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Abstract

Background: Identification of protein complexes is crucial for understanding principles of cellular
organization and functions. As the size of protein-protein interaction set increases, a general trend
is to represent the interactions as a network and to develop effective algorithms to detect
significant complexes in such networks.

Results: Based on the study of known complexes in protein networks, this paper proposes a new
topological structure for protein complexes, which is a combination of subgraph diameter (or
average vertex distance) and subgraph density. Following the approach of that of the previously
proposed clustering algorithm DPClus which expands clusters starting from seeded vertices, we
present a clustering algorithm IPCA based on the new topological structure for identifying
complexes in large protein interaction networks. The algorithm IPCA is applied to the protein
interaction network of Sacchromyces cerevisiae and identifies many well known complexes.
Experimental results show that the algorithm IPCA recalls more known complexes than previously
proposed clustering algorithms, including DPClus, CFinder, LCMA, MCODE, RNSC and STM.

Conclusion: The proposed algorithm based on the new topological structure makes it possible to
identify dense subgraphs in protein interaction networks, many of which correspond to known
protein complexes. The algorithm is robust to the known high rate of false positives and false
negatives in data from high-throughout interaction techniques. The program is available at http:/
netlab.csu.edu.cn/bioinformatics/limin/IPCA.

Background

In the post-genomic era, one of the most important issues
is to systematically analyze and comprehensively under-
stand the topology of biological networks and biochemi-
cal progress in cells. Protein complexes can help us to
understand certain biological progress and to predict the
functions of proteins. As John Donne pointed out, no pro-
tein is an island entire of itself or at least, very few proteins

are. Most proteins seem to function within complicated
cellular pathways, interacting with other proteins either in
pairs or as components of larger complexes [1,2].

Various methods have been used to detect protein com-
plexes. Large-scale mass-spectrometric studies in Saccha-
romyces cerevisiae provide a compendium of protein
complexes that are considered to play a key role in carry-
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ing out yeast functionality [3,4]. Although vastly informa-
tive, such methods offer information only on the
composition of a protein complex at a given time and
developmental or environmental condition [5]. Repeated
individual purifications coupled with each of these com-
plexes could offer a more precise picture [6,7], but such
approaches on a large scale are unavailable at present.
Affinity purification techniques using mass spectrometry
provide a particularly effective approach to identifying
protein complexes [1]. These high-throughput techniques
have been used to perform large scale protein-protein
interaction screens in the yeast Saccharomyces cerevisiae
[3,4,8-11]. Sharan et al. [12,13] developed a probabilistic
model for protein complexes in a single species and a
model for the conservation of complexes between two
species. Based on the assumption that proteins in the
same pathway are typically present or absent in a genome
as a group, Pellegrini et al. [14] detected the conserved
complexes across two species. Methods based on inte-
grated multiple information (e.g. functional annotations
for proteins, protein structures, gene expression, et al.)
have been proposed [5,15]. Dezso et al. [5] believe that
the cellular role and the essentiality of a protein complex
may largely be determined by a small group of protein
subunits that display a high mRNA coexpression pattern,
belong to the same functional class, and share the same
deletion phenotype and cellular localization. However,
the relation between protein interactions and gene coex-
pressions may be very complicated with a high rate of
false positive in the protein interaction data generated by
high-throughput methods.

At present, a general trend is to represent the protein-pro-
tein interactions as a graph and to apply suitable graph
algorithms to extract necessary information [16]. There
have been several graph clustering approaches proposed
to detect protein complexes, including SPC (Super para-
magnetic clustering) [17], RNSC (Restricted Neighbor-
hood Search Clustering) [18], MCODE (Molecular
Complex Detection) [19,20], DPClus [16], LCMA (Local
Clique Merging Algorithm) [21], CFinder [22], and STM
(Signal Transduction System) [23]. For later comparisons
of our proposed algorithm with these algorithms, we give
a brief description and discussion on each of these algo-
rithms.

SPC [17] is a hierarchical clustering algorithm that simu-
lates a ferromagnetic model with physical properties sub-
ject to fluctuation at nonzero temperature. Algorithm SPC
identifies vertices belonging to a highly connected sub-
graph. However, as a disadvantage, SPC is sensitive to
noisy data [24]. In fact, to our knowledge, all methods of
predicting protein-protein interactions cannot avoid
yielding a non-negligible amount of noise (false posi-
tives).

http://www.biomedcentral.com/1471-2105/9/398

RNSC [18] is a cost-based clustering algorithm, which par-
titions the vertices of a graph into clusters based on a cost
function that is assigned to each partitioning. It starts
from an initial random solution and iteratively moves a
vertex from one cluster to another to decrease the total
cost of clusters. It ends up when some moves have been
reached without decreasing the cost function. RNSC is a
randomized algorithm and its results depend heavily on
the quality of the initial clustering.

MCODE [19,20] is a density-based local search algorithm
that operates in three stages: vertex weighting, complex
prediction, and optionally post-processing. First, it assigns
a weight to each vertex based on its local neighborhood
density. Then, it seeds a complex with the highest
weighted vertex and recursively moves outward from the
seed vertex. A new vertex is added to the complex if its
weight is larger than a given threshold. Then, it filters or
adds proteins in the clusters by certain connectivity crite-
ria. However, MCODE cannot guarantee that the pre-
dicted clusters are highly connected to each other, since
the highly weighted vertices may not be highly connected
to each other.

Most importantly, SPC, RNSC and MCODE cannot gener-
ate overlapping protein complexes, and require that each
vertex belong to one specific cluster. In practice, a protein
may be involved in multiple complexes and have more
than one biological function. For example, in the CYGD
database [25], the ratio of the number of proteins in
known protein complexes over the sum of the sizes of
these complexes is 2750/8932. Therefore, it is practically
important to develop algorithms that identify overlapping
protein complexes. The DPClus [16] clustering algorithm
is based on density and periphery tracking and can detect
both non-overlapping clusters and overlapping clusters.
To generate overlapping clusters, DPClus extends the non-
overlapping clusters by adding their neighbors in the orig-
inal graph (rather than in the remaining graph). It starts at
a highest weighted vertex and grows gradually by adding
vertices from its neighbors. It uses two parameters, density
d, and cluster property cp,;. A vertex added to a cluster
must satisfy two conditions: 1) its addition does not cause
the density d,, of the cluster to fall below a given threshold
d;,; and 2) its ¢p,,, is larger than another given threshold

Cpin'

LCMA [21] generates overlapping clusters based on local
clique merging. It first locates local cliques for each vertex
of the graph then merges the detected local cliques accord-
ing to their affinity to form maximal dense subgraphs.

CFinder [22] is a tool of detecting overlapping clusters
based on the Clique Percolation Method (CPM) [26].
CPM defines a protein complex as a union of all k-cliques
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that can be reached from each other through a series of
adjacent k-cliques (two k-cliques are adjacent if they share
exactly k - 1 vertices). Results of CFinder are highly corre-
lated to the value of the parameter k. Larger values of k cor-
respond to smaller subgraphs of higher density.

STM [23] models protein interaction networks as dynamic
signal transduction systems, and demonstrates the signal
transduction behavior of perturbations by proteins statis-
tically. STM allows overlapping of output clusters and
identifies clusters of large size, arbitrary shape, and low
density. However, unexpected huge clusters may also be
generated in its post-process of merging.

In this paper, we propose a clustering algorithm, which
follows the general framework of the algorithm DPClus
[16] but is based on a new topological structure of com-
plexes. By a careful study of the structures of known com-
plexes, we discover that most complexes have a very small
diameter and a very small average vertex distance. Also
observing that vertex distance along would not precisely
determine the desired complex structures, we propose a
new topological structure of complexes that is the combi-
nation of vertex distance and subgraph density. Following
the general approach of expanding clusters started with
seeded vertices, as what DPClus did, we develop an algo-
rithm IPCA for detecting protein complexes based on the
new topological structure. We apply the algorithm IPCA
to the protein interaction network of yeast, and identify
many well-known protein complexes. We compare IPCA
with the six competing previous methods DPClus,
CFinder, LCMA, MCODE, RNSC and STM. The clusters
generated by each method are compared to the known
protein complexes. The results of the comparisons show
that much more experimentally determined complexes
are recalled by IPCA than by other six methods. In addi-
tion, IPCA is robust against the high rate of false positives
and false negatives in the protein interaction networks.
Thus, the algorithm IPCA can be used to identify new pro-
tein complexes in protein interaction networks of various
species and provide references for biologists in their
research on protein complexes.

Before we present our algorithm, we would like to discuss
the difference between our algorithm IPCA and the previ-
ously proposed algorithm DPClus [16]. The algorithm
IPCA follows the general approach of cluster expanding
based on seeded vertices, as what DPClus did. However,
the rules of IPCA for expanding clusters and weighting
vertices are somewhat different from that of DPclus espe-
cially they target a different topological structure for the
resulted clusters. In particular, the algorithm DPClus
identifies subgraphs that satisfy a density condition (i.e.,
d,) and certain cluster connectivity property (i.e., cp,;,),
while the algorithm IPCA looks for subgraph structures
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that have a small diameter (or a small average vertex dis-
tance) and satisfy a different cluster connectivity-density
property (i.e., IN,x). Also, the algorithm IPCA computes
the vertex weights only once, based on the original input
graph. On the other hand, once a new cluster is identified,
the algorithm DPClus removes the cluster and re-com-
putes the vertex weights based on the remaining subgraph.
We believe that our approach is biologically more mean-
ingful: the selection of a seeded vertex for a cluster is based
on vertex weights, which should be measured by the orig-
inal protein network because the cluster is a dense struc-
ture in the original network. On the other hand, a
remaining subgraph in the process of DPClus may have
lost some useful biological information because the algo-
rithm re-computes the vertex weights based on the
remaining subgraph. A byproduct of our approach is that
our algorithm is more efficient because it avoids the rec-
omputation.

The proposed algorithm

A protein interaction network is represented as an undi-
rected simple graph G(V, E) with proteins as vertices and
protein interactions as edges. Previous works [16-21,27]
have revealed that protein complexes in a protein interac-
tion network generally correspond to dense regions
(dense subgraphs, or simply clusters). Most density-based
clustering algorithms, such as DPClus [16], first generate
a seed vertex and extend from the seed vertex by adding
new vertices. The performance of such algorithms
depends heavily on the quality of the seeds and the crite-
rion of extending, especially the latter.

In this section, we propose a new extending model by ana-
lyzing the topology of the complexes in the protein inter-
action network of Saccharomyces cerevisiae. The protein
interaction network of Saccharomyces cerevisiae is down-
loaded from MIPS (Munich Information Center for Pro-
tein Sequences) database [28]. We remove all the self-
connecting interactions and repeated interactions. The
final network includes 4546 yeast proteins and 12319
interactions. The average clustering coefficient of the final
network is 0.4, the network diameter is 13, and the aver-
age vertex distance is 4.42. We also collect from the MIPS
database protein complexes annotated for Sacchromyces
cerevisiae [28]. There are 216 manually annotated com-
plexes that consist of two or more proteins. The largest
complex contains 81 proteins, the smallest complex con-
tains 2 proteins, and the average size of all the complexes
is 6.31. For each protein complex, we analyze its topology
in the network of Sacchromyces cerevisiae. Of the 216
protein complexes, 118 are connected (a protein complex
is connected if there is a path connecting every pair of ver-
tices in the complex). For a connected protein complex, its
diameter is defined to be the maximum shortest path
length between any pair of vertices in it. A non-connected
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protein complex can be divided into connected compo-
nents. Most of the non-connected protein complexes can
be divided into a large component and one or two sepa-
rated proteins. For a non-connected protein complex, we
define its diameter to be the maximum diameter over all
its connected components. We calculate the diameter and
average shortest path length for each of the 118 connected
protein complexes and for each of the 98 non-connected
protein complexes.

As shown in Table 1, 94.91% of the connected complexes
have their diameter bounded by 2, and 99.15% of the
connected complexes have their average shortest path
length bounded by 2. There is only one connected com-
plex in which the average shortest path length is larger
than 2, which is 2.047. The average shortest path length of
all the non-connected complexes is bounded by 2.5, the
longest one is 2.409. 93.88% of the non-connected com-
plexes have their average shortest path length bounded by
2, and 82.66% of the non-connected complexes have their
diameter bounded by 2. This fact matches the observation
that the protein interaction networks have the small-
world property [29,30]. The analysis on the statistical data
shows that the length of the shortest path between each
pair of vertices in most of the complexes is bounded by 2.
With this important observation, we believe that the
length of the diameter and the average length of shortest
paths are important topological parameters for detecting
protein complexes.

In the following discussion, we denote by SP(K) the diam-
eter of a graph K (i.e., the largest length of a shortest path
between a pair of vertices in K), and by ASP(K) the average
length of all the shortest paths between each pair of verti-
ces in K. Since the discussions for SP(K) and ASP(K) are
similar, our discussion will be mainly focused on SP(K).

As shown in Figure 1, graphs with the same diameter can
have very different topologies. To distinguish different
topologies of graphs with the same diameter, we need
another control parameter. For a dense graph, a vertex is
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connected to most of the vertices in the graph. On the
other hand, in a sparse graph a vertex may be connected
to only a few vertices in the graph. We introduce a new
concept to measure how strongly a vertex v is connected to
a subgraph K: the interaction probability IN ;. of a vertex v to
a subgraph K, where v ¢ K, is defined by

IN = K (1)
nK

where m, is the number of edges between the vertex v and
K, and ny is the number of vertices in K. We discuss the
relationship between the parameter IN, and the two
parameters dy and cp,, introduced in the algorithm
DPClus [16]. According to [16], the density dy of a sub-
graph K is defined as dy = 2m/(ng(nk- 1)), where myis the
number of edges in the subgraph K, and the cluster property
cp,x of a vertex v with respect to the subgraph K is defined
as cp, = M/ (dgng). By the expressions, our parameter
IN i is similar to the parameter cp, (differing by a factor
of dy). Moreover, the following theorem shows that the
parameter IN, is also closely related to the density dj.

Theorem. Let K be a subgraph of a graph G. If for every
vertex v in K, we have IN ;.= t,, where K'=K-vand tjis a
fixed constant, then dy> .

PROOF. By the conditions given in the theorem, for all ver-
tices v in K, we have (where K' = K - v, m,. is the number
of edges between v and K', and ny. is the number of vertices
in the subgraph K'),

INyje = Mg/ 2 1o
Therefore, m, . > ny.t,. Add this over all vertices v in K, and

note that 2, _m, . = 2my, where my is the total number of
edges in K, and that ny. = ny - 1, we have

2myg = va,(» > an»to =ng(ng — 1,

veK veK

Table I: Diameter and average length of the shortest paths of protein complexes

Complexes(216)

Diameter of the Complex

Average Length of the shortest paths

Diameter Number Proportion Length Number Proportion
Connected(l 18) D<2 112 94.91% L<2 117 99.15%
D=3 5 4.24% L =2.047 | 0.85%
D=4 | 0.85%
Non-connected(98) D<2 8l 82.66% L<2 92 93.88%
D=3 7 7.14% 2<L<25 6 6.12%
D=4 7 7.14%
D=5 3 3.06%
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(a) (b)

Figure |

Two examples of graphs with SP = 2. Graphs with the
same diameter can have very different topologies. To distin-
guish different topologies of graphs with the same diameter,
we can use the parameter IN .. For example, the two graphs
in this figure both have diameter 2. However, for all vertices
v in the first graph, the value IN . is 4/5; while for five of the
six vertices in the second graph, the value IN is 1/5 (where
we define K'= K - v).

This gives dy = 2my/(ng(ng - 1)) = t,, and proves the
theorem. O

By the above theorem, a lower bound on the parameter
IN, - for every vertex v in a subgraph K will also provide a
lower bound on the density dy of the subgraph K. Next we
show that the parameter IN,; can help distinguishing sub-
graph structures that are indistinguishable by their diam-
eters. Consider the two graphs in Figure 1 again. Although
both graphs have diameter 2, for all vertices v in the first
graph, the value IN . is 4 = 5; while for five of the six ver-
tices in the second graph, the value IN . is 1/5 (where we
define K' = K - v).

Our algorithm IPCA looks for complex structures whose
topological structure is controlled by the two parameters
SP(K) and IN,,. More specifically, we look for complex
structures whose diameter is controlled by the parameter
SP(K) and whose density and cluster property are control-
led by the parameter IN .

Definition 1. Let T;, be a threshold ranging between 0 and
1, let d be a positive integer, and let K be a subgraph. A ver-
texv ¢ Kis a (K, T, d)-vertex if the following two condi-
tions are satisfied (where K + v denotes the subgraph
induced by K and v):

1. IN k> T,,; and

2. The (SP £ d)-Version: SP(K + v) <d (or The (ASP < d)-Ver-
sion: ASP(K + v) <d)

Note that there are actually two versions for the definition
ofa (K, T;,, d)-vertex in terms of condition 2: one uses the
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condition SP(K +v) <d (i.e., the (SP < d)-Version), and the
other uses the condition ASP(K + v) <d (i.e., the (ASP <
d)-Version).

Our clustering algorithm IPCA that extends clusters based
on (K, T, d)-vertices is given in Figure 2. If the algorithm
uses the (SP < d)-Version in the conditions in the defini-
tion, we will say that "the algorithm uses SP < 4". Simi-
larly, if the algorithm uses the (ASP < d)-Version in the
conditions in the definition, we will say that "the algo-
rithm uses ASP < d".

The algorithm IPCA can be divided into four major parts:
Weighting Vertex, Selecting Seed, Extending Cluster, and
Extend-judgment. The input to the algorithm is an undi-
rected simple graph.

Weighting Vertex

Our procedure of vertex weighting is the same as that of
the DPClus algorithm [16]. For an input graph G = (V, E),
we assign the weight of an edge [u, v] to be the number of
neighbors shared by the vertices u and v. We define the
weight of each vertex to be the sum of the weights of its
incident edges. After all vertices are assigned weights,
however (this is different from DPClus), we also sort in
non-increasing order the vertices by their weights and
store them in a queue S, (vertices of the same weight are
ordered in terms of their degrees). The complexity of cal-
culating edge weights and vertex weights is O(|V||E|), and
the complexity of sorting all vertices by their weights is
O(|v] log V]).

Selecting Seed

The notion that vertex weight is a good measure for select-
ing seeds has been adopted by DPClus [16] and MCODE
[19]. Here, we also pick the highest weighted vertices as
the seeds. Our procedure proceeds as follows. We pick the
first vertex in the queue S, and use it as a seed to grow a
new cluster. Once the cluster is completed, all vertices in
the cluster are removed from the queue S, and we pick the
first vertex remaining in the queue S, as the seed for the
next cluster. There are a number of important differences
between this seed selection procedure and the one used in
the DPClus algorithm [16]. First, our procedure computes
the vertex weight for each vertex only once, based on the
original graph; while the DPClus algorithm recomputes
the vertex weight for each remaining vertex after a cluster
is removed, based on the remaining subgraph. We feel that
our approach is biologically more meaningful because a
complex is a dense structure in the original protein net-
work thus its seed vertex should be measured in terms of
the original graph. On the other hand, a remaining sub-
graph G' during the process of DPClus may have lost cer-
tain biological information (e.g., interactions between the
vertices in G' and vertices not in G' have been removed).
Computationally, our approach also has the advantage of
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Algorithm IPCA

output: identified complexes (clusters);

(** Weighting Vertex **)
1. compute the weight of each edge;
2. compute the weight of each vertex;

(** Selecting Seed **)

Subroutine ExtendingCluster(K)
(** Extend-judgement **)
1. if there is a (K, Tiy, d)-vertex

Call ExtendingCluster(K + v);
3. else print the cluster K; S, =5, — K.

input: a graph G = (V, E), parameters T}, and d;

3. queue S, < all vertices sorted in non-increasing order in terms of vertex weights;

4. while S; #0 do { v Sy;; K = {v}; call ExtendingCluster(K). }

(** Extending Cluster **)

2. then let v be a (K, Tin, d)-vertex that has the highest priority;

Figure 2

The description of IPCA algorithm. IPCA algorithm extends clusters based on (K, T, d)-vertices. If the algorithm uses the
(SP < d)-Version in the conditions of Definition |, we will say that "the algorithm uses SP < d". Similarly, if the algorithm uses
the (ASP < d)-Version in the conditions of Definition |, we will say that "the algorithm uses ASP < d".

being more efficient. Moreover, our approach has also
helped for generating overlapping complexes. This is
because the vertices of the generated clusters are only
removed from the queue S, but not from the original
graph G.

Extending Cluster

A cluster K is extended by adding vertices recursively from
its neighbors according to the priority. The priority of a
neighbor v of K is determined by the value IN . This pro-
cedure is similar to the one proposed in DPClus [16],
except that we do not use "fine-tuning" to sort the neigh-
bors. Whether a high priority vertex v is added to the clus-
ter is determined by the Extend-judgment test that tests if v
is a (K, T;,, d)-vertex. Only when the candidate vertex v is
a (K, T;,, d)-vertex, can it be added to the cluster. Once the
new vertex v is added to the cluster, the cluster is updated,
i.e., the neighbors of the new cluster are re-constructed
and the priorities of the neighbors of the new cluster are
re-calculated, and the algorithm goes recursively with the
new cluster. The complexity of generating a candidate ver-
tex from the neighbors of the cluster K is O(ngny ) + )
log nyk)), where ny, is the number of neighbors of K.

Extend-judgment
Whether a candidate vertex v is added to a cluster K is
determined by the two conditions given in Definition 1.

First, we calculate the value IN, . The vertex will not be
added to the cluster if the value IN  is less than T, If the
vertex v passes this test, then depending on whether using
SP <d or ASP < d, the algorithm computes the diameter of
the graph K + v or the average length of the shortest paths
between pairs of vertices in K + v, and compares the value
with the parameter d. If the computed value is bounded
by d, then the vertex v is added to the cluster. If the vertex
v fails any of these tests, then the next highest priority
neighbor of the cluster is tested, and so on. If all neighbors
fail the tests, then the cluster cannot be further extended,
and a complete cluster is formed whose vertices are
removed from the queue S,. In this paper, d = 2 is used
according to our previous analysis. The complexity of test-
ing whether a candidate vertex is added to a cluster is

O(ng).

We remark that our algorithm IPCA guarantees that no
two generated clusters would be the same: a seed vertex v
for a new cluster is selected such that v does not belong to
any of the previously constructed clusters. In fact, any two
clusters constructed by the algorithm IPCA should be
expected to be sufficiently different. To see this, let C, be a
cluster seeded at v, that is constructed after a cluster C,. If
the two clusters C, and C, are largely overlapping, then
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intuitively, the vertex v, is closely and densely connected
to many vertices in C,. Thus, during the construction of
the cluster C,, the vertex v, would have a large chance to
be included in C, and would have not become a seed for
the later cluster C,.

The time complexity of the entire algorithm IPCA
depends on the number and the size of predicted clusters.
The running time of IPCA is given in the next section.

Results and Discussion

The protein interaction network of Sacchromyces cerevi-
siae is downloaded from the MIPS database [31]. After
removal of all the self-interactions and repeated interac-
tions, the final network includes 4546 proteins and 12319
interactions. We apply the proposed algorithm IPCA to
this network. In the following subsections, we discuss the
effect of the value T}, on clustering, compare the predicted
clusters with the known complexes, evaluate the signifi-
cance of the predicted clusters, and analyze the robustness
and efficiency of the algorithm IPCA. We will also com-
pare the algorithm IPCA to six competing previous meth-
ods for their performance of identifying protein
complexes. The comparisons are also performed on pro-
tein interaction networks and random networks.

The effect of T,, on clustering

To understand how the value of T;, influences the out-
come of the clustering, we generate 18 sets of clusters by
using SP < 2 and ASP < 2 with T}, = 0.1, 0.2,..., 0.9 from
the protein interaction network of yeast. The effect on the
predicted clusters with different T}, is given in Figure 3.
Figure 3(a) shows that the total number of the predicted
clusters is increasing as T;, increases. However, in Figure
3(b), there is a abrupt decrease at T}, = 0.5. This is proba-
bly caused by the Hub structures in the protein interaction
network. When T;, = 0.5, these Hub structures are decom-
posed into complexes that consist of only 2 proteins.

Figure 3(c) shows that the size of the biggest cluster is
decreasing as T}, increases. The same trend of the average
size of the predicted clusters is shown in Figure 3(d). With
the increasing of T}, the probability of neighbors added to
the cluster is decreasing. Thus, the size of the predicted
clusters is also decreasing. From Figure 3, we can see that
there is almost no difference for the clusters generated by
using SP < 2 or by using ASP < 2 when T;,> 0.5. More and
larger clusters are generated by using ASP < 2 than by
using SP < 2 with the same T, when it is smaller than 0.5.

Comparison with the known complexes

To evaluate the effectiveness of the algorithm IPCA for
detecting protein complexes, we compare the predicted
clusters produced by the algorithm with known protein
complexes in MIPS yeast complex database [32]. There are
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216 manually annotated complexes considered as the
gold standard data that each consists of two or more pro-
teins. Here, we use the same scoring scheme used in
[16,19] to determine how effectively a predicted cluster
(Pc) matches a known complex (Kc). The overlapping score
OS(Pc, Kc) between a predicted cluster Pc and a known
complex Kc is calculated by the following formula:

2
OS(Pc, Kc) = [VPeOVie|” (2)
Ve[| Vie|

where |V,. " V| is the size of the intersection set of the
predicted cluster and the known complex, |Vp,| is the size
of the predicted cluster and |V,| is the size of the known
complex. A known complex Kc that has no proteins in a
predicted cluster Pc has OS(Pc, Kc) = 0 and a known com-
plex Kc that perfectly matches a predicted cluster Pc has
OS(Pc, Kc) = 1. A known complex and a predicted cluster
are considered as a match if their overlapping score is
equal to or larger than a specific threshold. The numbers
of matched known complexes with respect to different
overlapping score threshold (from 0 to 1 with a 0.1 incre-
ment) are shown in Figure 4. The best matching result is
obtained when T}, = 0.9 for both SP <2 and ASP < 2. There
are 165 known complexes matched when the overlapping
score threshold is 0.2. There are 28 known complexes
matched perfectly. When T;,> 0.5, the number of matched
known complexes is almost the same for SP < 2 and ASP
<2.When T, £ 0.5, the number of matched known com-
plexes is larger for SP < 2 than for ASP < 2. The probability
that a known complex is matched perfectly by a cluster in
which proteins are picked up randomly is determined by
the size of the network and the known complex. The prob-
ability that a known complex with size = 3 matches per-
fectly by a cluster selected randomly in the yeast network
used in this paper is 6.39 * 10-11. It is very obvious that
more known complexes matched by the predicted clusters
implies that the algorithm is more effective to detect com-
plexes. Sensitivity and specificity are two important
aspects to estimate the performance of algorithms for
detecting protein complexes. Sensitivity is the fraction of
the true-positive predictions out of all the true predic-
tions, defined by the following formula:

TP

" TP+FN )
where TP (true positive) is the number of the predicted
clusters matched by the known complexes with OS(Pc,
Kc) 2 0.2, and FN (false negative) is the number of the
known complexes that are not matched by the predicted
clusters. Specificity is the fraction of the true-positive pre-
dictions out of all the positive predictions, defined by the
following formula:
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TP
TP+FP

Sp (4)

where FP (false positive) equals the total number of the
predicted clusters minus TP. According to the assumption
in [19], a predicted cluster and a known complex are con-
sidered to be matched if OS(Pc, Kc) > 0.2. Here, we also
use 0.2 as the matched overlapping threshold.

Another integrated method, called the f-measure, has been
used in [21,20], which is defined as follows:

2%8n*Sp

f-measure =
Sn+Sp

(5)

As pointed out in [21,20], the f-measure of each method
can only be taken as a comparative measure rather than its
real values, because the reference set MIPS is incomplete
and some predicted clusters that may be true complexes
could be regarded as false positives (FP) if they do not
match with the known complexes. Nevertheless, it is still
reasonable to consider a method more effective if it
detects more known complexes. The coverage of the
known complexes is defined by the following formula:
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Comparison of the predicted clusters with the known complexes. The number of matched known complexes with
respect to different overlapping scores for different sets generated by IPCA using different parameters.

N gc—FN

Cov(Kc) = N
Kc

(6)

where Ny, is the total number of known complexes. The
sensitivity, the specificity, the f -measure, and the coverage
of the clusters generated by the algorithm IPCA using dif-
ferent parameters are shown in Table 2. The sensitivity of
the clusters generated by IPCA is about 0.8 and very close
to 0.9 when T;, > 0.5. The value TP is 4 times more than
the value FN, which implies that the clusters generated by
IPCA are reliable. The specificity of an algorithm repre-
sents the real positive proportion of all the predicted clus-
ters. As shown in Table 2, the specificity of the algorithm
IPCA is larger than 0.1, but smaller than 0.2. The low spe-
cificity is probably because of the incompleteness of the
known complexes. The f-measure takes into account of
both the sensitivity and the specificity, and is determined

by the larger one. In this experiment, the f-measure is
mostly influenced by the sensitivity. The sensitivity is
about 1.6 ~ 1.8 times of the specificity. The coverage of the
clusters generated by IPCA increases with the increasing of
T;,. Especially, an obvious increase appears when T}, > 0.5.
In Table 2, we can observe that the sensitivity, the specifi-
city, the f-measure, and the coverage of the clusters gener-
ated by IPCA using SP < 2 are slightly larger than those
generated by IPCA using ASP < 2.

Comparison of protein interaction networks and random
networks

To evaluate whether the clusters generated by the algo-
rithm IPCA from the protein interaction network are bio-
logically significant, we experiment the algorithm on the
protein interaction network of yeast and on a random net-
work of a similar structure. The random network, which
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Table 2: The Sensitivity(S,), Specificity(S,), f-measure(f) and Coverage(Cov)of the predicted clusters generated by IPCA using

different parameters

Parameter SP=2 ASP =2
Sh S f Cov S, S f Cov
T,=0.1 0.764 0.123 0.211 0.546 0.715 0.122 0.208 0.361
T,=02 0.822 0.140 0.239 0.579 0.763 0.134 0.228 0.398
T,=03 0.862 0.173 0.288 0.593 0.788 0.129 0.222 0.477
T,=04 0.883 0.184 0.304 0.625 0.804 0.110 0.194 0.583
T,=0.5 0.864 0.106 0.189 0.727 0.864 0.106 0.189 0.727
T,=06 0.900 0.144 0.248 0.736 0.901 0.145 0.250 0.736
T,=0.7 0.897 0.125 0.219 0.759 0.897 0.125 0.219 0.759
T,=08 0.895 0.119 0.210 0.764 0.895 0.119 0.210 0.764
T.=09 0.895 0.119 0.209 0.764 0.894 0.118 0.209 0.764

in

has the same size and the same degree distribution as the
yeast network, is obtained by shuZing the edges between
vertices in the yeast network. More clusters are generated
from the random network than from the yeast network,
and the clusters generated from the random network have
less proteins than those generated from the yeast network.
Figure 5 shows the size distributions of the clusters gener-
ated by IPCA using T;, = 0.6 from the yeast network and
from the random network. As shown in the Figure, the
predicted clusters identified in the yeast network are in
various sizes from 2 to 25, while those in the random net-
work are in various size from 2 to 10. Many small clusters
are detected in the random network. To evaluate whether
all these small clusters in the random network are signifi-
cant, we compare them with the known complexes. As
shown in Figure 6, while there are more than 100 known
complexes matched by the predicted clusters identified in
the yeast network when the overlapping score threshold is
larger than 0.2, there are almost no known complexes
matched by the predicted clusters identified in the ran-
dom network when the overlapping score threshold is
larger than 0.2. This result shows that the random net-
work destroys the biological intrinsic character in the pro-
tein interaction network, though it has the same degree
distribution as the original yeast network.

Comparison of IPCA and other methods

Since there have been protein complexes that were exper-
imentally determined, a good protein complexes detect-
ing algorithm should identify these known complexes as
many as possible. Table 3 shows the numbers of known
complexes matched to the clusters generated by IPCA and
by other six previous known methods: DPClus [16],
CFinder [22], LCMA [21], MCODE [19], RNSC [18], and
STM [23].

Though the method DPClus can generate clusters with
two modes (non-overlapping and overlapping), it does
not include the overlapping option at present. We gener-

ated by ourselves ten sets with non-overlapping mode
using DPClus. Another ten sets with overlapping mode
were provided by an author (Md Altaf-UI-Amin) of
DPClus. When CP;, = 0.5 and D, = 0.9, DPClus gets the
best matching results. Since it is more significant to detect
overlapping protein complexes, we consider the best
matching results generated by DPClus with overlapping
mode.

The method CFinder gets the best matching results by set-
ting k = 3.

The method LCMA gets the best matching results by set-
ting NA = 0.4.

For the method MCODE, there are 840 parameter combi-
nations, and most of them have similar matching results.
The method MCODE gets the best matching results when
the "haircut" option is not used and when VWP = 0.1 and
Fluff = 0.

The method RNSC gets the best matching results when the
number of the predicted clusters is about 1200. The
authors of the method STM have shown that the method
gets the best performance when the merge threshold value
is 1.0. However, a huge cluster that includes 4358 proteins
and 85 clusters whose sizes vary from 2 to 7 are generated
when the merge threshold value is 1.0. Of all the 86 clus-
ters, only 4 clusters match known complexes with the
overlapping sore OS > 0.2. Thus, we consider the match-
ing results of the clusters not merged for the method STM.

As shown in Table 3, the clusters generated by IPCA match
more known complexes than all six other methods for all
different overlapping score thresholds. When OS > 0.2,
the number of matched known complexes by IPCA is
about 1.2 times more than that by DPClus, LCMA and
RNSC. With the same overlapping score threshold, the
number of matched known complexes by IPCA is about
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The size distribution of the predicted clusters(size > 2). The distribution of the predicted clusters (size > 2) generated
by IPCA using T;, = 0.6 from the yeast network and the random graph with respect to size.

2.7 times more than that by CFinder, and about 4.2 times
more than that by MCODE and STM. When OS = 1, there
are no more than 10 matched known complexes by
CFinder, MCODE, RNSC, and STM. On the other hand,
there are 28 known complexes matched perfectly by the
clusters of IPCA.

The results show that IPCA outperforms all these six pre-
vious methods on the performance of identifying protein
complexes.

As an additional and interesting example, we compare the
performance of IPCA and DPClus for generating large
complexes. Since small complexes (e.g., complexes con-
sisting of no more than 2 proteins) have been represented
in the protein-protein interaction data, one may be more

interested in identifying large complexes. For this, we
compare the results generated by IPCA and that generated
by DPClus. The comparisons are given in Table 4. As
shown in the table, the large clusters (consisting of 3 or
more proteins) generated by IPCA match more known
complexes than that generated by DPClus for all different
overlapping score thresholds. Let N be the number of total
known complexes that are matched by any generated clus-
ters (consisting of 2 or more proteins) and N, be the
number of known complexes matched by the generated
clusters consisting of at least 3 proteins. Then N.;/N of
IPCA is 62.8% and that of DPClus is 58.1%. That is, the
clusters generated by IPCA match more known large com-
plexes than that by DPClus.
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using different parameters from the yeast network and the random network.

Function Enrichment Analysis

In order to detect the functional characteristics of the pre-
dicted clusters, we compare the predicted clusters with
known functional classification. The P-value based on
hypergeometric distribution is often used to estimate
whether a given set of proteins is accumulated by chance.
It has been used as a criteria to assign each predicted clus-
ter a main function [18,16]. Here, we also calculate P-
value for each predicted cluster and assign a function cat-
egory to it when the minimum P-value occurrs. The P-
value is defied as follows.

F Y N-F
pei-) ligﬁji' @
i=0
C

where N is the total number of vertices in the network, C
is the size of the predicted cluster, F is the size of a func-
tional group, and k is the number of proteins of the func-
tional group in the predicted cluster. The functional
classification of proteins used in this paper was collected
from the MIPS Functional Catalog (FunCat) database.
FunCat [33] is an annotation scheme of tree-like structure
for the functional description of proteins. There are up to
6 levels of increasing specificity and 1360 functional cate-
gories in FunCat. We obtained 443 clusters with size > 6
when using T;, = 0.6 and obtained 132 clusters with the
same size when using T;, = 0.9. All these predicted clusters
with size > 6 by using T}, = 0.6 and T}, = 0.9 match well
with the known functional categories with P-value <
0.001. As the fact that proteins in the same complex are of
similar function, we predicted 7 previously un-character-
ized proteins in the predicted clusters generated by T}, =
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Table 3: Comparison of the number of known complexes matched by the predicted clusters generated by IPCA and other previous

algorithms

Overlapping Score Threshold

IPCA DPClus(Ov)

T.,=09 CcP,=0.5

SP<2 D;,= 0.9
0s=>0.1 202 191
0§>0.2 165 128
05>0.3 116 85
0S>04 104 74
0§>0.5 83 52
05§ >0.6 67 41
05>0.7 42 25
0§>0.8 36 20
0§>09 29 15
0s=1.0 28 15

Algorithms
CFinder LCMA MCODE RNSC STM
k=3 NA =04 VWP=0. K'=1200 No Merging
Fluff=0

77 136 60 170 16
54 105 35 115 57
42 89 27 92 26
33 74 24 71 18
25 55 17 52 13
19 45 13 26 10
13 26 I 17 6
7 20 8 I 5
5 13 4 6 4
5 12 4 6 4

0.9 and predicted 50 previously un-characterized proteins
in the predicted clusters generated by T;, = 0.6. For exam-
ple, the unknown function protein YOR264w is included
in a 7-member cluster, of which six are the cytoskeleton/
structural proteins. Thus, we can predict that the function
unknown protein YOR264w is also a cytoskeleton/struc-
tural protein. All the clusters of size > 6 generated by T}, =
0.9 and T}, = 0.6 and their main function annotations are
given in an additional file 1.

The un-characterized proteins in these clusters are also
given in the additional file 1. As the incompleteness of the
function annotation, we can also predict new member-
ship for the known complexes and predict new functions
for known proteins. As shown in additional file 2, the
main function of a 10-member cluster is splicing
(11.04.03.01). Seven proteins of the cluster are related to
splicing. Other three proteins in the cluster without the
function of splicing are all related to mRNA processing
(splicing, 5'-, 3'-end processing), which is a higher level of
splicing. Thus, we can deduce that the three proteins
involved in mRNA processing may be members of the
splicing complexes.

Robustness Analysis

In this analysis, we evaluated the robustness of the algo-
rithm IPCA to various levels of graph alterations. Since all
the methods of PPIs (Protein-Protein Interactions) predic-
tion are known to yield a non-negligible amount of noise
(false positives) and to miss a fraction of existing interac-
tions (false negatives) [24], we tested the robustness of
IPCA to false positive by adding edges randomly and to
false negatives by removing edges randomly. Proportions
of edges (0%, 10%, 20%, 30%,..., 90% and 100%) were
added to the yeast protein interaction network randomly,
and the same proportions (except that of 100%) of edges
were removed from the yeast network randomly. It should
be expected that the false positives would not randomly
contribute to the formation of dense sub-graphs, and that
the number of matched known complexes does not
decrease fast with the increasing of false negatives. Figure
7 displays the impact of edge addition and removal on the
results of the algorithm IPCA. As one can see, IPCA is
barely affected by addition of up to 100% edges. It is also
affected faintly by removal of up to 50% edges. It starts to
drop perceivably from 60%, and a fast drop starts from
80%. However, there are still 93 known complexes

Table 4: Comparison of the number of known complexes matched by the predicted clusters (consisting of 3 or more proteins)

generated by IPCA and DPClus.

Overlapping Score(0S) IPCA(T;,= 0.9;5P < 2) DPClus(Ov;CP,, = 0.5;D;,= 0.9)
05§>0.1 134 (202) 116 (191)
05§>0.2 103 (165) 78 (128)
05§>03 87 (116) 63 (85)
05§>04 75 (104) 54 (74)
05§>05 56 (83) 35(52)
05>0.6 45 (67) 28 (41)
05§>07 27 (42) 15 (25)
05>08 21 (36) 10 (20)
05§>09 14 (29) 5(15)
0s=1.0 13 (28) 5 (15)

The number of known complexes matched by the predicted clusters (consisting of 2 or more proteins) is shown in brackets.
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matched to the predicted clusters (T;,= 0.9 and T;, = 0.6)
when 80% edges are removed. The analysis strongly
shows that the algorithm IPCA is very robust against the
high rate of false positives and false negatives in protein
interactions.

Efficiency Analysis

All experiments in this paper are implemented on a PC
with 1.7 GHz processor and 512 M RAM. Table 5 shows
the running time of the algorithm IPCA when it generates
clusters using different T}, values from the yeast network,
which consists of 4546 proteins and 12319 interactions.
The longest running time is 64 seconds when T;, = 0.1,
and the shortest running time is 10 seconds when T}, =
0.9. The running time is decreasing as T;, increases. This is
because the probability that proteins added to the clusters
is decreasing with the increasing of T;,, and because the
candidate selection and the judgement whether a candi-
date can be added to a cluster are time consuming. As a
comparison, under the same test environment, the run-
ning time of the method DPClus to generate clusters with
non-overlapping mode from the same yeast protein inter-
action network is about 20 minutes.

Conclusion

It is believed that identification of protein complexes is
useful to explain certain biological progress and to predict
functions of proteins. In this paper, we proposed a new
topological structure for protein complexes and devel-
oped an algorithm IPCA to identify protein complexes in
large protein interaction networks based on the new top-
ological structure. Interaction networks are represented by
undirected simple graphs and we generate predicted clus-
ters in the networks by using seed selection and local
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search. The seeds in the networks are calculated only once,
which has reduced the running time of the algorithm
effectively. Two parameters, SP(K) (or ASP(K)) and IN,,
are used that reflect the statistics of topological structures
of the networks. As the accumulation of new complexes
and protein-protein interactions, the thresholds of the
parameters SP(K) (or ASP(K)) and IN,, can be changed
easily for generating different types of clusters. Moreover,
the algorithm IPCA can generate overlapping protein
complexes, which is consistent with the fact that many of
the known protein complexes are overlapping. Interesting
questions for further research include how many func-
tions a protein can have, how many processes a protein
can participate in, and how heavily two protein com-
plexes should overlap with each other.

We applied the algorithm IPCA to the protein interaction
network of Sacchromyces cerevisiae. Many well-known
complexes were found in the protein interaction network.
We predicted the functions for un-characterized proteins
and predicted new functions for the known proteins by
minimizing the P-values of the predicted clusters. We
tested the robustness of our algorithm by adding and
removing edges in the network randomly. The results
have shown that our algorithm is robust against the high
rate of false positives and false negatives in the protein
interaction networks. Our algorithm can thus be used to
identify new protein complexes in protein interaction net-
works of various species and to provide references for
biologists in their research on protein complexes.

Methods
The protein interaction data of Sacchromyces cerevisiae
was collected from MIPS [31], represented as pairs of
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The robustness of IPCA against random edges addition and removal. (2) Various proportions of edges added to the
protein interaction network randomly, (b) Various proportions of edges removed from the protein interaction network ran-

domly.
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Table 5: Running time of IPCA with various T;, (second)

Tin 01 02 03 04 05 06 07 08 09

Time(s) 64 53 45 36 21 18 14 12 10

interacting proteins. First we removed self-interactions
and repeated interactions. The final network includes
4546 yeast proteins and 12319 interactions. We also col-
lected from the MIPS database protein complexes anno-
tated for Sacchromyces cerevisiae [32]. We discarded
those consisting of only one protein and the final remain-
ing 216 manually annotated complexes are considered as
the gold standard data. The proposed algorithm IPCA has
been implemented in C++.
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Additional material

Additional file 1

P-values for the predicted clusters with size > 6 generated using T, =
0.9 and T,, = 0.6. The data provided represent the statistical analysis of
the predicted clusters. P-value is calculated for each predicted cluster and
a function category is assigned to it when the minimum P-value occurs.
When Ty, = 0.9, there are 132 clusters (size > 6) generated by IPCA.
When Ty, = 0.6, there are 443 clusters (size > 6) generated by IPCA.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-9-398-S1.xls]

Additional file 2

Functional annotation for a predicted cluster of 10 proteins. This file
provides a cluster which is composed of ten proteins: YGL173c,
YOL149w, YBLO26w, YCR077¢, YJR022w, YER112w, YER146w,
YDR378¢, YNL147w, and YLR438c-a. The functional annotations for
each protein in the cluster are listed in this file.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-9-398-S2.doc]
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