [1-10]. For example,
pairwise correlations have been found between protein
degree/centrality, gene essentiality, and evolutionary rate
[1-4]. Other methods attempt to uncover sets of genes
implicated in a common function, i.e., functional mod-
ules, from network structure [5-9]. Yet other methods
combine graph-theoretic data with other data sources,
such as expression levels [11] or functional annotation of
neighboring proteins in the interaction map [12-16], to
further elucidate function.

One of the earliest observed correlations between a graph-
theoretic property and a functional attribute is the well-
known correlation between the degree (i.e., the number of
interaction partners or "hubness") of a protein in a yeast
PIN and the essentiality of the corresponding protein-cod-
ing gene [1,17] (an essential gene is one that produces a
lethal phenotype when deleted). Correlations between
essentiality and other graph properties, including various
centrality measures, have also been reported in yeast [2-4]
and other organisms such as the nematode worm
Caenorhabditis elegans and fruit fly Drosophila melanogaster
[4]. The principal observation emerging from these stud-
ies is that essential proteins tend to be over-represented
among proteins with high degrees and high centralities in
a PIN. This leads to the hypothesis that the indispensabil-
ity of a given protein for cellular function is at least par-
tially determined by both its local connectivity
(quantified by degree) and its global position (quantified
by other centrality measures) in a PIN [2,1].

Synthetic lethal interactions are important genetic interac-
tions for understanding biological function and for poten-
tially developing novel classes of drug targets [18]. Two
genes are said to participate in a synthetic lethal interac-
tion if simultaneous deletion mutations in both, but not
in any one alone, cause lethality. Thus, the concept of syn-
thetic lethality may be viewed as an extension of essenti-
ality. Indeed, it has been recently proposed that the type
of genetic redundancy conferred by synthetic lethality
leads to redundancy being more prevalent among pro-
teins that are highly connected and highly central in PINs
[19]. This finding implies correlations between PIN graph
properties and synthetic lethality similar to the correla-
tions with essentiality of single genes. In fact, such corre-
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lations have also been reported earlier. Tong et.al. [20]
observed that synthetic genetic interactions, including
synthetic lethal (SL) and synthetic sick (SS, where simul-
taneous deletion of two genes causes growth retardation)
interactions, are more prevalent between genes encoding
proteins within the same protein complex (two or more
proteins that form a clique) than between those encoding
proteins across complexes or between proteins that are
not part of any known complex. These authors also
addressed the issue of using this correlation to predict pro-
tein-protein interactions from synthetic genetic interac-
tions, and concluded that this predictive value is limited
because few (approximately 1%) gene pairs encode pro-
teins that are members of the same complex. They further
find that the number of common neighbors between two
genes in a synthetic genetic network correlates with the
existence of a protein-protein interaction between the cor-
responding gene products. It is well understood that pro-
teins encoded by genes having synthetic genetic
interaction are enriched among proteins that lie in sepa-
rate pathways as opposed to the same pathway (see, for
example, [9,17]), thus further indicating a preference for
protein network position among the products of synthetic
gene pairs. In spite of these studies, it is an open question
whether there is enough information in PINs alone for
determining synthetic lethal interactions. The conceptual
basis for this expectation is that all biological function is
ultimately defined by the interaction of proteins with
other proteins, DNA/RNA, or small molecules (metabo-
lites). Since most protein-DNA/RNA or protein-metabo-
lite interactions are directly or indirectly influenced by
other protein-protein interactions, it is reasonable that the
structure of the PIN might encode sufficient information
for all other interaction networks. However, this encoding
could be subtle and perhaps beyond simple linear statisti-
cal correlations envisaged in explicit analytical models.

Arguably the most systematic and accurate method to date
for genome-wide prediction of synthetic sick or lethal
(SSL) interactions was carried out by Wong et al. [21] in
Saccharomyces cerevisiae using multiple input features,
including protein interactions, gene expression, func-
tional annotation, and sequence motifs. The method can
be used to streamline the SSL discovery process wherein it
would require one to experimentally test less than 20% of
the pairs to discover SSL pairs with 80% success rate. But
the method relies on disparate data sources (viz., expres-
sion data, subcellular localization, physical complexes)
which are not readily available for organisms other than
S. cerevisiae. Furthermore, the success of this method does
not answer the question posed in the previous paragraph.

Here we study, in S. cerevisiae, the extent to which a SSL
interaction between two genes can be predicted solely
from the topological properties of the corresponding pro-
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teins in a PIN and from the knowledge of other SSL inter-
actions that the genes in question participate in. Our
motivation stems not only from the expectations
described above, but also from the observation that the
yeast protein interaction network formed by literature
curated interactions [22], composed of ~3300 proteins
and ~12000 interactions, is substantially larger than the
size of the most recent synthetic genetic network formed
by literature curated and high-throughput screen interac-
tions (~1000 genes and ~7000 interactions [20,23,22]),
thus potentially enabling the discovery of new SSL inter-
actions. Strikingly, we find that the best overall accuracy
for SSL prediction from protein interaction data is compa-
rable or higher than that found via a combination of dis-
parate inputs [21], thus confirming the predictive power
of PINs for SSL interactions and opening up the possibil-
ity of predicting the SSL network for other organisms
where genome-scale protein interaction networks have
been found.

Methods

Protein Interaction Network (PIN) data

For computing network properties associated with pro-
tein-protein interactions in yeast, we used the literature
curated protein interactions in Saccharomyces cerevisiae
culled by Reguly et.al [22]. This network contains 3289
proteins and 11334 interactions.

PIN graph-theoretic properties used for predicting SSLs
For use as inputs to a Support Vector Machine (SVM) clas-
sifier, we computed the following PIN graph-theoretic
properties for each protein.

(a) Degree: the number of direct interactions with other
proteins.

(b) Clustering coefficient [24]: the fraction of possible
interactions among direct neighbors of a protein in the
PIN.

(c) Closeness centrality [25]: Let d(p, q) be the shortest dis-
tance between proteins p and ¢ in a PIN. Then the close-
ness centrality of protein p is defined as (n - 1)/Z,d(p, q),
where n is the total number of proteins in the PIN. It
therefore measures the extent to which protein p is close
to all other proteins in the PIN.

(d) Normalized betweenness centrality [26]: Let o, ,be the
number of shortest paths between proteins p and ¢ in a
PIN, and let o, ,(r) be the number of shortest paths
between p and g that pass through protein r. Then the
betweenness centrality of r is defined as Xg, ,(r)/0,,
where the sum is taken over all distinct pairs p and g. We
normalize this measure to lie between 0 and 1 by dividing
the betweenness centrality by the total number of pairs in
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the network not including 7: (n - 1)(n - 2), where n is the
number of proteins in the PIN of interest. It essentially
measures the fraction of network shortest paths that a
given protein lies on.

(e) Eigenvector centrality [27]: Let v denote the (row or
column) index of a particular protein in the adjacency
matrix corresponding to a PIN. Then the eigenvector cen-
trality of that protein is defined as the v" element of the
principal eigenvector of the adjacency matrix. This princi-
pal eigenvector is normalized such that its largest entry is
1. This centrality is a measure for how well connected a
protein is to other highly connected proteins in a network.

(f) Stress centrality: the absolute number of network
shortest paths that pass through protein r.

(g) Bridging centrality [28]: The bridging centrality of a
protein (r) is defined as the product of the betweenness
centrality and the bridging coefficient of the protein.
While the betweenness centrality measures the fraction of
network shortest paths a given protein lies on, the bridg-
ing coefficient measures the extent to which a protein is
lying between other densely connected proteins in a net-
work. Let d, and N, represent the degree and the set of
neighbors of a protein r. Then the bridging coefficient
(BC) of the protein r is defined as

-1
BC(r) = dy

_1 :
ZieN, 4;

(h) Information centrality [29]: Let A be the adjacency
matrix of the PIN, D a diagonal matrix of the degrees of
each protein, and J a matrix with all its elements equal to
1.Let B=D - A +]J and let C = B-1. This construction yields
the information matrix I with elements I;;= (C; + C; - C;)-
1, The information centrality IC(i) of protein i is then
defined as a harmonic mean:

IC(i)=n 2151
j

As recognized by [30], this measure essentially measures
the mean lengths of paths ending at protein i. A similar
interpretation was given by [31], who showed that infor-
mation centrality is identical to current-flow closeness
centrality.

(i) Current-flow betweenness centrality [31]: This central-
ity measure is a generalization of the standard between-
ness centrality index that takes into account not just
shortest paths but other paths as well. Its definition is
obtained from the definition of betweenness centrality by
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replacing o, ,(r)/o,, by 7,,(r), the throughput through
node r [31]. It is related to the distance traversed by a ran-
dom walk along the network that ends at a particular pro-
tein node.

All of the above properties are properties of single nodes
in a network. The first two are sensitive only to the local
network structure around the node, while all the others
are sensitive to the global network topology. Furthermore,
the last two properties depend not only on shortest paths
through the network, but on other paths as well.

In addition to the above 9 single-node properties, we also
computed a set of two-node properties, namely, the
inverse of shortest distance d(p, q) between proteins p and
¢, number of mutual neighbors between proteins p and g,
and two indicator variables 2Hop S-S and 2Hop S-P,
which exploit the fact that the known synthetic genetic
network contains a large number of triangles [21]. 2Hop
S-S takes a value 1 if the genes encoding the two proteins
p and ¢ share a synthetic lethal partner and 0 otherwise,
whereas 2Hop S-P takes a value 1 if there exists a protein
r such that r has physical interaction with protein p and
the gene corresponding to protein r has a SSL interaction
with protein ¢ or vice versa. We computed properties (a)-
(d) using the network analysis tool Pajek [32], (e) and (f)
using the SNA package for the R statistical computing plat-
form [33], (g) based on the formula given in [28], and (h)
and (i) using our implementation of the algorithm given
in [31].

Synthetic genetic interaction data

Our primary data sources for training and testing the SVM
classifier (described below) were the literature curated
genetic interactions from [22] and large-scale genetic
interaction screens of [20,23], filtered for SSL interactions.
From these sources we extracted only those pairs of genes
whose protein products were found in the literature
curated protein interaction network of [22], resulting in a
dataset of 4553 confirmed SSL pairs from [20,23], and
7020 pairs when combined with literature curated SSL
interactions of [22]. We then excluded gene pairs whose
protein products were localized to mitochondria - this
was necessary because our initial results showed that it is
difficult to distinguish synthetic sick mutants from yeast
mutants where the slow growth is conferred by the
absence of a single (as opposed to two) mitochondrial
protein. This resulted in a dataset of 3962 pairs of con-
firmed SSL interactions from [20,23], and 6074 pairs of
confirmed SSL interactions if we included pairs from the
literature curated genetic interactions of [22]. In order to
train the classifier, we also required a list of negatives, i.e.,
pairs of genes confirmed to be not partaking in a SSL inter-
action. We constructed non-SSL pairs by generating all
pairwise combinations of the 227 baits used in the large
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scale genetic interaction screen of [20] with all other non-
essential genes in yeast whose protein products were not
localized to mitochondria and then removing from this
dataset the SSL interactions confirmed by high through-
put and other experimental methods. The resulting
number of SSL pairs and non-SSL pairs that were obtained
from literature curated and high throughput methods are
presented in Table 1. It is important to bear in mind that
some of the inferred non-SSL pairs may well be SSL
because of errors in the high throughput screen. This
explains the decrease in the number of non-SSL pairs
upon inclusion of literature curated (LC) data. For the
combined data from literature curated and genome wide
screens, we also generated probability distributions of
each PIN graph-theoretic property discussed above, sepa-
rately for SSL and non-SSL pairs. Probability distributions
were converted from histograms to smoothed probability
density functions using Gaussian smoothing as imple-
mented by the 'density' function in the R statistical com-
puting platform.

Support vector machine classifier

We use support vector machines (SVMs) to model correla-
tions between PIN properties and the existence of a SSL
interaction. Various graph-theoretical properties (local as
well as global) of two proteins in a PIN are fed as inputs
to the SVM classifier, which is schematically represented
in Figure 1.

The output of the SVM classifier is a score that measures
the propensity of the two corresponding genes to partake
in a SSL interaction. High scores indicate higher propensi-
ties for SSL interactions, while low scores indicate higher
propensities for lack of a SSL interaction. We found that
SVMs had the highest overall accuracy as compared to
other prediction systems that we experimented with,
including naive Bayes classifiers and neural networks. In
our study, we used libSVM, a publicly available integrated
software for support vector classification [34]. The full
prediction system has 22 inputs lumped into a single vec-
tor x: the averages and absolute differences of the 9 prop-
erties (a)-(i) for each protein pair, the shortest distance
d(p, q) between the two proteins, number of mutual
neighbors of the two proteins in PIN, and the two indica-
tor variables 2Hop S-S and 2Hop S-P. The raw output SVM
scores that were assigned to the protein pairs by the SVM

Table I: Statistics of known SSL pairs in yeast

Lethal/Sick Non-Lethal/Non-Sick
HTP 3962 400,869
HTP + LC 6074 400,473

The table lists number of SSL pairs and non-SSL pairs in high
throughput (HTP) and combined (HTP + literature curated (LC)) data
sets.
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Graph properties of a pair of proteins
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A schematic diagram representing the SVM classifier with various graph theoretic properties fed as inputs.

classifier were mapped to posterior probabilities with a
value ranging between 0 and 1 to measure propensity for
a SSL interaction between the corresponding genes [35].
The SVMs were trained using a radial basis function kernel
whose parameters were optimized by performing a five-
fold cross-validation on the entire training set, as sug-
gested [36]. The SVM classifier was trained on a randomly
selected but a balanced subset of pairs of genes with and
without SSL interaction, i.e., the training set comprised of
two-thirds of the known synthetic lethal pairs and an
equal number of known non-SSL pairs. The test set con-
sisted of the remaining gene pairs (both known SSL and
non-SSL) that were not used in training the SVM classifier.

Since the SVM output score takes a continuum of values
between 0 and 1, we set a variable cutoff « for deciding
whether a pair of genes partakes in a SSL interaction. Pairs
that scored above x were predicted to be SSL, while pairs
that scored below x were predicted to be non-SSL. We
then measured the sensitivity and specificity of the
method on the test sets as a function of x and generated
ROC (Receiver Operating Characteristic) curves of sensi-
tivity vs. 1-specificity to represent the overall accuracy of
the method. Sensitivity is defined as the proportion of
true positives that are classified correctly by the method
and specificity is defined as the proportion of true nega-
tives that are classified correctly by the method. The area
under the ROC curve, a statistic commonly used to assess

prediction accuracy (see, for example, [37]) was com-
puted in a non-parametric manner using the trapezoidal
approximation. In a similar manner, we found the posi-
tive predictive value (precision rate) of the method as a
function of the threshold x, where positive predictive
value is defined as the ratio of correctly predicted positives
to the total number of predicted positives.

Cross validation studies

Ten-fold cross-validation studies of the performance of
the SVM classifier were carried out by using balanced SSL
and non-SSL training data for training but representative
datasets for testing, as follows. Known SSL pairs were first
divided randomly into 10 groups. An equal number of
non-SSL pairs were randomly selected and each of these
pairs was randomly assigned to one of the 10 groups.
Thus, each group contained an equal number of SSL and
non-SSL pairs. Nine such groups were combined for train-
ing the SVM classifier, which was subsequently tested on
all SSL pairs from the withheld group and all non-SSL
pairs from the withheld group as well as the remaining
data. This was repeated 10 times with each group playing
the role of the test group once.

Prediction of novel SSL interactions

Finally, we sought to identify novel SSL interactions. To
this end, we first culled a data set consisting of gene pairs
that were not tested for synthetic genetic interactions
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(obtained by generating all possible pairwise combina-
tions of non essential genes in S. cereviseae and then
removing known SSL and non-SSL pairs that were used in
the assessment of cross-validation accuracy). To score the
new set of gene pairs we retrained our classifier on the
complete set of known SSL pairs and an equal number of
randomly selected non-SSL pairs. The retrained classifier
was then used to evaluate the propensity of each of the 1,
620, 000 gene pairs in the newly constructed data set to be
SSL. This prediction task was repeated five times, each
time training on a different set of randomly selected non-
SSL pairs. The gene pairs that scored above the desired cut-
off in all the five runs were reported as putative novel SSLs
(the number of putative novel SSLs at different thresholds
is shown in Figure 2). Based on results from high through-
put genetic analysis studies, it has been estimated that the
global SSL network of yeast will contain 200,000 interac-
tions [38]. As there are #4500 non-essential genes in S.
cerevisiae, we expect the newly constructed data set to pro-

portionately contain 200,000 x 1,620,000/[45200) )

31,307 true SSL interactions, which turns out to be
approximately equal to the number of novel SSL predic-

No. of predicted SSL pairs

5000 10000 15000 20000 25000 30000

T T T T T
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Figure 2

Number of predicted novel SSL pairs at different lev-
els of threshold. At a threshold level of 0.75, the total
number of predictions of the classifier equals the number of
true SSL predictions that the data set is expected to contain.
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tions that can be obtained at a SVM output threshold level
of k= 0.75 (Figure 2).

Results and discussion

We used thirteen different graph-theoretic properties of
proteins (see Methods section) in a PIN as putative predic-
tors for the existence of a SSL interaction between the cor-
responding gene pair. This resulted in a maximum of 22
inputs to the SVM classifier: two values for each single
node property, and one value each for the shortest dis-
tance, mutual protein neighborhood, 2Hop S-S and 2Hop
S-P.

Input feature distributions for SSLs and non-SSLs

In order to assess the suitability of each of the graph-the-
oretic properties in distinguishing SSL pairs from non-SSL
pairs we obtained the distributions of these properties
across SSL pairs and non-SSL pairs. For each property, we
plot the distribution of the average of that property over
two genes in a pair, and the absolute difference of that
property across the two genes. Most properties studied
here show statistically significant but small distributional
differences between SSL pairs and non-SSL pairs (see Fig-
ure 3). Properties that display the greatest distributional
differences (as measured by the Kolmogorov-Smirnov sta-
tistic) are eigenvector centrality, degree and bridging cen-
trality. Since shortest distance is technically infinite for
two proteins that lie in two different components of the
PIN, we used the inverse of shortest distance as input to
the SVM classifier. From Table 2 one can infer that, when
viewed as part of a PIN, SSL pairs as compared to non-SSL
ones tend to have higher average degree, higher average
closeness centrality, higher average information centrality
and higher number of mutual neighbors.

Accuracy of SSL predictions

We first assessed the performance of the SVM classifier
when only PIN properties were used and the "triangle-
completing”" 2Hop properties were excluded. This is
because 2Hop properties are binary inputs whose predic-
tion accuracy is extremely sensitive to the choice of test
data set (described below). We randomly selected 2/3 of
the known SSL pairs and an equal number of non-SSL
pairs for training the SVM classifier and withheld the

Table 2: Network statistics of SSL vs. non-SSL pairs

Gene pair characteristic t statistic P-value
Average Degree 21.1908 <22x 106
Average Closeness Centrality 22.9225 <22 x |06
Average Information Centrality 53.1484 <22x 1016
Mutual Neighborhood 18.2122 <22x 106

Difference in mean values of various graph properties between SSL
and non-SSL pairs, assessed using an independent sample t-test.
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Distributional differences in PIN graph-theoretic properties in SSL and non-SSL pairs. The distributions of the
average and difference of each property across two proteins in case of SSL pairs (solid curves) and non-SSL pairs (dashed
curves) are displayed here. Numbers in each plot indicate the D-statistic associated with the Kolmogorov-Smirnov test for the
difference between the two distributions and the corresponding P-value.
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remaining pairs of genes for testing the accuracy of the
method. We tested the method on the withheld data,
resulting in the ROC curves for different training sets. As
is clear from Figure 4, the overall performance of the pre-
dictor, as measured by the area under the ROC curve,
shows slight improvement when interactions from litera-
ture curated data are included in the training set as
opposed to using interactions from high throughput syn-
thetic lethal screens alone, with overall accuracies of
0.7960 and 0.7550 respectively. We note that higher val-
ues of the SVM classifier output threshold, x, (correspond-
ing to a lower false positive rate) lead to higher specificity,
while lower values of x (corresponding to a lower false
negative rate) lead to higher sensitivity.

Addition of 2Hop features to the inputs improves the
performance of the classifier

When 2Hop features were included as additional inputs
to the SVM classifier there was a significant improvement
in the performance of the classifier on the randomly cho-
sen test set (Figure 5), consistent with previously reported
increases in accuracy when 2Hop features are included
[21]. The best overall accuracy, as measured by the AUC,
is about 90.4%, obtained with the SVM classifier trained
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Figure 4

ROC curves for SVM classifier trained on high
throughput SSL data alone and combined data. The
combined data comprised of both high throughput and litera-
ture-curated SSL interactions. In both cases, the inputs to the
SVM classifier included all the graph theoretic PIN properties
(but not 2Hop features).
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Comparison of ROC curves before and after addition
of 2Hop characteristics. ROC curves for SVM classifiers
trained on combined data (literature curated and high
through put data) with and without using 2Hop characteris-
tics as inputs.

on literature curated and high throughput data using all
the PIN properties and 2Hop features.

Comparison to other approaches

We compared our results to an earlier study [21] where
probabilistic decision trees were used to distinguish
between SSL and non-SSL pairs. The accuracy of our
method appears higher than that reported in [21] (the
AUC was not explicitly computed there), where diverse
genomic datasets and 2Hop properties are included as
putative determinants of SSL interaction (see Additional
file 1 for a detailed comparison with the results of [21]).
Further, the accuracy obtained by our method when 2Hop
properties are excluded is significantly higher than that
found in [21] when 2Hop properties are excluded, as fur-
ther discussed below (see also Supplementary Informa-
tion). We note that accuracies measured by area under the
ROC curve take into account both false positive and false
negative errors. However, they do not account for the low
prevalence of SSLs among all pairs of genes in a genome.
We therefore also compute the positive predictive accura-
cies for our SVM classifiers as a function of the threshold
level (Figure 6). It is interesting to note that addition of
both 2Hop characteristics leads to a decrease in predictive
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accuracy at high thresholds, even though the AUC
increases when both these features are included. The rea-
son for this is that the increase in sensitivity after addition
of both 2Hop characteristics is offset by a faster increase in
false positive rate. The positive predictive values (PPV) of
the predictors at a threshold level of 0.999 are listed in
Table 3. Note that in order to assess the the fold-improve-
ment in prediction ability, the PPV should be compared to
the estimated prevalence of SSLs among all gene pairs in

4500

yeast (this prevalence is *200000/ ( 5

] =0.0198, as it

is estimated that there are = 200,000 SSL interactions and

~4500 non-essential genes in S. cerevisiae) [38].

Individual importance of predictor variables

We investigated the importance of each of the individual
predictor variables by training the SVM classifier on each
of them separately (Figure 7). Classifiers trained using
individual predictors perform better than random classifi-
ers, although the classification performance when all the
predictor variables are used is much better than any of the
classifiers trained on individual predictor variables. Of all
the PIN predictor variables studied, degree turns out to be
the best performing individual predictor. The known
importance of degree in characterizing gene essentiality
therefore extends to SSL properties of gene pairs as well.
Indeed, strong correlations between synthetic lethality
and node degree have been reported earlier [39]. The sec-
ond best predictor was information centrality, a hybrid
measure which relates to both closeness centrality and
random walk based eigen-centrality, each of which turned
out to be significant predictor variables on their own.
Also, the significant contribution of information central-
ity to SSL prediction may indicate that information prop-
agation in a biological network does not always favor
shortest paths. We further tested the individual impor-
tance of the 2Hop characteristics when used singly or
jointly as predictor variables. Since these features always
assign equal scores to all pairs for which "triangle comple-
tion" is possible and equal scores to all pairs for which
this is not possible, these inputs lead to fixed specificity
and sensitivity values. While it is possible to predict SSL
pairs by triangle completion with reasonably high specif-

Table 3: Predictive power of the SVM classifiers
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icity and sensitivity on certain test sets (see Table 4),
namely those that have a large number of SSL or protein
interactions with other genes/proteins, the specificities
and sensitivities will vary greatly as properties of the test
set are changed (discussed below).

Robustness of prediction with respect to choice of test
data

We first performed ten-fold cross validation of the SVM
classifier (Methods) with all inputs, and found less than
1% wvariation in classification accuracy as measured by
area under the ROC curve (Table 5), thus confirming the
robustness of the classification performance with respect
to different choices of randomly constructed test sets.

Next, in order to further assess the role of the 2Hop prop-
erties in the prediction task, we designed a test set in
which none of the genes had SSL interactions with other
genes/proteins. Both 2Hop properties are identically zero
for all pairs in this test set and these properties therefore
lose predictive value on such a set. While this type of test
set does not reflect the enhanced prevalence of triangles in
SSL networks, we carried out this procedure in order to
assess whether PIN properties by themselves would also
significantly lose their predictive value when no triangles
can be completed with known SSL interactions for a test
pair. Table 6 shows that although there is some loss of
accuracy, the accuracy of 70% is still considerably larger
than the corresponding accuracy in Wong et al. [21] when
2Hop properties are not included.

Robustness of prediction with respect to errors in the
protein interaction network

Since our prediction method relies strongly on protein
interaction data, it is important to assess the prediction
quality with respect to errors in protein interaction data.
Since we use high confidence protein interaction data
(with a low false positive rate), we surmised that the dom-
inant error in the protein interaction network could be
attributed to missing interactions. We therefore added a
predetermined number of new edges randomly to the
original protein interaction network, retrained and reeval-
uated our SVM classifier. This task was repeated, each time
adding a different number of random interactions (250,
500, 750, 1000) to the PIN. While adding more than 500

Set of input features to SVM classifier

Positive predictive value

All graph theoretic protein characteristics 0.08

All graph theoretic protein characteristics + 2Hop SS 0.50

All graph theoretic protein characteristics + 2Hop SP 0.15

All graph theoretic protein characteristics + 2Hop SS + 2Hop SP 0.14

Positive predictive values for classifiers trained with and without 2Hop characteristics at a threshold level of 0.999.
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Threshold

Comparison of PPVs for various classifiers. Positive predictive value for SVM classifiers trained on combined data with
and without using 2Hop characteristics as inputs. At a threshold level of 0.999, the classifier trained with all graph theoretic
protein properties and 2Hop SS as inputs has the highest positive predictive value. Addition of the extra indicator variable
2Hop SP as input results in a classifier with decreased positive predictive accuracy. The subplot in the figure shows the number
of predicted pairs (true positives and false positives) at different levels of threshold.

Table 4: Accuracy of prediction performance using 2Hop characteristics alone

2Hop Characteristic Threshold Level (T) Sensitivity Specificity

2HopSS 0.000000 < T <0.235290 1.000 0.000
0.235290 < T < 0.860423 0.723 0.886

0.860423 < T < 1.000000 0.000 1.000

2HopSP 0.000000 < T<0.217713 1.000 0.000
0.217713 < T £0.905607 0.755 0.922

0.905607 < T < 1.000000 0.000 1.000

2HopSS and 2HopSP 0.000000 < T <0.138735 1.000 0.000
0.138735 < T < 0.840256 0.868 0.835

0.840256 < T < 0.840260 0.723 0.886

0.840260 < T < 0.840392 0.610 0.973

0.860423 < T < 1.000000 0.000 1.000

The table lists sensitivity and specificity values at different threshold levels in case of classifiers trained using 2Hop characteristics alone.
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Importance of individual predictor variables. ROC
curves for SVM classifiers trained on literature curated and
high throughput data using individual predictor variables. The
diagonal line indicates random prediction. The ROC curve
for the SVM classifier trained using all the input features is
also shown in the figure.

random interactions (representing approximately 5% of
the number of existing protein interactions) significantly
changes the numerical value of the propensity for SSL
interaction assigned by the SVM, we found no detectable
change in the ROC curves (see AUC values in Table 7).
This suggests that random additional interactions contrib-
ute roughly equally to input features of SSL and non-SSL
pairs, resulting in no significant change in overall discrim-
ination ability.

Table 5: Area under the ROC curves for ten cross validation
runs

CrossValidation Run # AUC
Runl 0913
Run2 0.901
Run3 0916
Run4 0.900
Run5 0.905
Runé 0.912
Run?7 0.906
Run8 0.896
Run9 0.899

Runl0 0.908

The classifier was trained using all the graph-theoretic properties and
the 2Hop characteristics.
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Table 6: Effect of the exclusion of gene pairs with non-zero 2Hop
properties

Across 10 AUC - Before AUC - After
cross-validation runs exclusion exclusion
Average 0.797 0.697
Standard Deviation 0.038 0.005

Ten fold cross-validation was carried out with and without excluding
gene pairs having non-zero 2Hop properties from training and test
sets. In both the cases the classifiers were trained without using 2Hop
characteristics.

Comparison of predicted SSL network with the known SSL
network

Having achieved reasonably high cross-validation accu-
racy, we proceeded to find out if the predicted SSL net-
work shared the same characteristics as the known SSL
network (see Methods for construction of the network
comprising of novel SSL predictions). Earlier studies have
indicated that genes known to have SSL interaction tend
to share similar Gene Ontology (GO) annotation, are
enriched for common upstream regulators, and preferen-
tially are part of the same protein complex [40,41]. Since
none of these characteristics were used as input features
for our prediction method (except, indirectly, participa-
tion in the same protein complex), we investigated
whether our predicted SSLs were also enriched for these
features at different threshold levels starting from 0.75 up
to 1.000 (See Supplementary Information for the list of
predictions at these threshold levels). As is evident from
Table 8, predicted SSL interactions at each of the threshold
levels appear to have properties similar to known SSL
interactions. While the existence of a common upstream
regulator among the predicted novel SSL pairs does not
appear statistically significant beyond a threshold level of
0.85, this may be attributed to the small sample size at
high thresholds. Odds ratios for all properties generally
show an increasing trend as the threshold level is
increased, showing that the SVM classifier preferentially
selects gene pairs having the properties studied with
higher accuracy at higher thresholds, even though the
properties themselves are not used as input features for

Table 7: Robustness analysis with respect to addition of random
edges to PIN

Number of random P-value for difference AUC
edges added to PIN in propensities

250 0.7905 0.8692
500 0.1391 0.8724
750 <22x |01e 0.8646
1000 <22x 1016 0.8671

Paired sample t-test P-values for the difference in SSL propensities
assigned to the test dataset by the SVM before and after adding
random edges to the protein interaction network.
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Table 8: Comparison of the predicted SSL network to the known SSL network

Threshold Level (Number of pre dictions) Gene-pair Characteristic SNC Sonly Conly sSnC' Odds P-value
Known SSL Pairs (6074) Cellular Component 4467 1607 193007 207466 2.988 <22x 106
Molecular Function 1464 4610 38865 361608 2.955 <22x |06
Biological Process 4074 2000 137827 262646 3.882 <22x 016
Protein Complex 197 5877 747 399726 17937 <22x |06
Upstream Regulator 220 5854 10327 390146 1.420 9 x 107
0.75 (30087) Cellular Component 17967 12120 781640 799150 1.516 <22x |06
Molecular Function 4115 25972 113100 1467690 2.056 <22x 106
Biological Process 12966 17121 314562 1266228 3.048 <22x10'é
Protein Complex 363 29724 1339 1579451 14405 <22x|0'¢
Upstream Regulator 1052 29035 47294 1533496 1.175 3.76 x 107
0.80 (28440) Component 16942 11498 782665 799772 1.506 <22x]0'e
Function 3826 24614 113389 1469048 2014 <22x |06
Process 12245 16195 315283 1267154 3.039 <22x 016
Protein Complex 346  280%4 1356 1581081 14360 <22x |06
Upstream Regulator 986 27454 47360 1535077 1.164 3.01 x 106
0.850 (5149) Component 3799 1350 795808 809920 2.864 <22x |06
Function 1309 3840 115906 1489822 4.382 <22x 016
Process 3221 1928 324307 1281421 6.601 <22 x 106
Protein Complex 287 4862 1415 1604313  66.927 <22x |0'¢
Upstream Regulator 173 4976 48173 1557555 1.124 0.024
0.900 (1398) Component 1184 214 798423 811056 5.602 <22x 106
Function 508 890 116707 1492772 7.301 <22x |06
Process 1060 338 326468 1283011 12325 <22x|0'¢
Protein Complex 151 1247 1551 1607928  125.535 <22x |0'¢
Upstream Regulator 49 1349 48297 1561182 1.174 0.1525
0.950 (953) Component 831 122 798776 811148 6917 <22x |06
Function 368 585 116847 1493077 8.038 <22x 016
Process 776 177 326752 1283172 17217 <22x 1016
Protein Complex 126 827 1576 1608348 155485 <22x |0'¢
Upstream Regulator 29 924 48317 1561607 1.014 0.4958
0.999 (202) Component 184 18 799423 811252 10373 <22x|0'¢
Function 93 109 117122 1493553 10880 <22 x |06
Process 179 23 327349 1283326  30.511 <22x |06
Protein Complex 37 165 1665 1609010 216.702 <22x |0'¢
Upstream Regulator 5 197 48341 1562334 0.820 0.7274

Association between SSL interaction and gene-pair characteristic, following the framework of [20]. S n C represents the number of gene pairs with
both SSL interaction(S) and same gene-pair characteristic(C). Sonly represents the number of gene pairs with SSL interaction only. Conly
represents the number of non-SSL gene pairs that share the same characteristic. S' N C' represents the number of gene pairs that neither have SSL
interaction nor share a specified characteristic. Odds represents the odds ratio of a SSL pair sharing a given characteristic to a non-SSL pair sharing
the same characteristic. The P-value represents the statistical significance of overlap between SSL interaction and the specified characteristic as
computed by Fisher's exact test. If a protein corresponding to a gene is not assigned to any of the known protein complexes then the gene and its
interacting partner are considered to come from two different protein complexes. Similarly in the case of upstream regulators, if a gene does not
have any known upstream regulator then the gene and its interacting partner are treated as if they don't share any common upstream regulator.
The P-values are not significant in case of common upstream regulator due to the fact the number of predicted positives that share a common
upstream regulator is very small in comparison to the total number of pairs that share a common upstream regulator, which is also reflected in the

low odds ratio seen at different levels of threshold.

prediction. The simultaneous increase in the predictive
accuracy of SSL prediction (as threshold level is increased)
and enrichment for participation in the same protein
complex (evinced by the increase in protein complex
enrichment odds) is consistent with the dominance of
"within-pathway" explanations for genetic interactions
suggested by Kelley and Ideker [42].

Conclusion

Our results clearly demonstrate the informative value of
protein interaction networks for SSL genetic interactions.
We show that graph-theoretic properties of proteins in a
protein interaction network serve as compelling and rela-
tively robust determinants for the existence of synthetic
lethality between their gene counterparts. When members
of the gene pair in question have known SSL interactions
with other genes, the predictive power for SSL interaction
within that gene pair is greatly enhanced by the tendency
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of triangles to form in SSL networks (2Hop properties).
However, even in the absence of known SSL interactions,
we have shown that PINs by themselves can predict SSL
interactions with significantly higher accuracy than previ-
ously found. Inclusion of PIN centralities in the develop-
ment of meta-servers for SSL prediction is therefore likely
to be very useful. Further, even though no functional
properties are used as input features in our method, the
method identifies gene pairs that are enriched for partici-
pation in common GO categories, in the same protein
complex, and to a more limited extent, for having the
same upstream regulator. These properties may be there-
fore viewed as further predictions of the method, even
though they were earlier used as inputs for identifying SSLs
[21]. This shows that PINs, even in the absence of qualify-
ing data from gene regulatory and gene expression studies,
may be more informative of gene function than normally
envisioned.
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