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Abstract

Background: Predicting a protein's structural or functional class from its amino acid sequence or
structure is a fundamental problem in computational biology. Recently, there has been considerable
interest in using discriminative learning algorithms, in particular support vector machines (SVMs),
for classification of proteins. However, because sufficiently many positive examples are required to
train such classifiers, all SYM-based methods are hampered by limited coverage.

Results: In this study, we develop a hybrid machine learning approach for classifying proteins, and
we apply the method to the problem of assigning proteins to structural categories based on their
sequences or their 3D structures. The method combines a full-coverage but lower accuracy
nearest neighbor method with higher accuracy but reduced coverage multiclass SVMs to produce
a full coverage classifier with overall improved accuracy. The hybrid approach is based on the
simple idea of "punting" from one method to another using a learned threshold.

Conclusion: In cross-validated experiments on the SCOP hierarchy, the hybrid methods
consistently outperform the individual component methods at all levels of coverage.

Code and data sets are available at http://noble.gs.washington.edu/proj/sabretooth

Background

To facilitate the automatic annotation of newly sequenced
proteins or newly resolved protein structures, we are inter-
ested in developing computational methods to automati-
cally assign proteins to structural and functional
categories. Traditional computational methods for com-
paring protein structures depend on pairwise structural
alignment programs such as CE [1], DALI [2] or MAM-
MOTH [3]. Similarly, sequence-based algorithms such as
Smith-Waterman [4], BLAST [5], SAM-T98 [6] and PSI-
BLAST [7] assign similarity scores to pairs of protein

sequences. Using pairwise structural comparisons of a
query sequence or structure against a curated database,
one can use any of these tools to implement a nearest
neighbor (NN) strategy to classify the query.

In 1999, Jaakkola et al. [8] first applied the support vector
machine (SVM) classifier [9] to the problem of predicting
a protein's structural class from its amino acid sequence.
They focused on a particular protein structural hierarchy
called the Structural Classification of Proteins (SCOP)
[10], and they trained SVMs to recognize novel families
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within a given superfamily. This seminal work led to the
development of many SVM-based protein classifiers
(reviewed in [11]), and this work continues up to the
present [12-15].

Primarily, these classifiers differ in their kernel functions. In
this context, a kernel is a function that defines similarities
between pairs of proteins. For this task, a good kernel
function is one that allows the SVM to separate proteins
easily according to their SCOP categories. In the experi-
ments reported here, we train SVMs to classify amino acid
sequences into SCOP superfamilies using the profile ker-
nel [16], which is among the best-performing SVM-based
methods.

More recently, several groups have extended SVM-based
methods to the classification of protein structures, rather
than protein sequences [17-19]. In the current work, for
prediction of SCOP superfamilies from structures, we
train SVMs using a kernel function based on MAMMOTH
[3]. Benchmark experiments have shown that SVM-based
discrimination with a MAMMOTH kernel outperforms
several other SVM-based methods and also outperforms
using MAMMOTH in a nearest neighbor fashion [19].

In this work, we aim to address a fundamental limitation
of any SVM-based method, namely, that an SVM can only
be trained when a sufficient number of training examples
are available. In particular, to train an SVM to recognize a
given SCOP category, we must be able to present to the
SVM at least a handful of representative proteins. For
under-represented SCOP categories, the SVM cannot be
trained, and as a result, the classifier has limited coverage.
For example, in SCOP version 1.69, 60.2% of the super-
families contain three or fewer proteins. Failing to make
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predictions for these small superfamilies significantly
decreases the effective accuracy of the SVM-based method,
making it impractical for automated classification of the
entire SCOP hierarchy.

In this study, we develop a hybrid machine learning
approach that we apply to the problems of classifying pro-
teins from sequence or from structure. Our goal is to com-
bine nearest neighbor methods, which in principle have
complete coverage over any given data set, with higher
accuracy but reduced coverage multiclass SVM approaches
to produce a full coverage method with overall improved
accuracy. The hybrid approach is based on the simple idea
of "punting" from one method to another. We use held-
out data to learn a set of score thresholds. At test time, pre-
dictions from the primary method that receive scores
below the threshold are "punted" to the secondary
method. In addition, we consider different coverage
thresholds at which to punt out of the secondary method
(i.e., abstain from making a prediction altogether), and
we compute error rates of the hybrid method at these dif-
ferent coverage levels.

We use this punting method to build hybrid predictors of
SCOP superfamilies, taking as input either protein
sequences or structures. Using punting, we find that the
hybrid methods consistently outperform the individual
component methods at all levels of coverage.

Results

Approach

The punting strategy is depicted in Figure 1. In its simplest
form (Figure 1A), the strategy relies upon a vector T of
class-specific parameters. These parameters are learned by
the algorithm, given a single hyperparameter supplied by
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Two punting strategies. (A) Two classifiers are combined to produce a hybrid classifier with improved accuracy and cover-
age. The punting thresholds (T = [T, .., T,]) are class-dependent and are set using held-out data. (B) This approach is similar to
(A), except that using two vectors of punting thresholds — T! for the primary classifier and T2 for the secondary classifier —

allows the method sometimes to make no prediction at all.
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the user. A query protein representation is first given to the
primary classification method. The classifier produces a
predicted classification i along with a score s, the magni-
tude of which indicates the confidence in the prediction.
If this score exceeds T;, then the current class is predicted.
Otherwise, the query is punted to the secondary classifier,
which makes its own prediction. Typically, the primary
classifier is the one with higher accuracy and lower cover-
age, although we also experiment with punting in the
other direction. It is sometimes preferable to make no pre-
diction at all, rather than make a prediction that is very
likely incorrect. In this case, a second set of class-specific
thresholds allows the second classifier to punt as well, as
shown in Figure 1B.

To learn punting thresholds, we divide our training set
into two portions, a classifier training set and a threshold
training set, which are used, respectively, to train the clas-
sifier and to learn class-specific score thresholds. The user
must set a single hyperparameter p between 0 and 1, which
controls the fraction of examples that one wishes to cover,
as illustrated in Figure 2. The algorithm then sets, for each
class, the score threshold such that a fraction p of the neg-
ative examples from the threshold training set are false
positives, given the predictions of that classifier. Hence,
when we set p = 1 the method will never punt. When we
set p = 0, on the other hand, the algorithm is rather
unlikely to produce a false positive. Values of p between 0
and 1 yield behavior between these two extremes.

We compare this method to a few simple variants. First,
we can apply punting to a single method, rather than a
hybrid method. In this setting, when the punting algo-
rithm decides to punt, there is simply no prediction made
at all. Second, for a given method, rather than having a
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Learning punting thresholds. The punting threshold is
learnt according to the percentage of false positives in a vali-
dation set. The figure illustrates, for a simulated data set of
20 positive and 20 negative examples, three choices of
threshold: 0%, 5% or 20% false positives.
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vector of class-specific score thresholds T, we can use a sin-
gle threshold that applies to all of the classes predicted.
This threshold is selected so that the class-specific SVMs
collectively achieve the user-specified coverage on the
threshold training set. The motivation for this simpler
thresholding strategy is to reduce the risk of overfitting on
the threshold training set. If the confidence scores are well
calibrated, then this single threshold approach should
also perform well; conversely, if the scores are not well cal-
ibrated then the multi-threshold method should perform
better.

Experimental design

We tested two methods for predicting SCOP super-
families. In the first, we made predictions from amino
acid sequences, and in the second we made predictions
from protein structures. For prediction from amino acid
sequence, we used pairwise alignments based on PSI-
BLAST for the nearest neighbor method, and we used the
profile kernel [16] to define a kernel representation. For
prediction from protein structure, we used structural
alignments based on MAMMOTH, both for the nearest
neighbor method and to define a kernel representation
for training SVMs to recognize SCOP superfamilies [19].
For simplicity, in both cases we used a standard one-vs-all
approach for making multiclass predictions from binary
SVM classifiers.

We divided the data set (all of SCOP version 1.69) into
four parts: A, Ay By Bie We determined A,,,, and A, to
suit the requirement of training and testing binary SVM
superfamily classifiers: A,, consists of totally held-out
families from superfamilies that have 2 or more member
families of at least 3 proteins each; A,,,, consists of all other
families belonging to these superfamilies. Data set B con-
sists of all superfamilies in SCOP that are not covered by
data set A. B is then split into train and test by families at
random such that the ratio of families for B,,/B,,,;, is equal
to the ratio A,/A,,;,- The data set for superfamily detec-
tion has 74 superfamilies in A and 1458 superfamilies in
B (total 1532).

We considered punting both from SVMs to the nearest
neighbor method and vice versa. When using SVMs as the
primary method, we used B,, as additional negative
examples on which to calculate punting thresholds. In the
reverse case, because the nearest-neighbor method had
accrued no bias in "training," we used all of the negative

superfamilies in A, and B,,, to determine thresholds.

trn trn

Punting once

Initially, we evaluated superfamily detection performance
at full coverage, that is, when we make a prediction for
every test example (as in Figure 1A). Results for classifica-
tion from sequence are shown in the left half of Table 1.
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Table I: Superfamily detection error rates at full coverage.
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Classifying sequences

Classifying structures

Primary Secondary Ay B, A+ By Primary Secondary Ay B, A+ By
SVM - 0.2396 1.0000 0.5510 SVM - 0.2194 1.0000 0.5391
PSI-BLAST - 0.4914 0.5569 0.5182 MAMMOTH - 0.2922 0.3309 0.3081
SVM PSI-BLAST 0.2376 0.5598 0.4322 SVM MAMMOTH 0.1790 0.3367 0.2794
PSI-BLAST SVM 0.2730 0.5569 0.4078 MAMMOTH SVM 0.2053 0.3309 0.2633

Each entry in the table is the fraction of proteins in the test set that are assigned to the incorrect superfamily by the given method.

Here A, consists of held-out families from superfamilies
within the coverage of the SVM classifiers; B, consists of
familes outside of SVM coverage. Consequently, the SVM
yields a 100% error rate on B, whereas PSI-BLAST incor-
rectly classifies 55.7% of these sequences. Conversely, for
the sequences within classes covered by the SVM, PSI-
BLAST's error rate (49.1%) is significantly higher than the
SVM's error rate (24.0%). When we combine the two
methods, the overall error rate drops by 10.8% from
51.8% for PSI-BLAST to 40.8% for PSI-BLAST — SVM. To
evaluate the statistical significance of the observed differ-
ences in performance, we use McNemar's test to compute
a p value for the null hypothesis that the same proportion
of proteins are correctly classified by both methods. These
tests, applied to the entire test set, show that each of the
hybrid classifiers performs significantly better than each
of the single classifiers; i.e., all four relevant p values are
less than 0.01.

Results from the classification of protein structures are
shown in the right half of Table 1. For this task, a drop in
error rate of 4.5% (30.8% to 26.3%) is achieved from
MAMMOTH to MAMMOTH — SVM. Again, McNemar's
test shows that both hybrid methods outperform both of
the single classifiers at p <0.01.

Punting once versus punting twice

In practical applications, it may be preferable for the clas-
sifier to say "I don't know" rather than return an incorrect
classification. To achieve this behavior, we included a sec-
ond level of punting, based on a second set of thresholds
(Figure 1B). This strategy allows the classifier to punt com-
pletely and not give a prediction for an example. The tar-
get percentage for both the primary and final punting
thresholds were varied for both hybrid methods, yielding
a range of coverage and error rates.

Results for classification over a range of coverages can be
seen in Figure 3A for protein sequences and Figure 3B for
protein structures. For both tasks, punting in either direc-
tion - from the SVM to the nearest neighbor classifier or
vice versa - yields higher accuracy than either single
method at all coverage rates. The unbalanced error rate
used in Figure 3A-B counts the number of proteins in the

test set whose SCOP superfamily is incorrectly predicted;
hence, this metric implicitly assigns more weight to larger
classes. To evaluate the improvement over small classes,
we also measured the balanced error rate, in which we
compute the error rate separately for each class and then
average the resulting values (Figure 3B-C). Again, punting
in either direction, we generally achieve higher balanced
accuracy with the hybrid method for both classification
tasks.

To understand better why the punting procedure pro-
duces better overall accuracy, we plot in Figure 4 the per-
centage of predictions made by the SVM as a function of
the total number of predictions. The oscillatory behavior
of all four series is a result of the grid search over two inde-
pendent punting thresholds. The hybrid classifier can
either (1) assign a low threshold to punt from method A
to method B and a high threshold to make no prediction
or (2) assign a high threshold to punt from A to B and a
low threshold to make no prediction. These two strategies
achieve a similar level of coverage and a similar errror rate
but, as shown in Figure 4, the resulting set of predictions
may contain quite different percentages of predictions
from each of the individual classifiers.

Comparing Figure 4A and 4B, we see a different overall
trend for the two classification tasks. For the sequence
classification problem, as coverage approaches 100%, the
two methods end up sharing predictions almost 50/50. In
contrast, for the structure classification problem, the SVM
method converges to fewer predictions - MAMMOTH
makes approximately twice as many predictions as the
SVM at full coverage. This observation may explain why
the improvement provided by the hybrid classifier is
smaller in the structure classification problem (4.5%
decrease in error) compared with the sequence classifica-
tion problem (10.8% decrease). For the structure classifi-
cation task, the high coverage classifier (MAMMOTH) is
already very good, so adding a second, supervised classi-
fier does not yield a large improvement.

Single versus multiple thresholds
Thus far, we have reported results using class-specific
thresholds. A simpler approach would be to learn a single,
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class-independent threshold for a given classifier. Figure 5
compares the results of these two approaches for the
hybrid methods on both classification tasks. For classifica-
tion of protein structures, using class-specific thresholds
consistently improves the overall performance. In con-
trast, when we apply the same analysis to classification by
sequence, we find there is no benefit from using multiple
thresholds. Using multiple thresholds should help when
the class-specific classifiers are not well calibrated; i.e.,
when an observed score of X always corresponds to the
same class-conditional posterior probability. Thus, these
results suggest that the E-values returned by MAMMOTH
are not as well calibrated as those computed by PSI-
BLAST.

Combining low and high coverage methods

As mentioned above, approximately 60% of the SCOP
superfamilies in our data set contain fewer than three
members. The punting methodology allows us to predict
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members of these superfamilies, even though an SVM is
not trained for small superfamilies. Moreover, if the high
coverage (NN) classifier incorrectly places a member of a
large superfamily into a small superfamily, then the low
coverage classifier (SVM) can correct this error, because it
has high accuracy for large superfamilies.

An alternative to the approach described here would be to
attempt to train an SVM even for superfamilies with one
or two members. In this case, we could still punt from the
SVM to NN or vice versa. We do not expect, however, this
approach to yield a significant improvement, because
SVMs are not designed to work well from so few examples.
Figure 6 provides evidence to support this claim. For both
sequence and structure based prediction experiments, we
plot the accuracy for SVMs over NNs averaged over all
superfamilies less than or equal to a given size. One can
see that as the superfamily size increases, the accuracy gain
of SVM over NN increases. For the sequence-based predic-
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the performance when using a single threshold for all classes versus using class-specific learnt thresholds.
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structure.

tion problem, for small superfamily sizes, SVM is on aver-
age outperformed by NN. For example, the average
accuracy of SVM and NN for all superfamilies less than
size 30 is 0.3956 and 0.4762 respectively. In contrast, for
all superfamilies larger than size 30 the averages are
0.6578 and 0.4714 respectively.

If the effect shown in Figure 6 were not a problem - i.e., if
both classifiers worked well enough across all superfamily
sizes — then one could use standard methods for combin-
ing classifiers, such as a voting scheme. However, even in
such a case, one would still not be able to control the accu-
racy versus coverage of predictions. This flexibility, which
is provided by the punting strategy, is one of the main
contributions of our work.

Punting as stacked generalization

Stacked generalization [20] is a general scheme for opti-
mizing the generalization error of several classifiers by
learning how to combine them accurately. The basic idea
is to (i) train each classifier on the same problem and then
(ii) use a second set of data to learn a combining scheme
when using these classifiers. One example of this
approach is that in stage (ii) one could construct a feature
space whose inputs are the guesses of the classifiers
trained in stage (i), so training a linear classifier in stage
(ii) would mean learning a weighted majority vote over
the classifiers. However, the stacked generalization
approach, as Wolpert describes it, can include any two-

stage method of combination. In that sense, our punting
method is an instance of stacked generalization where the
second stage learns a function that chooses which classi-
fier to apply, depending on the magnitude of the real-val-
ued outputs (i.e., the classifier decides when to punt). Just
as in stacked generalization, we divide our data set into
two portions: one for training stage (i), the classifiers, and
one for training stage (ii), the punting thresholds. How-
ever, Wolpert neither describes the use of punting for
choosing classifiers, nor for finding a trade-off between
coverage and accuracy of the resulting combined classifier,
making our approach a novel instance of his general
scheme.

AutoSCOP comparison
We compared the performance of our hybrid classifiers
with that of the webserver AutoSCOP [21].

AutoSCOP uses a database built from SCOP 1.69, as does
our method. To test both methods, we therefore created a
dataset of 100 new protein domains from SCOP version
1.73. We combined the dataset used in this study, consist-
ing of 11,944 sequences from Astral version 1.69, with
9,536 sequences from Astral version 1.73, and we clus-
tered the combined set using a 40% sequence identity
threshold. We then identified clusters that contained only
sequences from version 1.73, and we extracted the longest
sequence from each of these clusters. This procedure
yielded a total of 2285 novel domain sequences, which
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Table 2: AutoSCOP comparison.

Method Covered Uncovered Total
AutoSCOP 7 18 25
SVM 3 62 65
PSI-BLAST 6 24 30
SVM — PSI-BLAST 4 40 44
PSI-BLAST — SVM 3 24 27
Total 38 62 100

Each entry in the table is the number of proteins from a test set of
100 proteins taken from SCOP.1.73 that are assigned to the incorrect
superfamily by the given method. Each superfamily is "covered" or
"uncovered," depending on whether an SVM has been trained to
recognize it.

are members of 698 distinct SCOP superfamilies. Finally,
we randomly selected 100 of these sequences for use in
our test. Results for superfamily detection can be found in
Table 2. Our simple hybrid classifier achieves a 27% error
rate, which is nearly as good as the 25% error rate
achieved by AutoSCOP. Most of the difference between
the methods arises for small superfamilies, where the SVM
is not applicable. For superfamilies that are covered by an
SVM, the SVM error rate (3/38 = 7.9%) is less than half
AutoSCOP's error rate (7/38 = 18.4%).

Discussion

We have described a simple method of combining a high
coverage, low accuracy classifier with a low coverage, high
accuracy classifier, based on learning a collection of class-
specific thresholds from held-out data. For SCOP super-
family recognition from structure and sequence, the
resulting hybrid classifiers yield consistently lower error
rates across a wide range of coverage.

A priori, punting seems most intuitive when the low-cov-
erage/high-accuracy classifier punts to the high-coverage/
low-accuracy classifier. However, the results in Figure 3
suggest that, for the combination of SVM and NN classifi-
ers applied to SCOP classification, punting in the oppo-
site direction is slightly more effective. We speculate that
the best performance will be obtained when the primary
classifier is the one that returns the most accurate confi-
dence measure in its predictions, rather than the most accu-
rate generalization performance. In this way, if the
primary classifier always punts accurately when it is incor-
rect, then the combined generalization performance can
be optimized. Hence, the NN — SVM hybrid may be
slightly better than the SVM — NN hybrid because the NN
method punts more accurately.

One of the primary contributions of this work is to make
SVM-based classifiers practically applicable. Although
they have been shown to provide superior performance
for protein classification problems in which the number

http://www.biomedcentral.com/1471-2105/9/389

of examples is large enough, SVMs have not been used in
practice because of their limited coverage. On the other
hand, the goal of this paper is not to argue that SVMs are
better than other methods, but to show how to make an
SVM classifier practical, by giving it complete coverage.
Our results presumably generalize to other supervised
classification algorithms, though we have not tested this
hypothesis directly.

For simplicity of exposition, we have used a simple one-
vs-all approach to multiclass SVM classification. In prac-
tice, it is generally preferable to use a more complex mul-
ticlass approach such as code learning [13]. Combining
code-learning with the punting approach described here
yields even lower error rates than are shown in Figure 3
(data not shown). In general it is straightforward to com-
bine any pair of (low and high coverage) classifiers using
our approach. The only prerequisite is that they provide a
real-valued output for each class, and that these values are
correlated with the confidence in their predictions. From
these outputs we can learn punting thresholds.

In this work, we use a relatively simple strategy to define
the data for learning punting thresholds given the user-
specified hyperparameter p. More complex internal cross-
validation schemes would likely yield slightly better per-
formance and increased running time.

Eventually, rather than combining two existing classifiers,
we would like to train a single classifier that has the
advantages of both systems in one. This approach would
obviate the need for the punting strategy described here.
We are currently investigating approaches to this problem
by training a ranking based algorithm, rather than a class
predictor.
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