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Abstract

Background: Computational models of protein structure are usually inaccurate and exhibit significant deviations from the true
structure. The utility of models depends on the degree of these deviations. A number of predictive methods have been
developed to discriminate between the globally incorrect and approximately correct models. However, only a few methods
predict correctness of different parts of computational models. Several Model Quality Assessment Programs (MQAPs) have
been developed to detect local inaccuracies in unrefined crystallographic models, but it is not known if they are useful for
computational models, which usually exhibit different and much more severe errors.

Results: The ability to identify local errors in models was tested for eight MQAPs: VERIFY3D, PROSA, BALA, ANOLEA,
PROVE, TUNE, REFINER, PROQRES on 8251 models from the CASP-5 and CASP-6 experiments, by calculating the Spearman's
rank correlation coefficients between per-residue scores of these methods and local deviations between C-alpha atoms in the
models vs. experimental structures. As a reference, we calculated the value of correlation between the local deviations and
trivial features that can be calculated for each residue directly from the models, i.e. solvent accessibility, depth in the structure,
and the number of local and non-local neighbours. We found that absolute correlations of scores returned by the MQAPs and
local deviations were poor for all methods. In addition, scores of PROQRES and several other MQAPs strongly correlate with
'trivial' features. Therefore, we developed MetaMQAP, a meta-predictor based on a multivariate regression model, which uses
scores of the above-mentioned methods, but in which trivial parameters are controlled. MetaMQAP predicts the absolute
deviation (in Angstréms) of individual C-alpha atoms between the model and the unknown true structure as well as global
deviations (expressed as root mean square deviation and GDT_TS scores). Local model accuracy predicted by MetaMQAP
shows an impressive correlation coefficient of 0.7 with true deviations from native structures, a significant improvement over
all constituent primary MQAP scores. The global MetaMQAP score is correlated with model GDT_TS on the level of 0.89.

Conclusion: Finally, we compared our method with the MQAPs that scored best in the 7th edition of CASP, using CASP7
server models (not included in the MetaMQAP training set) as the test data. In our benchmark, MetaMQAP is outperformed
only by PCONS6 and method QA_556 — methods that require comparison of multiple alternative models and score each of
them depending on its similarity to other models. MetaMQAP is however the best among methods capable of evaluating just
single models.

We implemented the MetaMQAP as a web server available for free use by all academic users at the URL https://genesilico.pl/
toolkit/
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Background

Evaluation of model accuracy is an essential step in pro-
tein structure prediction. The existing methods for quality
assessment of protein models (MQAPs) are usually based
either on a physical effective energy which can be
obtained from fundamental analysis of particle forces or
on an empirical pseudo energy derived from known pro-
tein structures (review: [1]. So far, most of the develop-
ment of MQAPs was focused on the global evaluation of
protein structure and most of the existing methods were
optimized to discriminate between globally correct and
incorrect 'decoy' structures rather than to detect correct
and incorrect fragments [2,3]. Even for MQAPs that are
capable of generating independent evaluations for each
amino acid in the protein structure, it is usually recom-
mended that a score is averaged over a long stretch of res-
idues (e.g. 21 amino acids in the case of VERIFY3D [4]).
Systematic assessment experiments, e.g. Critical Assess-
ment of techniques for protein Structure Prediction
(CASP) and LiveBench demonstrated that models with a
correct fold can be confidently recognized, especially by
the fold-recognition meta-servers [5,6]. However, com-
parative models, especially those based on remotely
related templates, often exhibit local inaccuracies that are
difficult to identify by a global evaluation, in particular
misthreadings of short regions (5-10 residues) corre-
sponding to shifted alignments within individual second-
ary structure elements [7,8].

In CASP5, we proposed that inaccuracies due to local
alignment shifts can be identified and corrected by identi-
fication of variable conformations in alternative homol-
ogy models, comparison of their VERIFY3D scores
averaged over only 5 neighbouring residues, and construc-
tion of hybrid models comprising the best-scoring frag-
ments [9]. Our method (termed the "FRankenstein's
monster approach") turned out to consistently produce
very accurate models, especially if regions with initially
poor scores were systematically varied to generate addi-
tional models for evaluation [10]. However, detailed
inspection of cases where we failed to identify the most
native-like local conformation based on the VERIFY3D
score revealed a considerable variation of scores even
among models with similar structural features. Therefore,
we decided to carry out a systematic evaluation of the
capability of VERIFY3D and several other popular
MQAPs, including the recently published method PRO-
QRES [11], to identify the best method for prediction of
local accuracy of protein models. However, as the work
progressed, we realized that none of the MQAPs we ana-
lyzed was sufficiently accurate and robust and that they
exhibited very different strengths, and weaknesses. This in
turn prompted us to develop a new "meta-predictor” spe-
cifically optimized to detect local errors.
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Implementation

Preparation of protein models for the local quality
assessment

Training data

We downloaded all models generated within the frame-
work of the Critical Assessment of techniques for protein
Structure Prediction (CASP) rounds 5 and 6, for cases clas-
sified as 'template-based modeling', i.e. 'comparative
modeling' and 'fold recognition' [12,13]. In these cases a
large fraction of models have a correct fold and exhibit
widely varying degree of global and local similarity to the
native structure, with some completely wrong models (of
incorrect folds). To create the model database we used
only models that covered at least 90% residues of the tar-
get sequence and did not exhibit any internal deletions
(i.e. missing residues were allowed only at the termini). If
the CASP target was a multidomain protein, it was split
into individual domains, which were then regarded as
separate models. Ultimately, we collected 8251 models
for 84 CASP5&6 targets. Then these models where super-
imposed onto their experimentally solved counterparts
using LGA [14], routinely used in CASP assessment. For
our datasets, the average root mean square deviation
(RMSD) on C-o atoms between the models and the tem-
plates is 2.00 A and the average GDT_TS score is 59.

Many of CASP models are 'non-physical' in the sense that
they often exhibit steric clashes, non-standard bond
lengths and angles, improper stereochemistry or they lack
parts of residues (e.g. residues may be reduced to just C-a
atoms). Thus, we 'idealized' our CASP5&6 model dataset
to minimize the most severe local errors by simply run-
ning MODELLER [15] with default options, using the
original model as a template to derive spatial restraints to
build a refined full-atom model. We want to emphasize
that such procedure can lead to false positives in the case
of bad regions of a model and false negatives in the case
of excellent refined models.

The average RMS deviation between the idealized models
and their original counterparts is 0.33 A reflecting a slight
positional adjustment of the most distorted residues dur-
ing the idealization. Nonetheless, the GDT_TS score of the
idealized models remains 59, the same as for the original
models, and the average RMSD with respect to the native
structures changes negligibly from 2.00 to 2.01 A, indicat-
ing approximately the same amount of movement
towards and away from the native structures during ‘ideal-
ization'. Analysis of the RMSD and GDT_TS values for
models of different accuracy reveals that on the average,
our 'idealization' has slightly improved the absolute accu-
racy of original models with GDT_TS score < 90 (i.e. very
good models) and slightly decreased the quality of mod-
els with GDT_TS > 90 (Figure 1). Hereafter, the resulting
set of models will be referred to as CASP5&6+.
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The distribution of GDT_TS scores indicating (dis)similarity between the native structures of CASP targets in
the CM and FR(H) categories and the corresponding models: original ones (the CASP5&4é all) and their ideal-

ized versions (the CASP5&6+ all).

The aim of our analysis was to develop a method that
would be able to accurately estimate the deviation of C-a
atoms with respect to the corresponding residues in the
native structures without any knowledge of the native
structure. Despite we introduced ‘idealization', we
intended to make predictions for the original models.
Thus, we trained MetaMQAPII with the deviations
between original models (not the idealized models) to the
native structures, even though the other component of
training was the MQAP score for the idealized models.

Test data

In the last part of this article we compare MetaMQAP with
CASP7 winners in the MQAP category. Thus, from the
CASP7 website we downloaded both the server models
and Quality Assessment predictions done by winners of
the MQAP category. The accuracy of server models calcu-
lated by the LGA method was taken from the CASP7 web-
site [16]. CASP7 server models have been processed in the
same way as the training CASP5&6 data, e.g. they have

been 'idealized' with MODELLER and scored with Meta-
MQAP. As with the CASP5&6+ dataset, deviations
between the models and the experimental structures were
calculated for models before 'idealization'.

Statistical analyses

We applied wide range of statistical tools: such as Pearson
and Spearman's rang correlation, ROC curve analysis, t-
test, multivariable regression, and cluster analysis. All sta-
tistical analyses were done using STATISTICA 7 software
(StatSoft, Inc. Tulsa, OK, USA).

Model Quality Assessment Programs (MQAPs)

For the evaluation of protein models from the training
dataset and for the development of the MetaMQAP we
used 8 primary MQAP methods: VERIFY3D [4],
PROSA2003 [17], PROVE [18], ANOLEA [19], BALA-
SNAPP [20], TUNE [21], REFINER [22], and PROQRES
[11]. VERIFY 3D evaluates the environment of each resi-
due in a model with respect to the expected environment
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as found in the high resolution X-ray structures. It oper-
ates on a '3D-1D profile' of a protein structure, which
includes the statistical preferences for the following crite-
ria: the area of the residue that is buried, the fraction of
side-chain area that is covered by polar atoms (oxygen
and nitrogen), and the local secondary structure [4,23]. In
our own experience, VERIFY3D is rather permissive (i.e.
detects only relatively major errors, usually related to unu-
sual contacts resulting from misalignments, e.g. burial of
charged groups in a hydrophobic core. On the other hand,
VERIFY3D often fails to detect errors such as non-physical
bond lengths or angles or some steric clashes (e.g. thread-
ing of a distorted aliphatic side chain through a distorted
aromatic ring could be regarded as 'protein-like' by this
method). PROSA 2003 relies on empirical energy poten-
tials derived from pairwise interactions observed in high-
resolution protein structures [17]. In our own experience,
PROSA 2003 is very strict compared to VERIFY3D, i.e. it
often detects even very minor errors, such as distorted
geometry of hydrogen-bonded residues, and therefore
may be more useful for the evaluation of nearly-native
homology models than for the fold-recognition models
that are plagued by local errors. ANOLEA is also based on
a distance-dependent empirical potential. It evaluates the
non-local environment (NLE) of each heavy atom in the
model. The NLE is defined as the set of all heavy atoms
within the distance of 7 A that belong to amino acids far-
ther than 11 residues in the analyzed polypeptide. Owing
to the focus on non-local contacts, ANOLEA is able to
identify some errors that remain undetected both by
VERIFY3D and PROSA [19]. PROVE analyzes the packing
in protein models by evaluating the regularity of the atom
volume, defined by the atom's radius and the planes sep-
arating it from other atoms [18]. BALA-SNAPP evaluates
the structure by means of a four-body statistical potential,
applied to tetrahedral quadruplets or spatially neighbour-
ing residues [24]. TUNE uses a neural network to predict
local quality of residue from both a local and non local
contact of residues in the model [21]. REFINER is based
on a statistical potential, which includes terms such as:
contacts potential, long distance potential, hydrogen
bonds and burial pseudo energy [22]. Finally, PROQRES
is the only method in this set, which has been developed
specifically to predict local errors in crude protein models.
This method applies a neural network to estimate local
structure from: atom-atom contacts, residue-residue con-
tacts, secondary structure context, and solvent accessibility
[11].

In the final comparison, we analyzed the results of "blind"
assessment done for the CASP7 dataset by 6 methods:
QA556 - LEE (unpublished), QA704 - QA-ModFOLD
[25,26], a method based on the nFOLD protocol [27],
QA633 - PROQ, QA692 - ProQlocal [11], QAG34 -
PCONS6 a new variant of PCONS [28], QA713 - Cir-

http://www.biomedcentral.com/1471-2105/9/403

cleQA (for more information see CASP7 abstracts website
[29])

Results and discussion

Preparation of a set of models for evaluation

The evaluation of the capability of MQAPs to predict the
local accuracy of protein models requires a carefully pre-
pared dataset. We aimed to identify the most native-like
segments in a set of high quality models, in particular
those generated by comparative modeling and fold-recog-
nition methods. Therefore, rather than analyzing popular
sets of decoys with a clear majority of globally incorrect
versions of various protein structures [2,30], we decided
to use models of all CASP5&6 targets in the CM and
FR(H) categories (corresponding to the 'template-based
modeling' category in CASP7). We used only models that
covered at least 90% residues of the experimentally solved
structure and exhibited no missing internal residues (i.e.
deletions were allowed only for the termini) (see Meth-
ods). Models from the CM and FR(H) categories are usu-
ally based on templates with the same fold as the native
structure, and the major reasons of their deviation from
the native structure are alignment shifts (misthreading)
and/or structural divergence between the target and the
used template. These models are 'relatively good' only
with respect to the correct position of the backbone atoms
in the protein core, but they often contain various errors,
such as steric clashes between the side chains, missing side
chains, unmodeled residues corresponding to insertions
or terminal extensions, and discontinuities in the place of
deletions. Such models may be considered native-like in
terms of C-a atoms, but non-physical in details. Unfortu-
nately, most MQAP methods were optimized for the
structures of crystallographic quality, and all 'non-physi-
cal' details contribute to their scores in unpredictable ways
- either as very serious errors (e.g. steric clashes in
ANOLEA) or as artificially positive elements (e.g. some
clashes in VERIFY3D). In addition, CASP models are gen-
erated by different modeling protocols which exhibit var-
ious peculiarities with respect to inclusion or omission of
atoms. Variants include C-o atoms, backbone and C-8
atoms, all heavy atoms, or all atoms including hydrogens,
or different combinations of the above (i.e. in one model
some residues may be complete and others may lack dif-
ferent types of atoms). Obviously, it is very difficult to
compare the accuracy of residues modeled at such a differ-
ent level of precision, even if the aim is to assess the accu-
racy of C-a coordinates only. Moreover, most MQAPs
require complete models, without chain breaks or missing
atoms, but often also without any hydrogen atoms. Our
CASP7 results (see below) clearly demonstrate that utili-
zation of 'crude' CASP models leads to decreased perform-
ance of MQAPs, compared to the 'idealized' variants of the
same models.
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Taking into account the above-mentioned considerations,
we constructed an ‘idealized' set of models (hereafter
referred to as the CASP5&6+ dataset) using MODELLER
[15], which minimizes the violation of stereo-chemical
constraints as well as restraints derived from the template
and yields the canonical set of atoms for each residue. The
restraints were derived from the original CASP models,
instead of templates. This procedure reconstructed a
heavy-atom representation for all residues except the
omitted terminal residues and optimized the bond
lengths, angles and packing. On the other hand, the back-
bone structure of such 'idealized' models maintained the
conformation nearly identical to the starting structures
(see Methods). We envisage only one situation that can
lead to a false significant improvement in an idealized
model: If the original model contains big gaps (>>3.6A)
between C-a atoms of adjacent residues (obviously an
error, as this should not occur in real proteins), MODEL-
LER will attempt to seal the gap, causing conformational
change in the neighboring regions and bringing it closer
to what may be a native-like conformation (if the flanking
regions have correct conformation). However, such cases
are quite rare in practice.

The idealized models were used only to compute MQAP
scores, while the deviation between the modeled and
experimentally observed positions of C-a atoms (used as
a measure of the local quality of the model) was calcu-
lated for the original, unmodified models. Additional file
1 shows the distribution of residue deviation in our set of
'original' models.

Critical assessment of MQAPs

All models in the CASP5&6+ dataset were evaluated with
8 popular MQAP methods that we found to be available
for download and local installation: VERIFY3D,
PROSA2003, PROVE, ANOLEA, BALA-SNAPP, TUNE,
REFINER, PROQRES (see Methods). VERIFY3D, ANOLEA
and REFINER report series of "raw" scores for individual
residues. PROSA reports the composite score and its two
components. ANOLEA and BALA report an additional
score corresponding to the number of contacts/neigh-
bours of each residue. TUNE and PROQRES report only a
single score for each residue. We also analyzed the corre-
lation between residue deviation with local residue fea-
tures such as: solvent accessibility calculated using
NACCESS [31], residue depth calculated using MSMS [32]
as well as with the agreement between secondary structure
predicted with PSI-PRED [33] and calculated from the
model using DSSP [34]. In addition, we studied the accu-
racy of a trivial score (calculated directly from the model),
based on residue depth in the structure size of the protein
and type of an amino acid. TrivialScore divides the resi-
dues into 2000 classes based on the 10 bins of model size
(number of residues in the model), 10 bins of residue
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depth in the structure (ResDepth) and 20 bins defined by
each amino acid. The predicted TrivialScore values
directly correspond to the average residue deviation of res-
idues grouped in a given class. TrivialScore should be
regarded as a baseline MQAP, which predicts that on the
average residues in the protein core are modeled well, and
residues on the surface are modeled poorly.

Figure 2 illustrates the comparison of the absolute value
of Spearman's (R) correlation coefficient between the
absolute deviations of the modeled residues from their
counterparts in the native structures and all the above-
mentioned parameters (MQAPs, local residue features,
TrivialScore). In addition, the figure presents the result of
a cluster analysis, which shows the relationship between
the parameters discussed in this work. We applied the
UPMGA method with the value of (1 - |Spearman's rank
correlation coefficient|) as the linkage distance. Notewor-
thy, the Spearman's rank correlation was used here
because the relationship between parameters studied here
has a non-linear but monotonic character. In such case of
nonlinear relationship as a alternative to Spearman's rank
correlation the ROC curve analysis can be used. However
the ROC curve analysis misses the information required
for the cluster analysis presented here.

According to our benchmark (Figure 2), the scores
reported by PROQRES exhibit best correlation with the
real residue deviation (R = -0.50). This result was
expected, since PROQRES is the only method in our test
set that has been developed specifically to predict local
quality of theoretical models, such as those from CASP.
However, our analysis also revealed that PROQRES score
performs only slightly better than the global model accu-
racy (PROQ score - which is identical for all residues in a
given model). Apart from PROQ and PROQRES, the cor-
relations of primary MQAP scores with the local accuracy
of the model appear very poor - only a few scores exhibit
a correlation coefficient above 0.25. The scores that corre-
late best with the local model accuracy, are BALA,
VERIFY3D score averaged in a window of 5 residues
(VERIFY3Dw5), ANOLEAw5, and REFINER. It is notewor-
thy that the 'smoothened' VERIFY3DwS5 score is a much
better predictor of local model accuracy than the corre-
sponding "raw" score (VERIFY3D). The same is observed
for the ANOLEA and its ‘smoothened' variant
ANOLEAwWS. Another interesting observation is that the
composite score reported by PROSA (PROSA) comprises
a relatively well-performing component score describing
atom-atom interactions (PROSApair) and a much poorer
component score describing atom-solvent interactions
(PROSAsurf). We also observed that scores reported by
different methods are poorly correlated with each other,
which provides a stimulus to develop a method that com-
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Absolute value of correlation coefficient of MQAP scores and local residue features with the deviation of resi-
dues in the models (all CASP5&6+ all) compared with the native structures. The dendrogram on the right hand side
presents the results of cluster analysis. The linkage between parameters corresponds to the value of (| — |Spearman's rank cor-
relation coefficient|). On this figure we compare only the primary MQAPs, therefore we do not show results for MetaMQAP

that was developed based on these results. The detailed study of MetaMQAP's performance is presented on Figure 3.

bines strengths of different methods and eliminates the
individual weaknesses.

We were most surprised by a finding that per-residue devi-
ation can be predicted to some extent by using trivial fea-
tures that can be calculated directly from the model,
without any sophisticated MQAPs. Features strongly cor-
related with per-residue model deviation include NonLo-
calNeigh, ResDepth, and RelAccessibility, which describe
depth or burial of residue in the protein structure. From
our results, it appears that one of the best predictors of the
local quality of the model is the satisfaction of the resi-
due's preference to be buried in the core (many contacts)
or exposed on the surface (few contacts). -In particular,
TrivialScore (our baseline 'nonMQAP' score, see METH-

ODS) shows 0.33 correlation with residue deviation (Fig
3), better than most of common MQAPs, e.g.
VERIFY3DwS5 or PROSA. Further, we found that PROVE,
BALA, and PROQRES show the highest correlation with
TrivialScore among all MQAPs tested (correlation coeffi-
cient -0,55, -0.52, and -0,37, respectively), which suggests
that the scores of these methods mainly indicate the depth
of a residue in the structure rather than truly predict the
local quality of the model. This phenomenon is even
more visible in the results of cluster analysis, which show
that MQAPs and residue features group into a few clusters.
On of them contains mostly trivial parameters i.e. Local-
Neighbours, AbsAccessibility, ResDepth as well as two
MQAPs: PROVE and BALA (the second best MQAP
according to correlation with residue deviation), suggest-
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Benchmark of MQAPs to compare the predictive power of MetaMQAP with other MQAPs (CASP5&6+ test).
Black bars represents absolute values of correlation coefficient of MQAP scores with the deviation of residues in the models
compared with the native structures. Blue bars present absolute values of partial correlation, where the following parameters
were used as controlling variables: global model quality (GDT_TS) and residue depth in the structure (ResDepth and BuriedA-
rea). At the top of each column, the 95 % confidence interval of correlation is shown.

ing that these MQAPs are biased toward trivial features.
Among other clusters, the one grouping PROQRES,
PROQ and DEVIATION is most closely related to the clus-
ter of trivial parameters. This means that the residue fea-
ture parameters related to depth in the structure are
essential for prediction of residue deviation. However, it
also means that predictions made by PROQRES may be
significantly biased by trivial components.

Summarizing, we observed that the local quality of the
model can be predicted to a large extent by consideration
of trivial features such as amino acid accessibility and
depth in the structure. In other words, as a rule of a
thumb, residues buried in the core are on the average pre-
dicted more accurately than residues on the surface. Appli-
cation of sophisticated algorithms implemented in
MQAPs provides only a minor added value. To our knowl-
edge this important fact has escaped the attention of
developers and users of MQAP. Nonetheless, different
MQAP scores are surprisingly poorly correlated with each
other, which suggest that these added values might be dif-
ferent in each case. Thus, there is a hope that combination
of different MQAPs together with informed analysis of
trivial features may provide a much stronger predictor of
local model quality than any of these approaches alone.

Development of a meta predictor

Combination of different sub-optimal predictive methods
into 'meta-predictors' has been very successful in struc-
tural bioinformatics, in particular in protein and RNA sec-
ondary structure prediction [35,36], membrane protein
prediction [37], protein fold-recognition [38], and identi-
fication of protein domains [39]. Although sometimes
even simple averaging shows improvement over the
results obtained by the primary methods, there are
machine learning techniques that allow more intelligent
combination of the best features that different methods
have to offer. Here, we used a multivariate linear regres-
sion model to develop an MQAP meta-predictor (Meta-
MQAP). We used the residue deviation as the dependent
variable, while MQAPs and residue features were used as
predictors.

In order to develop a meta-predictor that would not be
biased towards trivial parameters, we applied multivariate
linear regression statistical models for selected groups of
residues. The selection was based on trivial residue fea-
tures: global model quality, residue depth in the structure,
residue hydrophobicity and secondary structure assign-
ment. In the case of global quality, the residues were first
divided into 7 bins, corresponding to 7 groups of models
with progressively better PROQ scores (predicted global
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quality), with bin 1 comprising residues from the 1/7 of
models with the worst PROQ scores, bin 7 comprising res-
idues from the 1/7 of models with best PROQ scores etc.
Second, residues in each PROQ bin were divided into a
new set of 5 bins according to the criterion of ResDepth
(thus, yielding 35 bins total). Here, bin 1 comprised 1/5
of most exposed residues (according to ResDepth), while
bin 5 comprised 1/5 of most buried residues. Third, we
binned the residues according to hydrophobicity (3 bins:
hydrophobic, hydrophilic, rest) and fourth - according to
secondary structure (3 bins: loop, strand, helix). Ulti-
mately, all residues were divided into 315 groups (7 x 5 x
3 x 3). For each of these groups we created a unique linear
regression statistical model to predict residue deviation
based on parameters described in Table 1. It is worth men-
tioning that linear regression assumes that the relation-
ship between dependent variable (residue deviation
measured in A) and independent variables is linear, but
this criterion would not be satisfied in our study. Thus, we
transformed both deviation and other parameters into
ranks from 1 to 100 to amend this problem. Finally, we
applied the least squares method to estimate linear regres-
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sion parameters for each of 315 models. Each of the mod-
els was created by STATISTICA 7 software, then the output
was parsed by in-house PYTHON scripts.

It must be emphasized that the linear regression statistical
models described above can predict rank (1-100) of devi-
ation instead of the deviation in Angstréms, however the
rank can be easily transformed into distance. The pre-
dicted rank of deviation were assigned to residue devia-
tion according to average residue deviation of residues of
the same rang as predicted in training data

In order to train and test the MetaM QAP the dataset of all
CASP5&6+ targets was randomly divided into training
data (70 targets — 7032 models total) and test data (14 tar-
gets — 1219 models total). The training data was used to
train the MetaMQAP method (i.e. to calculate the regres-
sion models). The test data (called CASP5&6+ test) was
used to evaluate MetaM QAP and compare it with the 'pri-
mary' MQAPs.

Table I: Description of scores returned by the primary MQAP methods as well as other local features analyzed in this work.

distance — dependent empirical potential. It evaluates the non-local environment (NLE) of each heavy atom in the model

mean of a four-body statistical potential, applied to tetrahedral quadruplets or spatially neighbouring residues

VERIFY3D 3D-ID profile score for a single residue
VERIFY3Dw5 VERIFY3D score averaged over a 5 residue window
PROSApair pair energy (atom-atom interactions)

PROSAsurf surface energy (atom-solvent interactions)

PROSA combination of PROSApair and PROSAsurf
ANOLEA

ANOLEAwS ANOLEA score averaged over a 5 residue window
PROVE average relative volume for all atoms of a residue
BALA

REFINERIoc pseudoenergy of local contacts

REFINERnonloc
REFINERhydro

pseudoenergy of long-distance contacts
pseudoenergy of H-H bond interaction

REFINERbur pseudoenergy of burial
REFINER weighted sum of all REFINER pseudoenergies
TUNE

FractionPolar
BuriedArea
LocalNeighbours
NonLocalNeighbours
ResDepth

PROQ
PROQRES

AbsAccessibility
RelAccessibility

LoopProb
HelixProb
StrandProb
SSAgreement

score based on neural network that predict local quality of residue from both a local and non local contact of residues in
the mode

fraction of non-polar residues in area of given residue (ENVIRONMENT)

burial of the residue (ENVIRONMENT)

number of residues within the distance of 10 A in space and within 8 residues in the sequence

number of residues within the distance of 10 A in space and more distant than 8 residues in the sequence.

the distance between the C-o atom of a residue and the closest geometrically plausible position of a water molecule on the
surface of the protein

It is a neural network based predictor that based on a number of structural features predicts the quality of a protein model.
ProQ is optimized to find correct models in contrast to other methods which are optimized to find native structures
score based on neural network which estimate local structure from: atom-atom contacts, residue-residue contacts,
secondary structure context, and solvent accessibility

absolute value of solvent accessibility for all atom off a residue (according to NACCESS)

proportion of absolute solvent accessibility of a given residue to the solvent accessibility of the same type of residue (X) in
a model tripeptyde Ala-X-Ala (according to NACCESS)

probability of a loop conformation in secondary structure predicted by PSIPRED

probability of a helical conformation in secondary structure predicted by PSIPRED

probability of an extended conformation in secondary structure predicted by PSIPRED

agreement between secondary structure predicted by PSIPRED and secondary structure observed in the model
(calculated by DSSP)
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Accuracy of MetaMQAP

The score reported by MetaMQAP corresponds to the pre-
dicted absolute deviation of a C-a atom of each amino
acid in the model from its counterpart in the native struc-
ture. Some authors average local model accuracy over a 5
or 9 residue window along the protein sequence [9,40]. In
this benchmark we decided to average score for each resi-
due over the window of 5 residues. This procedure was
applied both to MetaM QAP as well as to other MQAPs. All
such smoothed scores show higher correlation coefficient
than corresponding raw scores (data not shown), and
MetaM QAP shows a considerable improvement in predic-
tion of the local model accuracy in comparison with the
best primary MQAPs (Figure 3). The deviation predicted
by MetaMQAP correlates better with an observed devia-
tion than a deviation predicted only using primary
MQAPs (e.g. 0.57 for the best primary MQAP PROQRES).
The difference between MetaMQAP and PROQRES (and
other methods) is statistically significant (t-test, p < 0.05)
We also computed a partial correlation coefficient
between MQAPs and residue deviation. Partial correlation
is a method used to describe a relationship between two
variables whilst taking away the effects of another variable
or variables (called control variables). We selected global
model accuracy (GDT_TS of model), residue depth in the
structure (ResDepth) and buried area (BuriedArea) as the
control variables. As expected, the correlation coefficient
of MQAPs with residue deviation decreased significantly,
when the effect of control variables has been subtracted.
Despite that fact, MetaMQAP has shown the best correla-
tion of 0.36 in comparison to 0.3 observed for PROQRES
(t-test, p < 0.05). Table 2 shows the observed residue devi-
ation of residues that were predicted to be of the best and
of the worst quality according to MQAPs. The table
presents also the true deviation considered here as a refer-
ence. The average deviation of 10% top residues (true
deviation) is 0.44 A. The average for 10% top residues
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according to MetaMQAP is 1.13 A, which is more similar
to the reference average (0.42 A) than in the case of other
MQAPs. Here, MetaM QAP significantly outperforms com-
mon MQAPs such as Veryfy3D (avg. deviation 2.36 A)
and ANOLEA (avg. deviation 2.12 A). The observed differ-
ences between MetaMQAP and other MQAPs are statisti-
cally significant (t-test, p < 0.05).

The advantage of MetaMQAP is even greater in a context
of standard deviation (Table 2). For MetaMQAP, the 10%
top-scoring residues exhibit deviation of 1.13 A +/-
std.dev. 0.82, while for PROQRES, its 10% top-scoring
residues exhibit deviation of 1.42 A +- std.dev. 2.08 A. In
comparison, the 10 % truly best residues exhibit deviation
of 0.44 A +- std.dev.0.25.A, which indicates that Meta-
MQAP really pushes the prediction close to the limit.
These data clearly show, that MetaMQAP is more confi-
dent in detecting residues of highest quality than PRO-
QRES or any other method. A similar situation is observed
for the residues predicted to be of the lowest quality. The
mean deviation of the residues marked as 10% worst by
MetaMQAP is 20.39 A and is significantly higher than
mean deviation of 10 % worst residues selected by each of
remaining methods, with a deviation of PROQRES (t-test,
p < 0.05) at the level of 16.45 A. It is noteworthy that 10%
truly worst residues have avg. deviation of 31.3 A, which
shows a room for further improvement even in the case of
our method (avg. deviation 20.39 A). In addition we also
present the ROC curve analysis (cutoff 3A) which con-
firms the performance of MetaMQAP and overall ranking
of other MQAPs.

The predicted absolute deviation of individual residues in
the model has a similar meaning to the B-factor parame-
ter. It allows for assigning different confidence to regions
that are of particular interest for the prediction of biolog-
ical function of the modeled protein. On the other hand,

Table 2: Local (per residue) deviation for the best and worst residues according to different MQAPs.

10 % highest quality residues

10 % lowest quality residues

Method average std. deviation average std. deviation Area under the ROC curve
TRUE DEVIATION 0.44 0.25 31.3 13.24 1.000
VERIFY3D 2.36 422 12.23 14.98 0.699
PROSApair 1.83 3.47 11.27 11.86 0.751
PROSA 1.71 2.71 12.98 13.77 0.752
ANOLEA 2.12 3.89 9.17 11.04 0.685
BALA 1.50 2.08 15.19 16.71 0.767
REFINER 1.85 3.71 10.55 11.83 0.732
PROQRES 1.42 2.08 16.45 15.99 0.814
MetaMQAP 1.13 0.82 20.39 16.76 0.875

The table presents average 95 % confidence interval of average and standard deviation for residue deviation. For a well-performing method, the
average of 10 % highest quality residues should be low and for the 10 % lowest quality residues it should be high. In general, the bigger the interval
between average residue deviation for best and worst quality residues, the more accurate a method (CASP5&6+ test). In addition the area under

the ROC curve (3A cutoff) is shown
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in some applications it is more important to confidently
rank the relative quality of different variants of the same
sub-structure in a set of alternative models. The compari-
son of the ability of MQAPs to estimate the rank of accu-
racy of the same residue in alternative models is shown in
Figure 4.

The study was made for all residues in CASP5&6+ test
dataset as well as separately for a few group of residues
whose variants in our data set exhibit mean deviations 0-
2A, 2-4A, 4-8 A and > 8 A. Intuitively, it should be easier
to rank '4-8A’ sets of residues that include both very accu-
rate and very inaccurate variants than sets '0-2A' or '>8A'
of residues. In the 0-2 A range, most variants have similar
deviations from the native structure in all models and are
typically all very close to the native structure. On the other
hand, the set of residues with deviation at least 8 A usually
come from models with globally low quality, so their rel-
ative local quality becomes very difficult to predict by all
MQAPs. Interestingly, PROSA estimates better rank of var-
iant accuracy than PROSApair in spite of the fact that
PROSApair is better correlated with absolute residue devi-
ation than PROSA (see Figure 2). Another useful informa-
tion for modelers is that PROSA has the same accuracy as
PROQRES for the most accurately modeled variants (in
the 0-2 A range). Despite the fact that MetaMQAP was
trained to predict absolute residue deviation, here again it

http://www.biomedcentral.com/1471-2105/9/403

outperforms all other MQAPs in ranking different variants
of a given residue. The advantage of MetaMQAP over any
another method is statistically significant in the case of
each studied group of residues (t-test, p < 0.05)

MetaMQAP in CASP7

A prototype of MetaMQAP was one of the methods partici-
pating in the Model Quality Assessment contest held
within the "7t Critical Assessment of protein Structure
Prediction methods" (CASP7). The models submitted by
all servers in tertiary structure prediction category were
scored by all participating MQAP's, and the assessments
were compared with actual model accuracy. Predicted
GDT_TS was taken as the global reference score, while sin-
gle residue deviations from the native structure were taken
as the local reference scores [41].

Almost all CASP7 benchmarks have shown that our pro-
totype of MetaMQAP exhibited rather poor accuracy. The
phenomenon was observed both for global and local
model accuracy. We conclude that it was caused mainly
because of two reasons:

First, CASP7 assessors compare MQAP method using Z-
score of Pearson's correlation instead of a regular value of
the correlation. The Z-score of correlation was calculated
in the following way:

X
8
w 04 mall <2 E2-4 74-8 0O>8
8
g c 03 ? —
7
2 5 %
= 7
- S 70
gk Z 2 / 2 |
53 é é é
> 11N g g 1
$ é z z
2] % % Z
g Z / / /
0 o A . . A r A r / r {
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Figure 4

Absolute value of Spearman'’s rank correlation between deviation of variants for each residue and their MQAP
scores (calculated for the CASP5&6+ test). The results are showed for all residues as well as classes of residues whose
variants in our dataset exhibit mean deviations less than 2 A, between 2—4 A, between 4-8 A and at least 8 A. At the top of
each column the 95 % confidence interval of correlation is shown.
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Z —score=~n—3*(log(1+r)—-log(l-r1)/2)

r — correlation coefficient, n - number of scored models

The equations show that the Z-score is proportional to the
square root of the number of predictions submitted by an
MQAP method. Our method was penalized for providing
predictions of only a half of server models, which were
full atom models and didn't contain any steric clashes.
MetaMQAP (CASP7 group number 038) submitted evalu-
ations for 12259 models while the winning Pcons6
(group 634) scored 23858 server models. Thus, even if the
Pearson's correlation between i.e. global model score and
GDT_TS would be nearly the same for the two methods,
the Z-score is much higher for Pcons6. We conclude that
the MQAP scoring system used in CASP7 had an unex-
pected bias and in our opinion does not necessarily show
the discrimination value of the methods tested.

Second, MetaMQAP was trained on CASP5&6+ database
containing models idealized by Modeller. In the CASP7
experiment we made a very serious mistake and used Met-
aMQAP to evaluate models without any idealization.
After CASP7 experiment we realized that all models eval-
uated by our method would be evaluated more accurately,
if they were first idealized by Modeller, exactly as we have
done for our training set. Such behaviour is now default
for MetaMQAP.

Below we present the benchmark of the current version of
MetaMQAP on the same set of CASP7 server models that
was used in real CASP7 MQAP benchmark. All of these
server models were scored by our method after idealiza-
tion by MODELLER. For both global and local deviations
in the benchmark, we use data deposited on CASP7 web-
site (and calculated before idealization) instead of the
ones calculated by ourselves.

Global model accuracy prediction

There are two important questions for which answers are
sought. First, how accurate is a given model (in the sense
of its GDT_TS score), without considering any alternative
models? Second, if there are number of alternative mod-
els, how do they compare to each other according to accu-

racy?

According to the CASP7 Quality Assessment (QA), the
four methods that are best in predicting GDT_TS are:
QA_556, QA_704, QA_633, and QA_692, while four win-
ners in predicting the rank of alternative models are:
QA_556, QA_634, QA_713, and QA_633 [41,42]. To our
best knowledge, the QA_556 method is so far unpub-
lished and we could not find any web server, thus it was
impossible for us to replicate its results. According to
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CASP7 abstracts [29], QA_556 is based on global optimal-
ization of a scoring function. A set of models for given tar-
get sequence is clustered together and the clusters are
evaluated by MODELLER scoring function [43] and/or
DFIRE energy [44]. Methods QA_633 (PROQ), QA_634
(PCONSG6), and QA_692 (PROQLOCAL) were developed
by Elofsson and coworkers [28]. PROQLOCAL combines
score of PROQRES and PROQCONEF [28].

The PCONS method analyzes the set of protein models
and looks for recurring three-dimensional structural pat-
terns [5]. Based on this analysis, each model is assigned a
score reflecting how often its three-dimensional structural
patterns are present in a whole ensemble of submitted
models. It is based on the assumption that recurring pat-
terns are more likely to be correct than patterns than occur
only once or in few models. PCONS returns one score
reflecting the predicted global quality and scores for all
individual residues reflecting their predicted local quality.
Unfortunately, the latest version of PCONS -PCONS6
does not allow to submit a single model to score it. It can
be used only to score set of models created by the
Pcons.net modeling server [45].

The QA_704 method is called QA_ModFold. It combines
the scores of MODCHECK, ProQ-LG, ProQ-LX and ModS-
SEA using a neural network to predict global model accu-
racy [25]. The method is available as web server [26].

The QA_713 method, also called Circle-QA, predicts
model quality in two steps. First, it predicts target diffi-
culty to assign weights for two scoring functions used in a
second step. These functions are: 1) agreement between
secondary structure predicted for the target sequence and
observed in the model, and 2) combined score of burial
area, fraction of polar area, and secondary structure.
Unfortunately we were not able to find a web server of the
method.

Only 3 methods of QA_556, QA_692, and QA_699
belong to both of presented groups of winners (prediction
of global model accuracy, AND ranking alternative vari-
ants of models for a given target). In a following bench-
mark we compare MetaMQAP with these 3 methods. We
decided to focus our analysis on models that were scored
by all the compared MQAPs. Fortunately, almost all of
these methods were able to score almost all servers mod-
els, so for such a benchmark we used 20486 of 24339
CASP7 servers' models. Additional file 2 presents a
number of predictions for each of the considered MQAP
methods.

Prediction of model GDT_TS
Figure 5A shows Pearson's correlation coefficient between
GDT_TS and predicted global score for a situation when
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all predictions are pooled together. We see no significant
difference in correlations when we analyse all CASP7
server models or only those scored by all MQAPs. Meta-
MQAP is 2nd best in predicting global model quality. The
score of our method is correlated with GDT_TS on the
level of 0.84, while for the most accurate method
(QA_556) the correlation coefficient is 0.9

Additional file 3 shows the accuracy of MQAPs as a func-
tion of target difficulty. The targets were divided into two
different groups: "TBM" (template-based modeling) and
"TBM/FM or FM" (template-based modeling or free mod-
eling). We decided to combine TBM/FM and FM targets,
because the distribution of GDT_TS score for models sub-
mitted for these targets are similar, given that we consider
only single domain targets. As expected, all MQAP meth-
ods work better for TBM targets. The three most accurate
methods in the case are QA_556, MetaMQAP and
QA_704. All of these methods exhibit degraded perform-
ance for more difficult targets (TBM/FM & FM). Still, our
MetaMQAP is also among three best methods, while
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Figure 5

Correlation between the global score (prediction)
and the true model quality (GDT_TS). Panel A — Pear-
son's correlation coefficient between global model accuracy
(expressed as a GDT_TS score) and predicted global score
(CASP7 server models). Panel B — the mean Spearman's rank
between global model accuracy (GDT_TS) and predicted glo-
bal score of model variants (CASP7 server models). Hatched
bars — results for models evaluated by all 7 MQAPs consid-
ered here. Black bars results for all CASP7 server models. At
the top of each column the 95 % confidence interval of cor-
relation is shown.
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QA_633 and QA_692 fail in predicting GDT_TS for hard-
est targets. Surprisingly, for most difficult targets, the size
of a model is the best predictor of a model GDT_TS. Actu-
ally, it is better than any MQAP score: the correlation with
coefficient of -0.6 indicates that the longer a target
sequence the poorer are the models. On the other hand,
for the TBM group, the size of a target is only weakly cor-
related with GDT_TS (with a coefficient of 0.1).

Our findings also indicate, that the number of missing res-
idues can greatly influence the MQAP accuracy. Addi-
tional file 4 presents the correlation of global MQAP
scores with GDT_TS with respect to completeness, meas-
ured as the ratio of a number of residues in the model to
the total number of residues in the experimentally solved
target structure. All methods except QA_556 exhibit sig-
nificantly decreased accuracy for models which have less
than 80% of residues. Therefore we strongly recommend
using MetaM QAP only for models, in which no more than
20% of residues are missing.

Predicted ranking of models

One of the two most important characteristics on an
MQAP is the ability to discriminate between better and
worse alternative models for a given target sequence. Fig-
ure 5B shows the mean Spearman's rank correlation
between global model accuracy measured by GDT_TS and
the MQAPs' global score. We use Spearman's rank correla-
tion instead of Pearson correlation, because it is more
appropriate for ranking alternative models. The Spear-
man's rank correlation was averaged over all CASP7 tar-
gets. We observe that the correlation is similar both when
we consider all CASP7 models and when only the models
evaluated by all MQAP methods. The correlation of Meta-
MQAP global score with the rank of model accuracy is
0.65, and it is significantly lower that in the case of
method QA_556 (0.78) or QA_634 (0.76). Both of these
methods used clustering of large sets of alternative models
and then assigned higher scores to models that were
members of big clusters. We conclude that availability of
numerous alternative models and their clustering based
on geometric similarity is a method of choice for ranking
of models. This criterion has been implemented earlier for
selection of best decoys both from de novo folding [46]
and fold-recognition analyses [5].

Additional file 5 presents the ranking abilities of MQAPs
relative to the target difficulty. Exactly as before, we
grouped single domain CASP7 targets into two classes: 1)
TBM and 2) FM and TBM/FM. For easy targets (TBM) the
highest accuracy is achieved by QA_556, but the effective-
ness of the method significantly decreases for difficult tar-
gets (TBM/FM and FM). For the group of hard targets,
Pcons6 performs best, because its accuracy is quite insen-
sitive to target difficulty.
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In Figure 6 and 7 presents an overview of MetaMQAP
accuracy over all single domain targets in CASP7. Figure 6
shows the Spearman's rank correlation between the global
score of MetaM QAP and the model accuracy. Comparison
of accuracy calculated as a difference between the model
ranked best by MetaMQAP with the truly most accurate
server model is shown in Figure 7. The lowest correlation
was observed for target T0373 (with a coefficient of 0.18).
The model that was ranked best by MetaMQAP has the
GDT_TS score of 40.36, while the best server model has
the GDT_TS score of 69.64. Other significant mispredic-
tions of our method are observed for targets T0327,
T0353, and T0360, even though the Spearman's rank cor-
relation of these predictions is quite high. In the case of
T0373 the highest ranked model contained only 47% of
residues, which could have caused MetaMQAP to fail by
overpredicting its accuracy. A similar phenomenon is
observed for targets T0335 and T0360. MetaMQAP
selected model T0O335AL333_1, which contains only 39%
of residues and T0360TS102_2 which, contains 84% of
residues. For the remaining targets T0327 (TBM category)
and T0369 (TBM category), ranking errors made by Meta-
MQAP are difficult to explain. It seems that single out-
standing models could have been misevaluated by
MetaMQAP assessment.

http://www.biomedcentral.com/1471-2105/9/403

In Table 3 we present GDT_TS scores of models ranked as
best according to MQAPs. We were surprised to see that
models ranked as best by PCONS (QA_634 - the best
MQAP method in CASP7) have significantly lower overall
mean GDT_TS score (57.74) compared to other MQAPs
e.g. QA_713 (64.67). This demonstrates that even if an
MQAP generates scores that have a good Pearson's corre-
lation coefficient with the true model quality, this method
is not necessarily the one most appropriate to select the
truly best model. Pearson's correlation coefficient is very
sensitive to extreme values, such as those of models with
incorrect folds. Contemporary methods can usually pre-
dict a correct fold for 'easy' fold-recognition targets, and
therefore if alternative models are generated by a number
of methods, most of them usually share the same fold and
are similar to each other. Thus, a trivial MQAP that only
clusters models can reach high correlation coefficient for
sets of models for 'easy' targets, only because of its ability
to discriminate outliers with clearly non-consensus (and
therefore most likely incorrect) folds. In our opinion it
would be beneficial to focus the evaluation on the ability
of MQAPs to select the most accurate model (or the most
accurate parts) in sets of relatively high quality alternative
models for a target, and to weigh down the consideration
of the ability to discriminate between bad and very bad
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Figure 6

Correlation coefficient between the MetaMQAP global score and the model GDT_TS for each of single domain CASP7 targets.
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Figure 7

The ranking abilities of MetaMQAP compared to the best MQAP methods in CASP7 (QA_556 and QA _634,
QA_713, QA _704) and ProQ, represented as the GDT_TS score of a model with the highest MQAPs ranking
vs. the truly best server model for each target. Most significant mispredictions made by MetaMQAP are emphasized
with red frames. This evaluation was performed on a set of all CASP7 server models.
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Table 3: MQAPs ability to detect most accurate model in set of alternative models (analysis performed on a set of all CASP7 server

models).

Percentile of GDT_TS
Method average GDT_TS of top-ranked models | 5 25 50 (median) 75 95 99
QA_634 57.74 8.85 8.1 3538 5732 7363 9370 96.85
QA_556 64.03 13.11 17.66  46.60 6824 8101 9471 99.14
QA_704 62.23 16.65 2231  40.90 6297 7856 93.34 97.10
QA_7I13 64.67 1534  21.65 41.78 68.17 8158 9515 97.07
MetaMQAP 60.78 1493 2039 37.75 64.13 8l.11 9564 98.18
ProQ 59.53 1478  19.09  32.67 62.56 7632 9463 97.28
Best server model 70.93 2320 3098 54.63 7205 8547 96.13  99.20

The table shows the average GDT_TS score calculated for each top-ranked (according to different MQAPs) model for all targets, as well as

cumulative scores for different percentiles of top-ranked models.

models (as long as they are discriminated from moder-
ately good and very good models).

Local accuracy prediction

In CASP7 experiment only 9 servers competed in predict-
ing the local quality of models. In the following bench-
mark we compared MetaMQAP with 2 MQAPs that were
most accurate in that category: QA_634 (PCONS6) and
QA_692 (PROQIocal). Figure 8A presents overall Pear-
son's correlation between the local residue error and the
local MQAP score. Exactly as before, the correlation was
calculated for residues in all submitted models (over 7.4
million of residues) or only for the residues in models that
were scored by all of the compared methods (6.8 million
of residues). We note significant difference between the
current version of MetaMQAP and the previous version
that did not attempt to 'idealize’ models. However, the
multi-model comparison method QA_634 has still an
advantage, as it uses information unavailable in a single-
model regime of MetaMQAP.

Additional file 6 presents the Pearson's correlation
between local MQAP scores and true residue deviation as
a function of target difficulty. For TBM targets MetaM QAP
is the 2nd best method, with the correlation of 0.55. For
more difficult targets the accuracy of all methods
decreases significantly, but the effect is lowest in the case
of PCONSG. Such a result was expected, because for very
poor models statistical potentials used by e.g. MetaM QAP
or ProQlocal become less accurate and only the informa-
tion how common a given fragment is in set of alternative
models seems to be an effective indicator of model qual-

ity.

There is also a clear correlation between MQAP accuracy
and residue difficulty (Figure 8B). It can be measured as
an average error between instances of a residue in all dif-
ferent models with respect to native structure. The resi-
dues were split into four residue difficulty bins: the

"easiest" residues are those with a mean deviation in mod-
els of less than 2 A, the "easy but not easiest" have mean
deviation between 2-4 A, and so on. The most difficult
residues have mean deviation above 8 A. For all residue
difficulty classes, MetaM QAP shows accuracy comparable
to PROQIocal. The accuracy of all methods drops down
significantly when the residue mean deviation is > 8 A.

Conclusion

We have developed a new method for the quality assess-
ment of protein models, which uses the results of eight
other MQAP methods (VERIFY3D, PROSA, BALA,
ANOLEA, PROVE, PROQRES, REFINER, and TUNE) and
a wide range of local residue features to predict the local
deviation of residues in the model from their counterpart
in the (unknown) native structure. To our knowledge, this
is the first publicly accessible method that attempts to pre-
dict the absolute deviation (in A) for the individual resi-
dues in the model in a manner completely independent of
used modeling protocol and without any additional alter-
native models. The development of such methods was
recently strongly encouraged in the course of discussions
of members of the protein structure prediction commu-
nity on the FORCASP website [51]. Among similar meth-
ods, the ModFold server v1.1 [26] can predict local residue
deviations (in the ModFoldClust mode), but only for
multiple models.

When our method is compared with the winners of
MQAP category in last 7th edition of the CASP experiment
[41], our method is outperformed by a few methods that
use to their evaluation a large set of alternative models.
However, thus far none of these methods has been made
available as a public web server. Moreover, these methods
require that a potential user provides a large set of models,
whose size and diversity would be comparable to all mod-
els submitted by all CASP modelers for a given target. It is
very unlikely that such an effort would be possible outside
the CASP experiment itself. Therefore, MetaMQAP has a
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Figure 8

Correlation between local MQAPs scores and local
model quality. Panel A - Pearson's correlation
between predicted and observed residue deviation,
calculated for CASP7 server models. Hatched bars —
correlation for models evaluated by all 3 MQAPs (Meta-
MQAP, QA_634, and QA_692). Black bars — correlation for
all CASP7 server models. In addition we also present the
correlation calculated for our CASP7 predictions — QA_038.
In CASP7 experiment, QA_038 submitted scores only for a
fraction of models (48% of all scorable residues). Panel B -
Pearson's correlation between predicted and observed resi-
due deviation as a function of residue difficulty (calculated for
CASP7 server models, only for single domain targets). Here
we only consider residues scored by all 3 methods (Meta-
MQAP, QA _634, and QA _692).

potential to become a tool of choice for researchers inter-
ested in evaluating just a single model of their target pro-
tein, or a few individual models, without necessity to
provide a multiplicity of state-of-art models with many
different modeling methods.

We hope that our server will be useful for many research-
ers, perhaps not only computational modelers, but also
experimental structural biologists willing to identify con-
fident parts of low-resolution models, e.g. structures gen-
erated by automatic tracing of crystallographic electron

http://www.biomedcentral.com/1471-2105/9/403

density maps or preliminary models from an NMR exper-
iment. One possible area of immediate practical applica-
tion for our method could be the identification of regions
of comparative models that deviate less than ~3 A from
the native structure and could be used to solve the crystal
structures directly from the diffraction data, using the
molecular replacement approach [52-54]. Another possi-
ble application is to ensure that the overall quality of the
model is sufficient for the intended application and to
predicting regions of lower quality for further refinement.

It should be remembered that MetaMQAP is a 'meta-
server', and critically depends on the 'primary' methods
for the assessment of the local quality of models. The
training protocol described in this work can be extended
in the future to include additional models (of different
quality, similar to QA_634) and additional primary
MQAP methods (and structural feature analyses) — both
general ones as those that specialize in detection of very
minor or very large errors, or deviations of some particular

type.

Availability

We implemented MetaMQAP as a web server available for
free use by all academic users at the URL https://genesil
ico.pl/toolkit/. Any user can submit a model in the Pro-
tein Data Bank (PDB) format. After assessment, the web
server sends three different files by e-mail. A first file con-
tains a simple report about whether all MQAPs used for
computing MetaMQAP score were successfully executed.
The second file contains raw scores of primary MQAPs
and the deviation predicted by MetaMQAP for each resi-
due, as well as a GDT_TS score predicted for the whole
model. The third file contains the model PDB with the
temperature (B-factor) fields replaced with the Meta-
MQAP scores. One option corresponds to linear scaling of
values onto the range of 0.00 (predicted no deviation)
and 99.99 (predicted deviation > 10 A), similar to the
COLORADOS3D server [47]. If an option of 'absolute val-
ues' was used, then raw MetaMQAP scores are reported
without scaling (i.e. B-factor contains the predicted abso-
lute per-residue deviations in A). The results can be con-
veniently visualized e.g. with any macromolecular viewer
that allows coloring the structure according to B-factor
values (e.g. RasMol [48], PyMol [49], SwissPDBViewer
[50] etc.). Per-residue prediction accuracy is visualized as
a color in a spectrum between blue (predicted high accu-
racy), and red (predicted low accuracy). Figure 9 shows an
example of three alternative comparative models scored
with MetaMQAP, with the results visualized as tempera-
ture factors.

Thus far, we have used MetaMQAP in a number of mode-
ling analyses to discriminate between alternative models
and to illustrate the uncertainty of different regions in
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Figure 9

Visual identification of potential errors in protein models using 'coloring' by MetaMQAP. The spectrum of colors
from blue to red indicates the spectrum of residues predicted to be correct to incorrect. A) The crystal structure of the N-
terminal GIY-YIG endonuclease domain of UvrC from Thermotoga maritima (PDB code lycz). B) A comparative model of the
same protein based on an ideal alignment to a closely related structure of UvrC from Bacillus caldotenax (PDB code 1ydé). C) &
D) Models with local | aa alignment shifts indicated by a white ellipse and predicted deviation from the native structure indi-
cated by the shift of the color spectrum from blue towards yellow and red.

Table 4: Published analyses describing the use of MetaMQAP prior to publication of this article.

Protein name  Protein function Literature reference
MnmC Bifunctional tRNA methyltransferase and oxidoreductase [55]
R.Ecol24] Nuclease/ATPase subunit of Type | restriction-modification system [56]
Bud23 RNA methyltransferase [57]
Mom DNA modification enzyme [58]
Sgm RNA methyltransferase [59]

MiaA, MiaB, MiaE Enzymes involved in the ms2io®A biosynthesis pathway: a P-loop NTPase, a Radical SAM enzyme, and  [60]
a diiron carboxylate oxidase

M.EcoRlI DNA methyltransferase [61]
R.Mval Restriction endonuclease [62]
I-Ssp6803I Homing endonuclease [63]
R.Hphl Restriction endonuclease [64]
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modeled proteins. Table 4 list the published modeling
analyses that relied on MetaMQAP that can be used as
guides or case studies for potential users.
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Additional material

Additional file 1

Absolute deviations (in A) between the modeled and true positions of C-
a atoms of all residues. Deviations were calculated by comparing the
CASP5&6 model dataset with the native structures (1110647 residue
pairs).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-9-403-S1.png|

Additional file 2

The distribution of prediction of MQAP methods as well as MetaM QAP
for CASP7 server methods. Our benchmark database contains 21732
models evaluated by each of the methods. Dataset of models: server
CASP7 models

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-9-403-S2.doc]

Additional file 3

Pearson's correlation between the predicted global accuracy of models
(GDT_TS score) and the actual accuracy. Correlation was computed only
for models evaluated successfully by all MQAP methods. As a reference,
we also present the correlation of a trivial parameter, namely the number
of amino acids in the target sequence. Evaluation was performed on a set
of all models submitted to CASP7 by servers.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-9-403-S3.png|

Additional file 4

Accuracy of MQAP as a function of model completeness. The picture
presents the Pearson's correlation between the global MQAP score and a
model global accuracy (GDT_TS score). The correlation was computed
only for models scored by all of presented MQAPs. Evaluation on all
CASP7 server models.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-9-403-S4.png|
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Additional file 5

Mean Spearman's rank correlation between ranking of a model (highest
GDT_TS) and a prediction of global model score. TBM, TBM/FM and
FM are CASP7 target difficulty classes (TMB = template-based modeling,
FM = free modeling). Correlations were calculated only for single domain
models evaluated by all MQAP methods. We assumed the 95% confi-
dence interval. Evaluation on a set of all CASP7 server models.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-9-403-S5.png]|

Additional file 6

Pearson's correlation between predicted and observed residue deviation.
Dashed bars - correlation on a set of single-domain CASP7 models eval-
uated by all presented MQAPs, black bars — correlation for a set of all sin-
gle-domain CASP7 server models.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-403-S6.png|
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