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Abstract
Background: Illumina Infinium whole genome genotyping (WGG) arrays are increasingly being
applied in cancer genomics to study gene copy number alterations and allele-specific aberrations
such as loss-of-heterozygosity (LOH). Methods developed for normalization of WGG arrays have
mostly focused on diploid, normal samples. However, for cancer samples genomic aberrations may
confound normalization and data interpretation. Therefore, we examined the effects of the
conventionally used normalization method for Illumina Infinium arrays when applied to cancer
samples.

Results: We demonstrate an asymmetry in the detection of the two alleles for each SNP, which
deleteriously influences both allelic proportions and copy number estimates. The asymmetry is
caused by a remaining bias between the two dyes used in the Infinium II assay after using the
normalization method in Illumina's proprietary software (BeadStudio). We propose a quantile
normalization strategy for correction of this dye bias. We tested the normalization strategy using
535 individual hybridizations from 10 data sets from the analysis of cancer genomes and normal
blood samples generated on Illumina Infinium II 300 k version 1 and 2, 370 k and 550 k BeadChips.
We show that the proposed normalization strategy successfully removes asymmetry in estimates
of both allelic proportions and copy numbers. Additionally, the normalization strategy reduces the
technical variation for copy number estimates while retaining the response to copy number
alterations.

Conclusion: The proposed normalization strategy represents a valuable tool that improves the
quality of data obtained from Illumina Infinium arrays, in particular when used for LOH and copy
number variation studies.
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Background
Genomic copy number alterations (CNA) and allelic
imbalances are common events in the development of
cancer and certain genetic disorders [1,2]. The introduc-
tion of whole genome genotyping (WGG) arrays based on
single nucleotide polymorphism (SNP) genotyping [3,4]
allows for combined DNA copy number (SNP-CGH) and
loss-of-heterozygosity (LOH) analysis at high resolution
[5]. Currently, two major SNP array platforms are in use,
Affymetrix GeneChip arrays [6] and Illumina BeadChips
[7]. The Infinium assay for Illumina BeadChips is based
on allele-specific hybridization coupled with primer
extension of genomic DNA using primers directly sur-
rounding the SNP on randomly ordered bead arrays [4].
The Infinium assay has been further developed into allele-
specific single base extension using two color labeling
with the Cy3 and Cy5 fluorescent dyes (Infinium II) [8].
Current generations of Infinium II arrays are able to inter-
rogate more than 1 million SNPs simultaneously.

Infinium II is a two-channel assay and data consist of two
intensity values (X, Y) for each SNP, with one intensity
channel for each of the fluorescent dyes associated with
the two alleles of the SNP. SNP markers are present at a
high redundancy on Infinium II assays and the allele spe-
cific intensities (X, Y) are summarized estimates from rep-
licate markers. The alleles measured by the X channel
(Cy5 dye) are arbitrarily, with respect to haplotypes,
called the A alleles, whereas the alleles measured by the Y
channel (Cy3 dye) are called the B alleles. The allele spe-
cific intensities are normalized using a proprietary algo-
rithm in the Illumina Beadstudio software. The
normalization algorithm is applied on a sub-bead pool
level and is designed to adjust for channel-dependent
background and global intensity differences, and to scale
the data. A sub-bead pool is a set of beads that were man-
ufactured together and are located in roughly the same
analytical location (stripe) on a BeadChip. The algorithm
uses a 6-degree of freedom affine transformation with 5
main steps: outlier removal, background estimation, rota-
tional estimation, shears estimation, and scaling estima-
tion [5]. After normalization, data should be as canonical
as possible with homozygous SNPs positioned along the
transformed X and Y intensity axes. Normalized allele
intensities are transformed to a combined SNP intensity,
R (R = X + Y), and an allelic intensity ratio, theta (θ = 2/
π*arctan(Y/X)).

R values are calibrated to generate copy number estimates
(CN) by comparison to either a matched reference sample
analyzed simultaneously or to canonical genotype clusters
[5]. Canonical genotype clusters are generated from a
large panel of normal samples and the clusters for a SNP
indicate the R and theta values expected for each genotype
(AA, AB and BB). Theta values are calibrated to generate B

allele frequencies (BAF) using canonical genotype clus-
ters. BAF is a value between 0 and 1 and represents the
proportion contributed by one SNP allele (B) to the total
copy number: BAF is an estimate of NB/(NA+ NB), where
NA and NB are the number of A and B alleles, respectively.
When canonical genotype clusters are used for calibration,
copy number estimates are calculated per SNP by taking
the log2 of the SNP intensity (R) divided by the SNP inten-
sity expected from the canonical genotype clusters. Thus,
copy number estimates may be regarded as a combination
of two individual one-channel measurements of the
amount of genetic material for a given SNP. Normaliza-
tion of one-channel array data has been extensively
explored, incorporating various algorithms, among which
quantile normalization (QN) has been reported to per-
form consistently well [9] and has been widely used to
normalize between arrays [10-12]. Recently, QN was
applied, as one of several analysis steps, to Illumina Sen-
trix SNP BeadArrays to correct for an observed dye bias in
copy number analysis [13].

Allelic imbalances in samples can be conveniently visual-
ized in BAF plots [5]. A BAF value of 0.5 indicates a heter-
ozygous genotype (AB), whereas 0 and 1 indicate
homozygous genotypes (AA and BB, respectively). The
allelic intensity ratio may, in the Infinium II assay, be
regarded as a comparative dual channel measurement of
the allelic proportion for a given SNP, similar to, e.g., two-
channel gene expression data. Several reports have under-
lined the importance of intensity-based normalization,
e.g., lowess [14], to correct for dye specific differences
both for gene expression profiling [15,16] and array com-
parative genomic hybridization (aCGH) [17-19] in two-
channel microarray data. Since alleles for SNPs are arbi-
trarily called A or B, a set of genomically consecutive SNPs
will appear in BAF plots as horizontal bands that are
expected to be symmetrically positioned around 0.5. For
example, a region of single copy number gain in all cells
will, in addition to the two bands of homozygous SNPs at
BAF = 0 and BAF = 1, result in two bands: one at BAF =
0.33 with SNPs having genotype AAB and one at BAF =
0.67 with SNPs having genotype ABB.

Here we demonstrate that BAF plots for tumor samples
analyzed on Infinium II BeadChips often display bands
that are not symmetrically positioned around 0.5. We
show that these asymmetrical allelic ratios are caused by a
bias between the two dyes used in the Infinium II assay,
and that this dye intensity bias also hampers copy number
estimates. Dye-bias can potentially be both global and
SNP-specific. We propose using a quantile normalization
based strategy applied to summarized bead type data
within arrays for global correction of this dye intensity
bias. The strategy corrects asymmetries that remain
between intensity channels after the conventionally used
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BeadStudio normalization for both allelic intensity ratios
and copy number estimates in normal as well as in tumor
samples. Note that whereas quantile normalization is
widely applied to single channel arrays to normalize
between arrays, we instead apply it to normalize between
channels within Infinium II arrays. Of key importance for
the success of the strategy is the generation of new nor-
malized reference data sets for the calibration of theta and
R into B allele frequency and log R ratio – the data set ana-
lyzed and the data set used for calibration should both be
normalized in the same way. We investigated the perform-
ance of the normalization strategy using 535 individual
hybridizations from 10 different data sets generated on
four different Infinium II platforms. The investigated data
sets contain normal blood samples as well as breast
tumor, colon tumor, urothelial tumor and chronic lym-
phocytic leukemia (CLL) samples. The included tumors
display a large number of different copy number imbal-
ances, but also variation in tumor heterogeneity and nor-
mal cell contamination. We conclude that the
normalization strategy improves Infinium II data for sam-
ples of many different types.

Results and discussion
Occurrence of asymmetrical B allele frequencies and copy 
number estimates in tumor specimens
Allelic imbalances in tumor samples may conveniently be
displayed using B allele frequency plots, which illustrate
the presence and location of genomic regions of appar-
ently the same allelic proportion (Figure 1a). In contrast
to the expected symmetrical behavior of the B allele fre-
quency, SNPs in regions of allelic imbalance appear to
have bands of BAF values that are asymmetrically posi-
tioned around 0.5 for the analyzed urothelial tumor (Fig-
ure 1a). The asymmetry becomes even more apparent
when a mirror transformation along the 0.5 axes of BAF to
mBAF is performed (Figure 1b). Importantly, the asym-
metry also affects genotyping, indicated by the higher
number of failed genotype calls for lower BAF values (AA)
compared to higher BAF values (BB) for the region 1q32.1
to qter (Figure 1c). In this region there are a total of 6421
SNPs evenly distributed between the upper BAF > 0.5
(3295 SNPs) and the lower BAF < 0.5 (3125 SNPs) parts.
Of these 6421 SNPs, 927 SNPs have not been assigned a
genotype by BeadStudio. 757 of these 927 failed calls have
a BAF value below 0.5, showing that the cause of the
observed asymmetry in BAF also affects genotyping. The
BAF asymmetry also influences analysis methods for
detecting allelic imbalance. Recently, the SOMATICs algo-
rithm was proposed as a solution for detecting allelic
imbalances in heterogeneous tumor samples using Infin-
ium II data [20]. The algorithm divides the BAF profile
into three bands (red, green, and blue) based on fixed BAF
cut-offs. Asymmetry in BAF estimates causes regions of
apparent identical allelic imbalance close to the fixed cut-

offs to be identified in different bands (see Additional file
1). For copy number estimates asymmetry also exists for
regions of CN loss and CN gain (Figure 1d). The asymme-
try appears to be caused by an uncorrected curvature
between the X and Y intensities for the two alleles (Figure
1e), and an unequal distribution of X and Y values (Figure
1f). We conclude that there seems to be a dye intensity
bias between the two channels used in the Infinium II
assay and that the bias remains after using the normaliza-
tion in BeadStudio.

Correction of dye intensity bias in HapMap samples using 
quantile normalization
Since the two alleles for each SNP are, with respect to hap-
lotypes, arbitrarily associated with the X and Y intensities,
normalized X and Y intensities should, in contrast to fig-
ure 1f, be expected to have essentially equal intensity dis-
tributions. Quantile normalization can be used to
generate identical distributions from a set of distributions
[9]. To investigate the effect of within sample QN of X and
Y intensities from normal samples, we performed QN on
X and Y intensities from HapMap samples used to gener-
ate the reference data sets for the Illumina 300 k version 1
(n = 111), 300 k version 2 (n = 120), 370 k (n = 123) and
550 k (n = 120) BeadChips. For each sample and SNP we
calculated new normalized theta and R values thereby
generating QN reference data sets. QN has been exten-
sively used to normalize one-channel microarray expres-
sion data such that identical intensity distributions are
generated for a set of arrays (between array normaliza-
tion) [9]. Here we instead propose to use QN between
channels within two-channel SNP arrays.

For each reference data set we computed new BAF and CN
estimates and compared these estimates to BeadStudio
data. Using QN we obtained CN estimates with signifi-
cantly lower standard deviations (SD) for three of four ref-
erence data sets (Table 1). The mean decrease in SD for
CN estimates was 15 – 26% for the 300 k v2, 370 k and
550 k data sets. For the Illumina 300 k v1 set, QN did not
show any effect. Intriguingly, the single sample 300 k v1
BeadChips has a significantly lower variation of CN esti-
mates than the Illumina version 2 Duo 300 k BeadChips
(Table 1).

QN also showed a positive effect on allelic intensity ratios,
generating lower standard deviations and more central-
ized theta positions for heterozygous SNPs (Table 2).
Interestingly, it can be observed in table 2 that the average
theta value for heterozygous SNPs differs from the
expected 0.5 for all uncorrected and QN reference data
sets. QN shows the least deviation from the expected
value for all data sets, and also a clearly significant
decrease in theta SD for samples across all data sets com-
pared to BeadStudio data (Table 2).
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The intensity transformation introduced by QN can 
negatively affect allelic intensity ratio estimates
The deviation from theta = 0.5 for heterozygous SNPs in
HapMap samples indicates that an imbalance in the X and
Y intensity distributions remains after QN (Table 2). The
imbalance in theta affects BAF estimates through the cali-
bration of theta into BAF using the HapMap reference gen-
otype clusters. Part of the imbalance can be explained by
an uncorrected curvature between X and Y intensities that
prior to QN is present for both tumor samples (Figure 1e)

and HapMap samples (Figure 2a). To investigate the rela-
tionship between allelic intensity ratios and overall inten-
sity we created MR plots where M = log2(Y/X) and R =
log10(X + Y) similar to conventional MA plots [16]. Con-
sequently, in MR plots heterozygote SNPs should have an
M value of 0. As expected from figure 2a, curvature is
present prior to QN in the MR plot of HapMap sample
NA06985 for the AB, BB and AA SNP populations (Figure
2b). The curvature is highlighted by the superimposed
lowess curve for each genotype population and the slope

Occurrence of asymmetrical B allele frequencies and copy number estimatesFigure 1
Occurrence of asymmetrical B allele frequencies and copy number estimates. Urothelial tumor UC152_I hybridized on an Infinium 
370 k BeadChip is shown. CNV probes have been removed. (a) B allele frequency for chromosome 1. (b)Mirrored B allele frequency (mBAF) for 
chromosome 1, with individual SNPs colored according to BAF values: less than 0.5 (orange), above 0.5 (blue) showing the asymmetry of BAF val-
ues around 0.5. (c) BAF profile of chromosome 1, with individual SNPs colored according to genotype calls: AA (green), AB (yellow), BB (red) 
and no calls (gray). The cause of the BAF asymmetry also affects genotyping as seen for SNPs not assigned to a genotype (gray), which in the 
region 1q32.1 to qter (highlighted with a light blue background) predominantly are present with BAF < 0.5. (d) Copy number estimates (Log R 
ratio) for chromosome 1, with individual SNPs colored according to genotype. The cause of the BAF asymmetry also affects copy number esti-
mates as seen for regions of gain and loss, where AA and BB SNPs do not overlap. (e)  Scatter plot of normalized allele intensities X and Y with 
individual SNPs colored according to genotype. A lowess regression line (solid) for heterozygous SNPs and the expected X = Y line (dashed) are 
superimposed. (f) Boxplots of the distributions of allele intensities X (green) and Y (red).
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of a fitted linear regression line through each population.
After QN there is less curvature, although not fully
removed (Figure 2c).

To address how to improve QN, we investigated how QN
transforms the X and Y intensities for HapMap sample
NA06985 (Figure 2d and 2e). Low values of X are
increased with relatively large factors in intensity, while Y
values are generally decreased and scaled with smaller fac-
tors. SNPs with a low value of X are predominantly geno-
typed as BB, and the number of SNPs affected by the
increase in X is large as seen by comparing the transforma-
tion (Figure 2d) with an X intensity histogram (Figure 2f).
The same pattern is not observed for the Y intensity, for
which the large majority of SNPs are transformed to a
lower intensity (Figures 2e and 2g). Thus, QN introduces
a transformation that results in a large increase for low X
values, which affects a large number of SNPs.

The transformation imbalance does not appear to affect
HapMap CN estimates for which the standard deviation is
decreased in three of four reference data sets (Table 1). For
CN estimates an increase of a low X value is not critical
since the corresponding Y intensity is large and dominate
the additive R value. However, an increase of low X values
will cause more variation of the allelic ratios for SNPs with
high values of Y (predominately genotyped as BB). An
increase in the variation of allelic ratios for SNPs with low
values of X will have the largest effect on regions with loss
of allele A (thus dominated by Y with theta and BAF val-
ues close to 1). The impact of the transformation imbal-
ance is further increased if the copy number loss is present

in the absolute majority of investigated cells and not
dampened by contaminating normal cells. To exemplify
the effect of the transformation imbalance, the
hemizygous loss of chromosome 9 in the urothelial carci-
noma UC456_R is shown for both BeadStudio data (Fig-
ure 3a) and QN data (Figure 3b). While QN results in a
reduced variation for SNPs with BAF values close to 0
(which have large X values), this improvement is counter-
acted with a large increase in the variation for SNPs with
BAF values close to 1 (which have small X values). Fur-
thermore, the transformation imbalance also appears to
affect the correction of BAF asymmetry negatively.

Incorporation of an intensity transformation threshold for 
QN improves allelic intensity ratio estimates
The negative effect of QN on allelic intensity ratios could
potentially be circumvented by limiting the factor with
which X intensity values are increased. Hence, we intro-
duced a threshold for the QN intensity transformations to
limit the increase of X and Y values before calculation of
the allelic intensity ratio. In all our analyses, we used a
threshold of 1.5 for the factor with which X and Y values
could maximally be increased. While the threshold is
applied identically to both X and Y transformations, it
essentially only influences X values. A value of 1.5 appears
reasonable as it incorporates the majority of SNPs with
low X values (compare Figures 2d and 2e) without affect-
ing the corresponding Y values, but the threshold may
potentially be further improved by tuning. Using this QN
modified with a threshold, tQN, we generated new tQN
reference data sets. The application of the threshold mark-
edly improved quantile normalized tumor BAF data by

Table 1: Comparison of Log R ratio standard deviations between BeadStudio and quantile normalized HapMap data.

Platform HapMap samples Mean Log R ratio SD* 
BeadStudio

Mean Log R ratio SD* QN p-value SDQN < SDBeadStudio 
**

Mean decrease in SD (%) 
***

300 k v1 111 0.134 0.136 0.99 0
300 k v2 120 0.197 0.168 2.2*10-16 15

370 k 123 0.262 0.193 2.2*10-16 26
550 k 120 0.209 0.160 2.2*10-16 23

*: The SD of Log R ratio was calculated for each sample. The mean SD for all samples is shown.
**: Paired two-sided t-test. H0: Δ = mean Log R ratio SDQN – mean Log R ratio SDBeadStudio =0
***: (1- (mean Log R ratio SDQN)/(mean Log R ratio SDBeadStudio))*100

Table 2: Comparison of effects on allelic intensity ratios between Illumina BeadStudio and quantile normalized HapMap data.

Platform HapMap samples Mean ThetaAB ± mean SD BeadStudio* Mean ThetaAB ± mean SD QN* Paired p-value theta SDQN < SDBeadStduio **

300 k v1 111 0.581 ± 0.095 0.454 ± 0.087 2.2*10-16

300 k v2 120 0.595 ± 0.097 0.457 ± 0.086 2.2*10-16

370 k 123 0.594 ± 0.097 0.460 ± 0.082 2.2*10-16

550 k 120 0.608 ± 0.099 0.451 ± 0.084 2.2*10-16

*: The mean and SD of theta was calculated for each sample. The mean of these values for all samples are shown.
**: Paired two-sided t-test. H0: Δ = SDQN - SDBeadStudio =0
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removing asymmetry and reducing variation (Figures 3c
and 3d). Additionally, the removed asymmetry for allelic
intensity ratios may provide a higher probability for SNPs
to be genotyped, e.g., as AA for chromosome 9 of urothe-
lial carcinoma UC456_R (Figure 3c compared to 3a) or as
AA on 1q32.1 to qter for urothelial carcinoma UC152_I
(Figure 3d compared to 1c). Consequently, tQN of Infin-
ium II data could increase the genotype call rate, a variable
commonly used to assess sample quality. An increased
call rate for tumor specimens may also be beneficial for
downstream LOH analysis software relying on genotype
calls such as dChipSNP [21].

Systematic investigation of BAF asymmetry in tumor 
samples before and after tQN
To more comprehensively investigate BAF asymmetry
before and after tQN, we divided 35 whole-genome
tumor BAF profiles into an upper and lower part along the
0.5 axes. BAF values for each part were converted to mBAF,
similar to figure 1b. Next, each part was separately seg-
mented to find regions of consistent allelic proportion

[22]. If no asymmetry is present for a defined genomic
region the difference between segmented mBAF values for
the upper and lower part of the BAF profile should be
zero. We found that tQN results in significantly lower
asymmetry for regions of apparent allelic imbalance in
both paired and unpaired tumor samples across different
Infinium II platforms (Figure 4). Essentially identical
results were obtained irrespectively of which part of the
BAF profile that was used to define the investigated
regions. As expected from the upward shift of hetero-
zygous theta positions (Table 2), the BeadStudio asymme-
try is predominantly the result of higher mBAF values for
the upper part of the BAF profile than for the lower part.
This asymmetry is consistent with an upward shift of the
entire BAF plot, as also observed in figures 1a and 3a. tQN
showed the same positive effect on allelic intensity ratios
for HapMap samples as shown for QN in table 2. For het-
erozygous SNPs, standard deviations were essentially
identical for tQN and QN, whereas theta positions were
marginally more centralized for tQN (data not shown).

Intensity transformations of X and Y by quantile normalizationFigure 2
Intensity transformations of X and Y by quantile normalization. HapMap sample NA06985 hybridized on an Infinium 370 k BeadChip is 
shown. SNPs have been colored based on individual genotype calls: AA (green), AB (yellow), and BB (red). SNPs without genotype call are 
excluded. (a) Scatter plot of BeadStudio allele intensities X and Y. A lowess regression line for heterozygous SNPs is superimposed (solid) 
together with the expected X = Y line (dashed) illustrating that the dye intensity bias affects heterozygous SNPs. (b) MR plot of BeadStudio allele 
intensities for chromosome 8 with superimposed lowess regression lines (solid) for each genotype population and locally fitted linear regression 
lines (dashed blue). The mean M value for each genotype population is indicated by horizontally dashed black lines. (c) MR plot of quantile normal-
ized allele intensities for chromosome 8 with superimposed lowess regression lines (solid black) and locally fitted linear regression lines (dashed 
blue) for each genotype population, separately. (d) Scatter plot of the intensity transformation XQN/X vs X from quantile normalization. SNPs are 
colored by genotype. SNPs with low X intensity values (predominantly genotyped as BB) are increased significantly in intensity by QN. (e) Scatter 
plot of the intensity transformation YQN/Y vs Y from quantile normalization. SNPs are colored by genotype. (f) Histogram of BeadStudio X inten-
sities. (g) Histogram of BeadStudioY intensities.

-1.0 -0.5 0.0 0.5

-10

-5

0

5

10

log
10

(R)

lo
g

2
(Y

/X
)

(b)(a) (c)

(d) (e)

log
10

(R)
0

1

2

3

4

5

Y

0 1 2 3 4 5
X

0 1 2 3 4

X

1

1.5

2

2.5

3

X
(Q

N
) 

/ X

0 1 2 3 4

Y

0.6

0.8

1.0

1.2

1.4

Y
(Q

N
) 

/ Y

(f)

(g)
0 1 2 3 4

X

0

40

80

120

0 1 2 3 4

Y

01x( s
P

N
S

3 )

0

40

80

120

-1.0 -0.5 0.0 0.5

-10

-5

0

5

10

lo
g 2(

Y
/X

)
01x( s

P
N

S
3 )
Page 6 of 11
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:409 http://www.biomedcentral.com/1471-2105/9/409
Effects of tQN on copy number estimates for tumor and 
normal samples
Having established that tQN corrects for asymmetry in
allelic intensity ratio estimates, we investigated the effects
of tQN on CN estimates compared to BeadStudio. To this
aim, we applied tQN to Infinium II data sets containing
both blood and tumor samples and performed three com-
parisons. First, we investigated whether tQN increase or
decrease the response in log R ratio to CNAs. Second, we
investigated if tQN decrease variation in CN estimates.
Finally, we applied a CNV calling algorithm to tQN nor-
malized HapMap data to investigate the overlap of identi-
fied regions compared to BeadStudio data.

To investigate whether tQN increase or decrease the
response in log R ratios to CNAs compared to BeadStudio
we applied segmentation to both tQN and BeadStudio
tumor data. For each sample we calculated the difference
in segmented log R ratios between BeadStudio data and
tQN data. For genomic regions with log R ratio > 0 and <
0, respectively, the differences were calculated separately
such that a positive difference for both types of regions
corresponds to a better log R ratio response to CNAs for
BeadStudio normalization compared to tQN. We
observed small differences for all four data sets (Figure
5a). For the urothelial tumors, BeadStudio showed a bet-
ter response for segments with gains, while tQN showed a
better response for segments with losses. Such opposing

findings indicate that the two methods result in different
centering of the data rather than in different response to
CNAs. Thus, tQN does not appear to alter the log R ratio
response to CNAs compared to BeadStudio.

To investigate the effect on variation in CN estimates by
tQN we computed sample adaptive noise thresholds
(SATs) for tQN and BeadStudio data as previously
described [18]. We obtained significantly lower SATs
using tQN for four of six tested data sets, while SATs were
essentially unchanged for the remaining two data sets
(Figure 5b). The lack of effect by tQN on tumors hybrid-
ized on Infinium 300 k v1 BeadChips is in concordance
with the reference data set (Table 1). The lack of improve-
ment by tQN for tumors in the breast cancer data set is
more difficult to explain. All tumors in this data set are
either hyper-diploid or of high aneuploidy resulting in
highly unbalanced CN profiles. Unbalanced CN profiles
may be problematic for the affine transformation in Bead-
Studio, which scales the data based on that homozygous
SNPs on average should exist in two copies, and therefore
may confound normalization and data interpretation for
aneuploid tumors [5]. A detailed investigation of this
hypothesis is however not within the scope of the current
study. The CLL data set is part of a comparison of four dif-
ferent array platforms for detection of CNAs and LOH
[23]. In that study, Gunnarsson et al. compared the aver-
age copy number ratio and standard deviation for the nor-

Effects of quantile normalization on allelic intensity ratiosFigure 3
Effects of quantile normalization on allelic intensity ratios. Two urothelial carcinomas, UC456_R and UC152_I, analyzed using Infinium 
370 k BeadChips are shown. SNPs have been colored based on individual genotype calls: AA (green), AB (yellow), BB (red), CNV probes (blue) 
and no calls (gray). Horizontal dashed lines represent BAF 0.05, 0.1, 0.5, 0.9 and 0.95, respectively. (a) BeadStudio normalized B allele frequency 
profile for chromosome 9 of UC456_R. (b) QN normalized B allele frequency profile for chromosome 9 of UC456_R. Compared to BeadStudio 
(a), QN increases variation for SNPs close to 1 in BAF and decreases variation for SNPs close to 0 in BAF. (c) tQN normalized B allele frequency 
profile for chromosome 9 of UC456_R. Application of a threshold for the increase in intensity of X and Y by QN lowers the variation of SNPs 
close to 1 in BAF compared to QN alone (b), and creates BAF values that are more symmetrical around BAF = 0.5 compared to BeadStudio (a). 
(d) tQN normalized B allele frequency profile for chromosome 1 of UC152_I. The region 1q32.1 to qter discussed in the text is highlighted with 
a light blue background. CNV probes have been removed.
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mal chromosome 1 in all samples between the different
platforms. The Illumina platform showed the highest
average standard deviation (0.26) of the four platforms.
We found that the average standard deviation for chromo-
some 1 after tQN was 0.21, which is comparable to the
results obtained by Gunnarsson et al. for the Agilent plat-

Figure 5
Effects of tQN on copy number estimates across different 
Infinium platforms. (a) Effect of tQN on log R ratio response to 
CNAs compared to BeadStudio data for 36 tumor samples. For each 
sample the mean difference in segmented log R ratio between BeadS-
tudio and tQN data is plotted. For segments with log R ratio > 0 (red) 
the difference is BeadStudio minus tQN. For segments with log R 
ratio < 0 (green) the difference is tQN minus BeadStudio. A positive 
difference therefore corresponds to a better log R ratio response to 
CNAs for BeadStudio normalization compared to tQN for both types 
of segments. Error bars for each sample show the IQR of the differ-
ence. Horizontal bars denote the investigated data sets, urothelial 
tumors from data set 4 (black), breast/colon tumor samples from data 
set 8 (white), CLL samples from data set 7 (blue) and breast tumors 
from data set 6 (red). Only segments > 20 SNPs have been included. 
Segment definition was based on breakpoints from segmentation of 
BeadStudio copy number data. The small difference in segmented val-
ues between BeadStudio and tQN data indicates that tQN does not 
affect the log R ratio response to CNAs. (b) Boxplots of sample adap-
tive thresholds for BeadStudio normalized data (white) and tQN data 
(red) for 6 data sets. Top axis indicates the number of samples in each 
data set. tQN results in lower sample adaptive thresholds in four out 
of six data sets and equal thresholds in the remaining two. (c) tQN 
copy number estimates for chromosome 1 for urothelial tumor 
UC152_I with individual SNPs colored according to genotype calls: 
AA (green), AB (yellow), BB (red) and no calls (gray). CNV probes 
have been removed. tQN removes the asymmetry between AA and 
BB SNPs for regions of gain and loss observed in BeadStudio normal-
ized data (compare to figure 1d).
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Comparison of BAF asymmetry for regions of allelic imbal-ance before and after tQN across different Infinium II plat-formsFigure 4
Comparison of BAF asymmetry for regions of allelic imbal-
ance before and after tQN across different Infinium II plat-
forms. BAF profiles for 35 tumor samples were divided into an upper 
(BAF > 0.5) and lower (BAF < 0.5) part, transformed to mBAF and 
separately segmented. For a defined genomic region, the average dif-
ference in segmented mBAF between the upper and lower part is 
expected to be zero if no asymmetry is present. Genomic regions 
were based on segmentation breakpoints of the upper BAF part. Only 
regions > 30 SNPs and with a segmented mBAF value > 0.6 in the 
upper and/or lower part were used in the comparisons. Black squares 
correspond to BeadStudio data and red triangles correspond to tQN 
data. Error bars for each sample and normalization method show the 
interquartile range (IQR). (a) BAF asymmetry for 14 matched tumor-
normal samples. The black bar denotes 11 paired urothelial tumors 
from data set 4 and the white bar denotes the paired tumor samples 
from data set 8. tQN data systematically show less difference between 
the upper and lower BAF part compared to BeadStudio for the 14 
matched tumors. (b) BAF asymmetry for 21 unmatched urothelial, 
breast and CLL tumor samples. The black bar denotes the 5 unpaired 
urothelial tumors from data set 4, the blue bar denotes CLL tumors 
from data set 7 and the red bar denotes breast tumors from data set 
6. tQN data systematically show less difference between the upper 
and lower BAF part compared to BeadStudio for the 21 unmatched 
tumors.
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form (0.20). Furthermore, when applying tQN the asym-
metry in CN estimates observed in figure 1d was removed
(Figure 5c). The effect of tQN on CN and BAF estimates
for various tumor and normal samples is further illus-
trated in Additional file 1. In conclusion, we find that tQN
of Infinium II data is beneficial for CN estimates as varia-
tion is reduced while the dynamic response in copy
number ratios to CNAs remains unchanged. A decreased
variation for CN estimates can be beneficial for down-
stream analysis and detection of CNAs.

To investigate whether the reduced variation in copy
number estimates by tQN affected CNV detection com-
pared to BeadStudio we applied the PennCNV algorithm
[24] to the HapMap 550 k reference data set. The overlap
of identified SNPs between BeadStudio and tQN data was
on average 80% across the 120 HapMap samples for CNV
regions larger than 8 SNPs. Importantly, the overlap per-
centage increased for larger CNV regions. Even though we
cannot validate the correctness of CNV regions identified
in either tQN or BeadStudio data these findings indicate
that tQN reduces noise without removing biologically rel-
evant regions.

Conclusion
We have developed a normalization method that
improves the quality of data obtained from Illumina
Infinium II genotyping arrays. We show that both allelic
intensity ratio and copy number estimates are improved
by using a quantile normalization strategy with a thresh-
old for the intensity transformations (tQN) for correction
of intensity dye bias when Infinium II BeadChips are
applied to cancer samples. This dye bias results in an
asymmetric detection of the two alleles for each SNP lead-
ing to asymmetry for both allelic intensity ratios and copy
number estimates. Importantly, tQN not only removes
such asymmetry but also reduces variation in copy
number estimates. Essential for the improved result is to
create reference data sets for calibration of B allele fre-
quency and copy number estimates that are normalized
with the same method that is applied to the investigated
samples. The normalization strategy was successfully
applied both to normal blood samples and tumor speci-
mens with varying tumor heterogeneity and normal cell
contamination. Our strategy is applied on a sample per
sample basis and we have not evaluated if Infinium II data
can be improved by using between array normalization.
Further optimization of the normalization approach for
Infinium II data should include adjusting X and Y intensi-
ties on a sub bead-level instead of the currently used sum-
marized bead level to address the initially unequal X and
Y distributions. Such a correction would presumably alle-
viate the need for an additional normalization. Poten-
tially, such improvements may also address the lower

ratio response to CNAs and signal to noise observed with
SNP-CGH compared to conventional aCGH [23,25].

Methods
Data sets
We used 10 data sets for evaluation of the QN strategy.
Data set 1 (HapMap 300 k v2) consists of 120 HapMap
[26] samples hybridized on Illumina HumanHap300 ver-
sion 2 Genotyping BeadChips (Courtesy of Illumina Inc.,
San Diego, CA). Data set 2 (HapMap 370 k) consists of
123 HapMap samples hybridized on Illumina
HumanCNV370 Genotyping BeadChips (Courtesy of Illu-
mina Inc.). Data set 3 (HapMap 550 k) consists of 120
HapMap samples hybridized on Illumina HumanHap550
Genotyping BeadChips (Courtesy of Illumina Inc.). Data
set 4 (urothelial tumors 370 k) consists of 17 urothelial
carcinomas hybridized on HumanCNV370 Genotyping
BeadChips. Data set 5 (normal 370 k) consists of 17 nor-
mal samples hybridized on Illumina HumanCNV370
Genotyping BeadChips. Samples in data set 5 displayed
call rates between 99.5 to 99.8%. Twelve of the samples in
data sets 5 and 6 are paired tumor-normal samples from
the same individual. Data set 6 (breast tumors 550 k) con-
sists of six breast tumors hybridized on Illumina
HumanHap550 Genotyping BeadChips. Data set 7
(leukemia 300 k v2) consists of ten CLL cases hybridized
on Illumina HumanHap300 version 2 Genotyping Bead-
Chips [23]. Data set 8 (breast/colon 300 k v1) consists of
six hybridizations on Illumina HumanHap300 version 1
Genotyping BeadChips representing two breast cancers
and one colon cancer with matching normal samples
(Courtesy of Illumina Inc.). Data set 9 (HapMap 300 k v1)
consists of 111 HapMap samples hybridized on Illumina
HumanHap300 version 1 Genotyping BeadChips (Cour-
tesy of Illumina Inc.). Data set 10 (normal 550 k) consists
of one normal sample hybridized 5 times at different
DNA concentrations on Illumina HumanHap550 Geno-
typing BeadChips (obtained from the PennCNV website
[27]).

Chromosomes 1 to 22 were used in all comparisons. Data
sets 4 and 5 were generated at the SCIBLU Genomics Cen-
tre at Lund University, Sweden [28] and data sets 6 and 7
at the SNP technology platform in Uppsala, Sweden [29]
according to manufacturers instructions.

BeadStudio data preprocessing
Fluorescent signals were imported into the BeadStudio
software version 3.1 (Illumina Inc) and normalized. For
each sample, the normalized fluorescence signal intensi-
ties were compared with the signal intensities of a set of
reference genotypes, and the log2-ratios between sample
and reference signals were calculated on a SNP per SNP
basis. In addition, the frequency of the B-allele was for
each sample estimated based on the reference genotype
Page 9 of 11
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clusters [5]. Normalized X and Y intensities were exported
for further analysis. Manifest used for 300 k version 2
BeadChips was HumanHap300v2_A. Manifest used for
300 k version 1 BeadChips was BDCHP-1x10-
HUMANHAP300v1-1_11219278_C. Manifest used for
370 k BeadChips was HumanCNV370v1_C. Manifest
used for 550 k BeadChips was HumanHap550v3_A. Mir-
rored B allele frequencies (mBAF) were calculated as
mBAF = abs(BAF - 0.5) + 0.5 [22].

Quantile normalization (tQN) of Infinium II data
tQN was performed individually for each sample using
affine normalized intensities (X, Y) from BeadStudio and
the R [30] package limma [31]. The combined SNP inten-
sity, R, was calculated from tQN intensities. A threshold of
1.5 for the intensity transformations XQN/X and YQN/Y
was applied prior to calculation of theta: XQN intensities
larger than 1.5 * X were set to 1.5 * X; YQN intensities
larger than 1.5 * Y were set to 1.5 * Y. Theta, B allele fre-
quencies and copy number estimates were calculated
from tQN normalized intensities and reference data sets
as previously described [5]. CNV probes in analyzed sam-
ples were excluded from normalization due to lack of gen-
otype information. Instead, for these probes the
BeadStudio BAF and log R ratio values were used.

Construction of tQN corrected reference data sets
Quantile normalized reference data sets were created from
HapMap data sets using intensities (X, Y) normalized in
BeadStudio as the starting point. For each sample and
SNP, quantile normalized R and theta values were calcu-
lated as previously described [5]. Cluster positions in
theta and R were calculated for each SNP and genotype
based on genotype information (AA, AB and BB) using the
mean of all samples for the specific SNP and genotype.
SNPs with no cluster positions (no genotype assignment
across all HapMap samples) were excluded from the anal-
ysis. BAF and copy number estimates for SNPs with only
one genotype across all HapMap samples were calculated
using the value of the single cluster position. Theta values
for SNPs with one heterozygous and only one
homozygous cluster position (e.g. AB and AA) were
imputed for the missing homozygous cluster position
(e.g. BB) by the median of all theta values for the missing
genotype. Corresponding R estimates for the missing gen-
otype were set as missing values. For CNV probes the orig-
inal BeadStudio cluster positions were kept.

Segmentation of allelic ratios for investigation of BAF 
asymmetry
For matched tumor-normal samples, SNPs homozygous
in both the tumor and its matched normal sample were
first removed from the tumor BAF profile. Next, each
tumor sample was split into an upper and lower data set,
based on BAF values > 0.5 or < 0.5. Both data sets were

mirrored from BAF to mBAF (compare figure 1b) and seg-
mented by CBS [32] using default settings as recently
described [22]. Segments from the lower and upper part
of the BAF profile were cross-mapped and the difference
in the average segmented mBAF values between the upper
and lower part for each genomic segment was calculated.
If no asymmetry is present, the difference between the
upper and lower part of the BAF profile should be zero.
Only segments larger than 30 SNPs in size and with a seg-
mented mBAF value > 0.6 in the upper and/or lower part
was used for evaluation of asymmetry. For tumor samples
without a matched normal, SNPs with BAF > 0.97 or <
0.03 were removed prior to splitting BAF profiles into an
upper and lower part.

Copy number analysis
Segmentation was performed on normalized Log R ratios
for each sample, platform and method using CBS [32].
The significance level for accepting change-points, α, was
set to 0.001 for all analyzed data sets and normalization
methods. For comparisons between methods only seg-
mented regions > 20 SNPs were used.

Sample adaptive thresholds
Sample adaptive thresholds for CN estimates were calcu-
lated as previously described [18], using a smoothing win-
dow of 21 SNPs, the median of the SD distribution as cut-
off, and a scaling factor of 2 for all analyzed data sets and
normalization methods.

Availability and requirements
Project name: tQN

Project home page: http://baseplugins.thep.lu.se/wiki/
se.lu.onk.IlluminaSNPNormalization

Operating system(s): Any operating system supporting
Perl and R.

Programming language: Perl and R.

Other requirements: Perl modules File::Spec, Get-
opt::Long, IO::File and Pod::Usage. R package limma.

License: GNU GPL

Any restrictions to use by non-academics: None

Data set 6 (breast tumors 550 k) is available through
NCBI's Gene Expression Omnibus [33] with accession
GSE11977.

Abbreviations
aCGH: array-based CGH; BAF: B allele frequency; CBS: cir-
cular binary segmentation; CGH: comparative genomic
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hybridization; CLL: chronic lymphocytic leukemia; CN:
copy number; CNA: copy number aberration; CNV: copy
number variation; IQR: interquartile range; LOH: loss of
heterozygosity; mBAF: mirrored B allele frequency; QN:
quantile normalization; SAT: sample adaptive threshold;
SD: standard deviation; SNP: single nucleotide polymor-
phism; tQN: thresholded quantile normalization; WGG:
whole genome genotyping.
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