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Abstract
Background: This paper addresses key biological problems and statistical issues in the analysis of
large gene expression data sets that describe systemic temporal response cascades to therapeutic
doses in multiple tissues such as liver, skeletal muscle, and kidney from the same animals. Affymetrix
time course gene expression data U34A are obtained from three different tissues including kidney,
liver and muscle. Our goal is not only to find the concordance of gene in different tissues, identify
the common differentially expressed genes over time and also examine the reproducibility of the
findings by integrating the results through meta analysis from multiple tissues in order to gain a
significant increase in the power of detecting differentially expressed genes over time and to find
the differential differences of three tissues responding to the drug.

Results and conclusion: Bayesian categorical model for estimating the proportion of the 'call' are
used for pre-screening genes. Hierarchical Bayesian Mixture Model is further developed for the
identifications of differentially expressed genes across time and dynamic clusters. Deviance
information criterion is applied to determine the number of components for model comparisons
and selections. Bayesian mixture model produces the gene-specific posterior probability of
differential/non-differential expression and the 95% credible interval, which is the basis for our
further Bayesian meta-inference. Meta-analysis is performed in order to identify commonly
expressed genes from multiple tissues that may serve as ideal targets for novel treatment strategies
and to integrate the results across separate studies. We have found the common expressed genes
in the three tissues. However, the up/down/no regulations of these common genes are different at
different time points. Moreover, the most differentially expressed genes were found in the liver,
then in kidney, and then in muscle.

Background
Despite rapid advancements in statistical methods for
gene expression microarray analysis, much more work is
needed for multiple source heterogeneous genomic data,
such as multiple organisms/tissues, multiple platforms,

multiple species and even more from transcriptome,
genome, to proteome in order to develop valid and
dependable methods that are mainly applicable to micro-
array data. The congruency of these different data sources
needs a unified framework for combining the multiple
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sources and testing associations between them, thus
obtaining a robust and integrated view. In the meantime,
we may find a surprising discrepancy present elsewhere
between gene expressions given multiple source of
genomic data sets.

Meta-analysis is a set of statistical procedures designed to
integrate experimental and correlational results across
independent studies that address a related set of research
questions [1-4]. Developing meta-analysis methods for
complex biological systems in microarray experiment is
important. It can help the global interpretation of results
from multiple sources and fully utilize the available data
source. Therefore, it appears to be a promising tool that
may serve to identify ideal targets for novel treatment
strategies, for the resolution of uncertainty, fuzziness, and
heterogeneity typically present in genomic data. Moreo-
ver, this approach may improve the significance, robust-
ness and efficiency of the statistical inference by
incorporating all the available information.

So far a few studies have attempted to integrate the gene
expression data sets from different sources in order to
yield a model for disease dynamics such as development
and behavior. Ghosh et al. discussed the issues of combin-
ing the results across various studies using meta-analysis
including different experimental platforms [5]. Rhodes et
al. applied large scale meta-analysis for cancer microarray
data to identify common transcriptional profiles of Neo-
plastic transformation and progression and illustrated the
merits of data sharing [6]. Pan et al. proposed a joint
model of multiple types of data that can be employed to
use all the data simultaneously to draw inference or make
predictions [7]. Conlon et al. proposed the probability
integration model for gene expression data and has
showed that the model was able to identify more true dis-
covered genes and fewer true omitted genes than combin-
ing expression measures [8]. The true integration-driven
discovery rate (tIDR) was used to find the common gene
sets.

In our earlier studies we have provided detailed reviews of
statistical methodologies for time-course gene expression
analysis [9-13]. Mixture models have recently become
widely used statistical tools in the analysis of heterogene-
ous data and have been developed to model complex dis-
tributions of "target" values of gene expressions, without
any dependence on input values for the differential
expressions [14-19]. Some of these work has extended two
component mixture models to multiple components and
utilized EM algorithms and Akaike Information Criterion
(AIC) or Bayesian Information Criterion (BIC) as meas-
ures for the most preferable number of components [15].
In this paper, we propose a hierarchical mixture model in
the fully Bayesian setting for tackling complex biological

systems with multiple tissues genomic data sets and con-
ducting meta-analyses to find commonly expressed genes
responding to the drug treatment across the tissues.

Corticosteroids are a class of compounds that exhibit the
most potent immunosuppressive and anti-inflammatory
activities. These drugs are widely used in a variety of acute
and chronic disease states, such as asthma, leukemia, and
organ transplantation. Although their therapeutic effects
result from regulation of immune system genes, many
adverse events occur due to unwanted influence of the
drug on other genes, primarily those genes involved in
metabolic processes [20]. The corticosteroid compounds
produce both beneficial, as well as harmful effects,
through binding to the same type of glucocorticoid recep-
tor. This binding activity results in a cascade of signal
transduction pathways to ultimately produce an eventual
drug response and clinical outcome.

Because drug activity requires a sequential series of events
in order to elicit its effects, different genes may exhibit dif-
ferent expression profiles over time following the admin-
istration of a drug dose. The particular genes that are
either up-regulated or down-regulated, in combination
with specific time-course patterns and interactions with
other genes, may be predictive of the ultimate outcome(s)
that result from drug therapy. Therefore, it is important to
improve our understanding of the time-dependent
changes in gene expression and their interactions caused
by corticosteroid therapy in order to potentially discover
the precise genes that may be the most important in pro-
ducing favorable therapeutic outcomes versus those that
may instigate negative, unwanted effects. Moreover, all
systemic phenomena such as blood pressure involve mul-
tiple genes in multiple tissues and pathologies such as dia-
betes and hypertension are complex phenomena
involving altered expression of multiple genes in several
tissues.

Multiple-tissues affymetrix data sets, preprocessing and 
normalization
Our multiple-tissues/organs time courses affymetrix data
sets [20] are from Affymetrix GeneChips® Rat Genome
(R_U34A). This is a pre-clinical study performed on exper-
imental rats. There were forty-eight animals that received
a single IV bolus 50 mg/kg dose of the anti-inflammatory
drug, methylprednisolone (MPL) [21]. Liver, muscle, and
kidney tissues were collected from each animal and proc-
essed to assay the gene expression. Three rats were conse-
quently sacrificed at each of the following sampling 16
time-points: 0.25, 0.5, 0.75, 1, 2, 4, 5, 5.5, 6, 7, 8, 12, 18,
30, 48, and 72 hours. Triplicate measurements were
obtained at each of these time points. Four rats were not
administered any drug and were sacrificed at time t = 0,
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control group. Therefore, totally 52 chips were used in the
study for each tissue, each chip has 8799 genes.

To limit potential source of non-biological variation such
as those introduced from experimental procedures and to
extract real biological variation regarding potentially
important changes in gene expression due to MPL dosing,
the following procedures will be employed in data quality
control and data analysis. To determine expression meas-
ures of probe set from probe signals with lowest data var-
iance and bias, we performed one of the most popular
probe set algorithms of MAS5 http://www.affyme
trix.com/support/ for background subtraction, signal
intensity normalization between arrays, and non-specific
hybridization correction. By Affymetrix software (MAS
5.0), each probe set in our data assigns an "average differ-
ence" value corresponding to the expression level of the
particular gene it represents. The calculated average differ-
ence is then used as the measure of expression levels and
data normalization throughout the data analysis [22].
Gene expressions were converted to a ratio via dividing
the gene expression at time ti by the gene expression level
at time t0, where i represents the specific post-dose time-
point and t0 represents baseline at time = 0 hours (i.e. the
control group that did not receive drug). These ratios were
subsequently natural-logarithmically transformed to pro-
duce normally distributed gene expression levels at each
sampling time-point.

Total RNA was separately extracted from the liver samples
from each animal and purified. The isolated RNA was
then used to create biotinylated cRNA. Some of these oli-
gonucleotide sequences were from different parts of the
same gene (i.e. 5' vs. middle vs. 3' ends of the transcript),
but for the most part, each probe identified a unique gene
sequence. According to the Affymetrix Microarray Suite
4.0, an initial step was performed to classify signal values
as Present (P), Marginal (M), or Absent (A) based on the
intensity of the signal [21]. A classification of 'P' means
that the signal is reliably detected at a sufficient level to
confirm that the gene expression measurement is defi-
nitely above background 'noise'. An 'M' represents a signal
that may or may not be a result of true gene expression.
The 'A' classification signifies an expression level that is
near detection limits and cannot be distinguished from
background 'noise'. This classification feature was utilized
in our Bayesian categorical model for data preprocessing
that were implemented prior to hierarchical Bayesian mix-
ture model.

Results and discussion
Bayesian categorical model for estimating the proportion 
of the 'call'
Bayesian categorical model is developed to estimate the
proportion of the 'call' information of P, A and M and

Bayesian statistical analysis is conducted to filter genes
according to the 'call' data by estimating the parameters
under multinomial distribution assumption. Genes that
have less 'call' of P than expected or more 'call' of A than
expected are excluded. We know that the 'call' has three
categories. With 3 categories, suppose the counts (n1, n2,
n3) have a multinomial distribution with n = ni and
parameters  = (1, 2, 3)' [23]. Let {pi = ni/n} be the
sample proportion. The likelihood is proportional to

. The conjugate density is the Dirichlet,

expressed in terms of Gamma functions as

where i = 1: Absent; i = 2: Marginal; i = 3: Present

Computations of marginal posterior distributions and
their moments could be estimated by simulating samples
from them [24]. Markov Chain Monte Carlo (MCMC)
method, the stochastic simulation algorithm we choose
here, is one of the algorithms to obtain the estimations via
sampling and re-sampling procedures and approximating
techniques.

Hierarchical Bayesian Mixture model and meta-analysis
Hierarchical Bayesian mixture model is developed to
model the complex distributions of gene expressions [14-
17]. The mixture components that are incorporated in the
model may be interpretable as representing underlying
"latent classes" or dynamic clusters [25-28]. The advan-
tages of Bayesian Finite Mixture Models is that it provides
the insights about behavioral patterns as a source of het-
erogeneity of the various dynamics and can reduce the
high dimensionality and make clear the major compo-
nents of the underlying structure of the data. In this paper,
hierarchical Bayesian mixture model is developed to filter
out the significantly non-differentially expressed genes
across time and find differentially expressed genes across
tissues. We model the true density of the time course gene
expressions conditional on the observed data as a mixture
of densities with more than three components are
allowed:

where xit is expression value for the i'th gene at time t, i =
1,...,I, t = 1,...,T. (.) denote the mixture density given the
gene expression data. j (j = 1,..., C) are component pro-
portions with nonnegative quantities that sum to 1. C is
the number of clusters to be determined based on model
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selection criteria DIC discussed next. fj (xit | j) is each
component density of the mixture.

We denote the parameters in latent cluster j as

for which the conjugate prior for j can be written as

The parameters of the prior on j are chosen from various
values (e.g. 0.001, 0.01, 0.1) to give broad distributions,
for instance,

Here j0 is an initial guess on the mean in cluster j with j0
a prior sample size reflecting strength of belief in the guess
about mean [24].

The precision parameter in cluster j is given by

where vj is the guess of the prior degrees of freedom, typi-

cally vj = 2 or lower and tj = 1/  is the prior guess at the

precision in group j, which will be tested from various val-
ues (e.g. 0.001, 0.01, 0.1). The best value will be chosen
based on convergence of MCMC.

For the cluster of the genes that are non-differentially
expressed across time, we define the mean of this compo-
nent as 0 (1 = 0). The C clusters in (1) include both non-
differentially expressed gene clusters and the clusters with
genes with both positive and negative gene expression
patterns over time, which are declared differentially
expressed clusters. These differentially expressed clusters
can be further clustered based on their dynamic changes/
patterns over all time points (either up or down regulated
across different time points). For C categories compo-
nents/clusters, the corresponding dynamic patterns can be
represented with underlying latent variables. Each under-
lying latent variable Zit for gene i at time point t is discrete,
taking value j = 1,..., C with probability j; Zit ~ Categori-
cal(j). j can follow either parametric prior such as a beta
distribution or a Dirichlet distribution or non-parametric
Dirichlet Process Prior [24]. In our analysis the compo-
nent proportions j are assumed to follow Dirichlet prior
j ~ Dirichlet(priorj).

Various initial values for prior and hyper-prior distribu-
tions for the mean and variances in the mixture model are
tested in order to obtain model convergence, such as i ~

Normal(0, 0.0001),  ~ Inverse Gamma 0.1, 0.1). For
example., when assigning uninformative distributions to

these parameters, i.e.  ~ Inverse Gamma(0.001, 0.001),

the models do not converge. They converged with  ~
Inverse Gamma(0.1, 0.1).

The computations of marginal posterior distributions and
their moments of all the parameters were conducted by
MCMC algorithm with Gibbs sampling [29]. Our Win-
BUGS code is included with this paper [see Additional file
1]. Over-relaxation methods were used to aid the conver-
gence and reduce the chance of local maxima. Semi-heu-
ristically tried various settings of the prior distributions
and various initial values for sensitivity analysis, such as
the shape and scale parameters were tried with low values
0.001, 0.01, 0.1 and so on. After 1000 times burn in of the
MCMC algorithm, the estimates usually converge well,
and then we conduct another 1000 iterations to find the
estimated quantities of interests.

Spiegelhalter et al. [30] proposed Deviance Information
Criterion (DIC) for model selections, which are used in
our study for determining the best number of clusters and
most appropriate priors. DIC is a new measure for model
complexity and goodness of fit under the Bayesian setting.
DIC is more appropriate when comparing complex hier-
archical models in the Bayesian setting, where the number
of parameters is not clearly defined. One advantage is its
inclusion of a prior distribution, which induces a depend-
ency between parameters that is likely to reduce the effec-
tive dimensionality. DIC is summarized by the posterior
expectation of the deviance and complexity (effective
number of parameters) as the expected deviance minus
deviance at the posterior expectation of the parameters,
both calculated from MCMC output.

Our Bayesian mixture model produces the gene-specific
posterior probability of differential expression and the
95% credible interval (which covers 95% of the posterior
probability distribution), which is more informative than
directly conducting hypothesis tests. Hypothesis tests
require setting up the null/alternative hypothesis for each
tested value of the gene expression, one at a time for the
chosen model, which is less efficient than providing con-
fidence interval/credible interval. Most existing works [15-
17,19] including some recent works [31,32] in Bayesian
mixture models for differential gene expression have
focused on doing so, which is one of the major differences
between our approaches and these works. Moreover our
model provides us the estimates for further Bayesian
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meta-inference from three independent analyses for three
given tissue data sets. Our goal is to gain an increase in the
power of detecting dynamically differentially expressed
genes and also improve the reproducibility of the findings
by integrating the results from different tissues in order to
find common targets for evaluating the treatment.

One important feature of the above Hierarchical Bayesian
mixture model is that it is appropriate for meta-analysis
due to its ability to account for dependence among the
genes and pool the means or slopes (together with esti-
mated standard error) of dose-response curves into each
cluster/component and thus can summarize the concord-
ance (intersection) among the tissues through the esti-
mated posterior distributions as credible intervals.
Therefore, our finite mixture model is used to calculate
credible interval for the differentially expressed genes for
each tissue. The gene expression measures among tissues
are different from one another. However, we have nor-
malized and standardized the measurements to allow
comparison between tissues.

Furthermore, our meta-analysis of multiple tissue data
here is not simply based on combining gene expression
measures across three separate studies, but is based on
combining summaries, such as the estimated posterior
distributions as credible intervals from our hierarchical
mixture models. Conlon et al. showed that the probability
integration model identified more true discovered genes
and fewer true omitted genes than combining expression
measures [8]. The resulting null standard deviations illus-
trate the precision of the resulting estimates. By combin-
ing the resulting estimates based on Bayesian mixture
approaches we aim at studying the tissue effects and to
find the differential differences of three tissues responding
to the drug.

Therefore, hierarchical Bayesian mixture model is con-
ducted for each tissue separately first. This indicates ran-
dom samples are from three separate distributions not a
common population distribution, which is more accurate
for approximating and estimating the parameters of the
tissues. Then, instead of combining expression measures
by including a separate parameter to model the inter-tis-
sue variability for meta-analysis, we compared the result-
ing estimates of 95% credible intervals from our
hierarchical Bayesian model, similar to Conlon et al. [8]
with the probability integration model.

Results from three tissue data
Bayesian categorical model provided earlier was applied
to estimate the proportion of the 'call' for pre-screening
genes. After 1000 times burn in via MCMC algorithm, the
estimated proportion for each 'call' category pis fluctuated
around a value and the variations were stable and tiny,

which showed convergence. The densities of the parame-
ters are approximately normally distributed, which show
the appropriateness of the prior assumptions of the
model. We then conducted another 1000 iterations to
estimate proportions (Pis, i = 1, 2, 3) of the 'call' of three
categories, Present (P), Marginal (M), or Absent (A). Table
1 summarizes the estimates of the Pis. Fig. 1 (left) is box-
plot of the estimated Pis for kidney data. All the Pis are
estimated with very small standard deviations, which
show the appropriateness of the model and the estimates
under assumptions. Thus, we conducted filtering step
according to this result. All the genes having "call" of A
greater than 0.2526*n (n is the number of chips, in our
study n = 52) were excluded from our study, as well as the
genes having "call" of P less than 0.7224*n (n = 52). 2430
genes from kidney data satisfied the above criteria and
were left in our study.

Hierarchical Bayesian Mixture (HBM) model was further
applied for the identifications of differentially expressed
time related genes and dynamic clusters. We allowed the
number of components/clusters in HBM to vary from 5 to
35. Based on DIC and convergence of MCMC, the best
model had 15 components. This number of clusters
shows the most convergence in all the models with small-
est DIC value. We still conducted 1000 iterations (burn
ins) via MCMC algorithm, and the estimates converged
well. We then processed another 1000 iterations to obtain
the estimates of the parameters of HBM. Fig. 2 displays
boxplots of the estimates of means and standard devia-
tions for HBM (left). Almost all of them have very small
variations, which indicate the appropriateness of the
assumptions and estimates. Only one of the mixture
groups has means with large variance, because this group
includes the outliers, which makes the estimation vari-
ance large. The right subfigure sketches the estimated pro-
portions for each mixture component. The variances are
small, too. According to the 95% credible intervals, the
total percentage of up-regulation is 5.98% among 2430
genes; and the total percentage of down-regulation is
7.85%.

Similarly to kidney data, we applied Bayesian categorical
model for estimating the proportion of the 'call' for pre-
screening genes for both Muscle (see Table 2 and Fig. 1,
middle) and liver tissue data sets (Table 3 and Fig. 1,
right). For muscle data, 3849 genes were filtered out using
the 'call' information of P, A and M, which were further
used by HBM. According to the 95% credible intervals, the
total proportion of up-regulation was 1.36% among 3849
genes. For liver data, 3614 genes were filtered out using
the 'call' information of P, A and M. The total proportion
of up regulation is 17.50% among 3614 genes and
10.40% of the genes were down-regulated in the liver
data.
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Pair-wise comparisons between two tissues
Table 4 shows the comparisons of gene expression
between kidney data and muscle data that are up/down
regulated genes. Similarly, Tables 5 and 6 list the compar-
isons of gene expressions between kidney data and liver
data; and between muscle data and liver data. We reported
the differentially expressed genes based on two significant
time points: 2 and 6 hours from all three tissue data sets
for demonstration to show the up/down regulation pat-
terns of given time points. Moreover, these two selected
time points have shown that they are the important/peak
time points that were pertinent to drug response.
Although selecting the peak/changing time points is not a
major focus of this paper, there are many related publica-
tions in protein expression studies to achieve such goals.
We further cluster gene expressions into up-regulation
groups, down-regulation groups and no-regulation
groups according to the mean expression level and the
credible interval of posterior distributions of the gene
expressions obtained for each mixture cluster in order to
conduct meta-analysis.

To further examine the congruency and discrepancy
between (1) kidney and muscle data; (2) kidney and liver
data; (3) muscle and liver data regarding the up/down/no

regulation at given time points Cochran-Mantel-Haenszel
test was applied, which are reported in Tables 4, 5, 6[33].
The null hypothesis is that there are no associations
regarding up/down regulation for two compared tissues
for the commonly regulated genes. The calculated p-val-
ues for the association between kidney and muscle is P =
0.629 with 2 = 2.585, which indicate no evidence against
the null hypothesis of no association. Similar results were
found for the kidney and liver (2 = 20.912, P = 0.698).
However, for muscle and liver the 2 = 12.814, df = 6, P =
0.0461, which indicate marginal evidence of association.
The number of common expressed genes is relatively
small. These findings can be further reevaluated by releas-
ing the stringent family wise error rate to false discovery
rate. Results show that the up/down/no regulations of
these common genes for compared tissues at different
time points are not associated and they can be signifi-
cantly different.

Bayesian meta-analysis
As we have discussed earlier we varied the number of mix-
tures from 5–35 components for three tissue data sets.
Results show that 11–15 provided the most precise and
reliable (small CI) results and also the smallest DIC. For
further comparisons and meta-analysis, we used 15 as the
number of components for final models for all three tis-
sue sets. The gene expressions among tissues were differ-
ent from one another, which violates the criteria of meta-
analysis using pooled data. We analyzed the data tissue by
tissue using our proposed HBM and then compared the
credible intervals of each gene expression at 2 hrs and 6
hrs among the 6 common genes (see Table 7). Fig. 3 pro-
vides the common gene expressions among three tissues.
This figure is biologically plausible since muscle is consid-
ered to be the most stable tissue among the three and

Box-plot of the estimated PisFigure 1
Box-plot of the estimated Pis. All the Pis are estimated by small variance, which shows the appropriateness of the estimates 
under assumptions from kidney (left), muscle (middle), liver (right) data.
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Table 1: The estimates of the Pis according to the 'call' of P, M 
and A

Proportion Standard Deviation 95% Credible interval

Absent 0.2526 0.001609 (0.2495, 0.2558)
Marginal 0.0250 5.663E-4 (0.02387, 0.02612)
Present 0.7224 0.001692 (0.7192, 0.7257)
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therefore there should be fewer active differentially
expressed genes, while the kidney and liver are more
active tissues and therefore are more likely to be up/down
regulated. All the six common differentially expressed
genes among the three tissues were verified by the experi-
ment of Almon, et al. [20]. Fig. 4 shows meta-analysis
plots for the gene expressions for the six commonly
expressed genes in kidney, muscle and liver and the cred-
ible intervals of six gene expressions at 2 hrs and 6 hrs.
Each plot, from left to right: gene number 638, 2 hr and 6
hr; 1188, 2 hr and 6 hr; 2150, 2 hr and 6 hr; 2268, 2 hr
and 6 hr; 2272, 2 hr and 6 hr; 3517, 2 hr and 6 hr. From
those figures, gene number 2150 is up-regulated during
the time point of 6 hrs with confidence interval higher
than 0 in kidney. Gene number 638, 2150, 2268 and
2272 have significant expression at some time point in
liver. We don't find any significant gene expression in
muscle. The relatively large confidence intervals are due to
the small size of biological replications. We also find that
the three tissues have the same tendency of some gene

expressions although some of them show significance
while others don't (Table 7).

Boxplots of the estimates of means and standard deviations for the mixture of normal distributions (left) and the estimates of proportions of the mixtures (right)Figure 2
Boxplots of the estimates of means and standard deviations for the mixture of normal distributions (left) and the estimates of 
proportions of the mixtures (right).
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Table 2: The estimates of the Pis according to the 'call' of P, M 
and A

Proportion Standard Deviation 95% Credible interval

Absent 0.5438 7.379E-4 (0.5423, 0.5452)
Marginal 0.02652 2.382E-4 (0.02607, 0.02701)
Present 0.4297 7.331E-4 (0.4283, 0.4312)

Table 3: The estimates of the Pis according to the 'call' of P, M 
and A

Proportion Standard Deviation 95% Credible interval

Absent 0.5804 7.621E-4 0.5789, 0.5819
Marginal 0.02622 2.468E-4 0.02575, 0.02673
Present 0.3934 7.54E-4 0.3919, 0.3949

Table 4: Comparisons of gene expression between kidney data 
and muscle data

Kidney Muscle Total
1 outlier 1 up 2 up

1 down 3 1 1 5
1 outlier 0 0 0 0
1 up 5 6 1 12
1 up 1 down 0 0 0 0
2 up 0 0 0 0
2 down 0 1 0 1

Total 8 8 2 18

CMH test General association 2 = 2.585, df = 4, P = 0.629
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To further examine the biological functions and interpre-
tations of the discovered commonly expressed genes
among three tissues from Fig. 3, we used NCBI web litera-
ture search engine. The genes are related to the following
possible biological functions: Immune related cluster
including interleukin 6 receptor and the interferon
gamma receptor gene; Signaling cluster which is domi-
nated by kinases and phosphatases; Transcription cluster
related to a major influence of corticosteroids to the tran-
scription; Vascular cluster which contains genes such as
the angiotensin converting enzyme; Plasma Membrane
cluster which mediates its interaction with the external
environment; Protein and Amino Acid Metabolism clus-
ter; Small molecule metabolism and others.

Simulation and sensitivity analysis
To further determine the validity of the results, we con-
ducted simulation study to ensure that the findings based
on our method are valid. We generated "time course gene
expression data with 17 unequally spaced time points"
with data format similar to our real kidney data for a total
of n = 1500 genes. The simulated data was generated from
the same normal distribution for error with variances that

varied from 0.0001 to 0.5. For each simulated gene
expression profile, we generated six biological replicates
by randomly generating different error terms at each time
point. Each array was standardized to have mean zero and
unit standard deviation. We performed the simulation
procedure a total of 100 times and summarized the results
over these 100 simulations. Monte Carlo Markov Chain
algorithm with Gibbs sampling was used to sample from
the posterior distributions of parameters and draw infer-
ences on the parameters for the simulated data. Each
parameter was estimated as the mean of its posterior dis-
tribution based on an assumption for its prior distribu-
tion. Results were robust in most complex cases. In order
to ensure that the sampling was from its equilibrium dis-
tribution, 2000 samples after 6000 burn ins were used for
computation.

Various prior distributions, hyper-priors and initial values
were tested for sensitivity analysis and to ensure the con-
vergence of MCMC. The prior models were generated
from normal distributions with means zero; the variances
of the normal distributions were equivalent to that of the

Table 5: Comparisons of gene expressions between kidney data and liver data

Kidney Liver Total
1 down 1 outlier 1 up 1 up 1 down 2 up 2 down

1 down 25 1 44 6 2 3 81
1 outlier 1 0 1 0 0 0 2
1 up 13 0 39 3 4 4 63
1 up 1 down 0 0 5 0 1 1 7
2 up 0 0 1 0 1 0 2
2 down 2 0 2 0 0 0 4

Total 41 1 92 9 8 8 159

CMH test General association 2 = 20.912, df = 25, P = 0.698

Table 6: Comparisons of gene expressions between muscle data and liver data

Muscle Liver Total
1 down 1 outlier 1 up 1 up 1 down 2 up 2 down

1 outlier 2 0 9 0 2 0 13
1 up 4 0 22 0 0 0 26
2 up 1 0 3 1 0 0 5

Total 7 0 34 1 2 0 44

CMH test General association 2 = 12.814, df = 6, P = 0.0461
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biological data. The hyper-prior distribution for means of
the mixture model: i,  ~ N(0, 2), i = 1,2,...,15, where 2

~ InverseGamma(1,0.001). Since we had no information
on the precision (inverse of ), small precisions were
tested, such as 0.001, 0.01, 0.1 and 1 in order to the mod-
els to converge. For instance, when assigning uninforma-
tive distributions to these parameters, Inverse Gamma
(0.001, 0.001), the models did not converge, but Inverse
Gamma (0.1, 0.1) converged.

Sensitivity analysis was also conducted by varying the
prior distributions. We consider several prior models with
various hyper-priors and initial values. We first generated
the prior model for the means (j), which followed conju-

gate normal priors j ~ Normal(j0, /j0), j = 1,...,C. The

parameters of the prior on j were chosen from various
values (e.g. 0.001, 0.01, 0.1) to give broad distributions,

for instance, j0 ~ Normal(0, 0.0001),  ~ Inverse Gamma

0.1, 0.1. Here, j0 is an initial guess on the mean in cluster
j with j0 prior sample size reflecting strength of belief in
the guess about the mean. The precision parameter in

cluster j is given by j = 1/  ~ Inverse Gamma (vjtj/2, vj/2),

where vj is the guess on the prior degrees of freedom, typ-

ically vj = 2 or lower. tj = 1/  is the prior guess on the pre-

cision in component j, which will be tested from various
values (e.g. 0.001, 0.01, 0.1). The best initial value will be
chosen based on convergence of MCMC. For instance,
when assigning uninformative distributions to these
parameters, Inverse Gamma (0.001, 0.001), the models
did not converge. It converged with Inverse Gamma (0.1,
0.1).

Fig. 5 displays the simulation analysis for the estimates of
means for the mixture of normal distributions and the
estimates of proportions of the mixtures (15 clusters). The
left subfigure sketches the estimated means for the mix-
tures of normal distributions. Almost all of them have
very small variation, which indicate the appropriateness
of the assumptions and estimates. Only two of the mix-
ture groups have means with large variance. This may
indicate groups that include outliers, which makes the
estimation variance large (this may be eliminated by

Table 7: Clusters and expressions for the genes that expressed among three tissues

Gene number 638 1188 2150 2268 2272 3517

Gene name AF053312_s_at D12769_g_at L19998_at L32591mRNA_g_at L33869_at U05989_at

kidney
2 hr Group 7.02 13.86 6.01 15.00 13.02 10.96

Mean ± std 1.20 ± 1.13 0.08 ± 0.31 2.22 ± 0.43 1.40 ± 0.38 4.11 ± 1.5E8 0.82 ± 0.32
Expression No No Up Up Outlier Up

6 hr Group 10.93 14.98 11.87 12.91 14.82 13.48
Mean ± std 0.82 ± 0.32 1.40 ± 0.38 -1.22 ± 1.14 4.11 ± 1.5E8 1.40 ± 0.38 4.11 ± 1.5E8
Expression Up Up No Outlier Up Outlier

muscle
2 hr Group 13.48 5.33 5.30 12.43 11.42 12.78

Mean ± std 1.33 ± 0.53 0.24 ± 0.25 0.24 ± 0.25 2.51 ± 0.86 2.51 ± 0.86 9.65 ± 3.2E11
Expression Up No No Up Up Outlier

6 hr Group 9.53 10.40 12.26 4.79 13.71 10.31
Mean ± std -0.49 ± 0.39 -0.51 ± 1E13 2.51 ± 0.86 0.24 ± 0.25 1.33 ± 0.53 -0.49 ± 0.39
Expression No Outlier Up No Up No

liver
2 hr Group 14.95 4.96 8.48 10.00 4.03 4.99

Mean ± std 3.66 ± 0.92 2.33 ± 0.51 -0.99 ± 0.64 -5.53 ± 3.11 1.25 ± 0.47 2.33 ± 0.51
Expression Up Up No No Up Up

6 hr Group 7.87 5.28 7.90 4.10 3.43 9.23
Mean ± std 0.68 ± 0.33 2.33 ± 0.51 0.68 ± 0.33 1.25 ± 0.47 -0.60 ± 0.29 -0.99 ± 0.64
Expression Up Up Up Up Down No

Mean ± std is the base 2 logarithm of the ratio between 2 hrs and baseline, 6 hrs and baseline. If credible interval does not include 0 and is greater 
than 0, then we consider the genes in this group as up regulated ones; if the interval is below 0, then we consider the genes in this group as down 
regulated ones; otherwise, they are not regulated.

 j0
2

 j0
2

 j
2

s j
2
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replacing Gaussian priors with student-t priors). However,
these outliers are treated as a separate cluster in our
model. Therefore, it does not affect the other clusters' esti-
mates. The right subfigure sketches the estimated propor-
tions for each mixture group. The variances are small. We
see that most of the estimated gene expressions were
around 0. Some of the genes were down-regulated with
means less than 0; some of the genes were up-regulated
with means greater than 0. This is biologically plausible.

To evaluate the model, which assumes that there is inde-
pendence (no/weak correlation) among groups in the
mixture model, we calculated Pearson correlation coeffi-
cients for pair-wise clusters given the above model. Fig. 6
shows the estimated correlations among the estimated

means for the mixture of normal distributions of 15 clus-
ters from the simulated data sets. These figures indicate
that in our model, some of the clusters were independent
(not correlated) of one another (for instance, Pearson cor-
relation coefficients for cluster 1 versus 2; cluster 2 versus
3 and so forth were 0.0632, -0.0237, 0.1056, -0.0333,
0.0346, -0.0184, -0.0065, 0.0400, -0.0490, 0.0701, -
0.0015, respectively), which exactly obeys the assump-
tions. However, there were a few of them that were corre-
lated (cluster 11 versus 12, cluster 12 versus 13, 13 versus
14, 14 versus 15, the Pearson correlation coefficients were
-0.3823, -0.4103, 0.3925, 0.3327, respectively). This may
be due to the outliers being treated as separate clusters
while these clusters could have positive correlations that
were not separable from other clusters.

Conclusion
In this paper, we present methodology for identifying
genes that are differentially expressed over time and for
identifying common profiles across different tissue types
in order to address the inherent dependence between data
observations when samples are collected in a time-
ordered sequence, and also for increasing the power of the
analysis. We have presented both Bayesian categorical
model for estimating the proportion of the 'call', which
are used for pre-screening genes and Hierarchical Bayesian
Mixture model for identifying temporal differentially
expressed gene expression and dynamic patterns. There
are several advantages of the Hierarchical Bayesian Mix-
ture model.

First, the model clusters gene expressions into up-regula-
tion groups, down-regulation groups and no-regulation
groups according to the mean expression level and the

Common gene expressions among three tissuesFigure 3
Common gene expressions among three tissues.

Meta-analysis plots for the gene expressions for the common expressed genes: gene name AF053312_s_at: 2 hrs and 6 hrs; D12769_g_at: 2 hrs and 6 hrs; L19998_at: 2 hrs and 6 hrs; L32591mRNA_g_at*: 2 hrs and 6 hrs; L33869_at: 2 hrs and 6 hrs; U05989_at: 2 hrs and 6 hrsFigure 4
Meta-analysis plots for the gene expressions for the common expressed genes: gene name AF053312_s_at: 2 hrs and 6 hrs; 
D12769_g_at: 2 hrs and 6 hrs; L19998_at: 2 hrs and 6 hrs; L32591mRNA_g_at*: 2 hrs and 6 hrs; L33869_at: 2 hrs and 6 hrs; 
U05989_at: 2 hrs and 6 hrs. Each plot, from left to right: kidney, muscle and liver data.
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credible interval of posterior distributions of the gene
expressions obtained for each mixture cluster. It provides
probabilistic clustering in terms of the estimated posterior
probabilities of component membership, which include
the partitioning of the genes into C non-overlapping clus-
ters, determined by the genes' highest estimated posterior
probabilities of group membership. Second, it provides
the uncertainty estimates of all the parameters through
more accurate posterior intervals of differentially
expressed genes versus less informative point estimates of
p-values (hypothesis testing), which formed our base of
making inferences about a sub-group of time related
genes being differentially expressed (up or down regu-
lated). Recall that providing 95% credible interval for
gene based is equivalent to control the family wise error
rate with significance level 0.05, which can be easily mod-
ified into controlling the false discovery rate to achieve
less stringent results. Third, it provides us the posterior
distribution of the clustered data as opposed to using
standard normal distribution assumption models, that
may not be valid or based on the empirical distribution
from bootstrap or other resampling methods, which may
have poor small sample properties.

Our model produces the clusters of non-differentially
expressed genes and up/down regulated genes and also
low-variation clusters and outliers. The model clusters the
outliers and noise into one or several groups (clusters),

which may make the preprocessing of excluding outliers
before data analysis unnecessary in the future, although
we have preprocessed our data in this paper for computa-
tional efficiency. Also, this model did not exclude the
genes with expression profiles that had very low variation.
These 'low-variation' genes may not provide any addi-
tional valid information about the time course of gene
expression changes due to the drug effects, but they may
be important to associate with certain pathways and their
tiny fluctuations are exquisitely informative biological
distinctions.

We have observed that our Bayesian estimation methods
can deal with complex clustering situations and identify
clusters of irregular shape, unequal size, or different dis-
persion. Furthermore, our developed model can deal with
irregularly spaced time intervals and provides both the
solutions for identification of differentially expressed
time related genes and dynamic clustering. One important
feature of our developed finite mixture model is that it is
appropriate for further comparison and meta-analysis due
to its ability to account for dependence among the genes
and thus can summarize the concordance (intersection)
among the tissues through the estimated posterior
distributions as credible intervals. The resulting null
standard deviations illustrate the precision of the resulting
estimates.

Simulation analysis: estimates of means for the mixture of normal distributions and estimates of proportions of the mixtures (15 clusters) based on simulated dataFigure 5
Simulation analysis: estimates of means for the mixture of normal distributions and estimates of proportions of the mixtures 
(15 clusters) based on simulated data. The left subfigure shows the estimated means for the mixtures of normal distributions. 
Almost all of them have very small variance, which indicate the appropriateness of the assumptions and estimates. The right 
subfigure shows the estimated proportions for each mixture group. Again, the variances are small.
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Our hierarchical Bayesian model can be generalized and
applied to any other time course microarray experimental
data since it is based the dynamic patterns over all time
points, similar to other function data analysis approaches
[34-36]. One important difference between our
approaches and other functional data analysis is that func-
tion analysis methods provide the estimates of the func-
tions of the dynamic changes over time (most time
nonlinear/cubic functions of the drug response), then
cluster the similar genes with similar function based on
the estimated functions; while Hierarchical Bayesian mix-
ture model considers all the studied genes to be from mix-
ture models and directly provides the estimates (including
means standard deviation, credible intervals for each
cluster), and the different dynamic clusters are automati-
cally produced from the model.

Last, but more importantly, recall our model is hierarchi-
cal, by selecting different priors and hyper-priors, we also
can achieve shrinkage and automatic selections effects, to
further produce credible interval and posterior probabili-

ties very close to 0 or 1. In this way no p-values; no type I
error; no multiple comparisons are needed. This is one of
the major advantages of our hierarchical mixture models.
Some recent theoretical work has shown that there are
similarities/equivalence between building Hierarchical
Bayesian models with automatic shrinkage effects and
designing optimization functions with L1- L2 norm or
combined L1-L2 norm in statistical learning model in
order to achieve automatic selection effects and avoiding
the multiple testing/issues [10,37-40]. These studies have
shown that they both are more efficient ways to deal with
"curse of dimensionality" and turn the multiple testing
problems for variable selection into an optimization
problem in nonparametric setting, which are more com-
putationally efficient and asymptotically optimal for high
dimensional data.
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Simulation analysis: pair-wise scatterplots (for correlations) among the estimated means for clusters of the mixture model from simulated dataFigure 6
Simulation analysis: pair-wise scatterplots (for correlations) among the estimated means for clusters of the mixture model from 
simulated data. The mixture model assumes that there is no correlation among groups. These subfigures indicate that in our 
model, most of the means are not correlated to one another, which exactly obeys the assumptions; but some of them were 
weakly correlated. This may be due to outliers being treated as separate clusters. These clusters could have positive correla-
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i vs. i+1, i = 1, 2,...,5) between two normal distributions were 0.0632, -0.0237, 0.1056, -0.0333, 0.0346, -0.0184, -0.0065, 
0.0400, -0.0490, 0.0701, -0.0015, 0.3823, -0.4103, 0.3925, 0.3327, respectively.

  
Page 12 of 13
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:354 http://www.biomedcentral.com/1471-2105/9/354
preparation. Both authors have given final approval of the
version to be published.

Additional material

Acknowledgements
The authors would like to thank Dr. Richard Almon for providing the data. 
This work was supported in part by the National Institute of General 
Medical Sciences Grant (NIH: 1P20GM067650-01A1) and by NSF grant 
DMS-0604639.

References
1. Egger M, Davey SG, Phillips AN: Meta-analysis: principles and

procedures.  British Medical Journal 1997, 315:1371-1374.
2. Bailar JC: The promise and problems of meta-analysis .  New

England Journal of Medicine 1997, 337:559-61.
3. DuMouchel WH, Harris JE: Bayes methods for combining the

results of cancer studies in humans and other species.  Journal
of the American Statistical Association 1983, 78:293-315.

4. Smith TC, Spiegelhalter DJ, Thomas A: Bayesian approaches to
random-effects meta-analysis: a comparative study.  Stat Med
1995, 14:2685-2699.

5. Ghosh D, Barette T, Rhodes D: Statistical issues and methods
for meta-analysis of microarray data: A case study in pros-
tate cancer.  Functional Integrative Genomics 2003, 3:180-188.

6. Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D,
Barrette T, Pandey A, Chinnaiyan AM: Large-scale meta-analysis
of cancer microarray data identifies common transcriptional
profiles of neoplastic transformation and progression.  Pro-
ceedings of National Academy of Science 2004, 101(25):9309-9314.

7. Pan W, Wei W, Khodursky A: A Parametric Joint Model of
DNA-Protein Binding, Gene Expression and DNA Sequence
Data to Detect Target Genes of a Transcription Factor.  Pac
Symp Biocomput 2008:465-476.

8. Conlon EM, Song JJ, Liu A: Bayesian meta-analysis models for
microarray data: a comparative study.  BMC Bioinformatics 2007,
8:80.

9. Liang Y, Kelemen A: Hierarchical Bayesian Neural Network for
Gene Expression Temporal Patterns.  Stat Appl Genet Mol Biol
2004, 3:Article 20.

10. Liang Y, Kelemen A: Temporal Gene Expression Classification
with Regularised Neural Network.  International Journal of Bioin-
formatics Research and Applications 2005, 1(4):399-413.

11. Liang Y, Tayo B, Cai X, Kelemen A: Differential and Trajectory
Methods for Time Course Gene Expression Data.  Bioinformat-
ics 2005, 20(13):3009-3016.

12. Liang Y, Kelemen A: Associating phenotypes with molecular
events: a review of statistical advances and challenges under-
pinning microarray analyses.  Journal of Functional and Integrative
Genomics 2006, 6:1-13.

13. Liang Y, Kelemen A: Bayesian State Space Model for Inferring
and Predicting Transcription Profiles in Gene Expression.
Biometrical Journals 2007, 49(3):1-14.

14. Efron B, Tibshirani R, Goss V, Chu G: Empirical Bayes Analysis of
a Microarray Experiment.  Journal of American Statistical Association
2001, 96(456):1151-1160.

15. Pan W, Lin J: A mixture Model approach to detecting differen-
tially expressed genes with microarray data.  Functional and
Integrative Genomics 2003, 3:117-124.

16. Broet P, Lewin A, Richardson S, Dalmasso C, Magdelenat H: A mix-
ture model-based strategy for selecting sets of genes in mul-

ticlass response microarray experiments.  Bioinformatics 2004,
20:2562-2571.

17. Kauermann G, Eilers P: Modeling Microarray data using a
threshold mixture model.  Biometrics 2004, 60:376-387.

18. Liao J, Lian Y, Selvanayagam Z, Shih W: A mixture Model
approach for estimating the local false discovery rate in
DNA microarray analysis.  Bioinformatics 2004,
20(16):2694-2701.

19. Ghosh D: Mixture models for assessing differential expression
in complex tissues using microarray data.  Bioinformatics 2004.
PMID:14988124

20. Almon RR, Chen J, Snyder G, DuBois DC, Jusko WJ, Hoffman E: In
vivo Multi-Tissue Corticosteroid Microarray Time Series.
Pharmacogenomics 2003, 4:791-799.

21. Jin JY, Almon RR, Dubois DC, Jusko WJ: Modeling of corticoster-
oid pharmacogenomics in rat liver using gene microarrays.
Journal of Pharmaceutical Experiment. Therory 2003, 307(1):93-109.

22. Nimgaonkar A, Sanoudou D, Butte AJ, Haslett JN, Kunkel LM, Beggs
AH, Kohane IS: Reproducibility of gene expression across gen-
erations of Affymetrix microarrays.  Bioinformatics 2003, 4(27):.

23. Agresti A, Hitchcock DB: Bayesian Inference for Categorical
Data Analysis.  Statistical Methods and Applications 2005, 14:297-330.

24. Congdon P: Bayesian Statistical Modeling John Wiley & Sons, Ltd; 2002. 
25. Fraley C, Raftery A: Model-Based Clustering, Discriminant

analysis, and Density estimation.  Journal of American Statistical
Association 2002, 97(458):611-631.

26. McLachlan GJ, Bean RW, Peel D: A mixture model-based
approach to the clustering of microarray expression data.
Bioinformatics 2002, 18:413-422.

27. Medvedovic M, Sivaganesan S: Bayesian infinite mixture model
based clustering of gene expression profiles.  Bioinformatics
2002, 18:1194-1206.

28. Teschendorff AE, Wang Y, Barbosa-Morais NL, Brenton JD, Caldas C:
A variational bayesian mixture modelling framework for
cluster analysis of gene-expression data.  Bioinformatics 2005,
21:3025-3033.

29. Lunn DJ, Thomas A, Best N, Spiegelhalter D: WinBUGS – a Baye-
sian modelling framework: concepts, structure, and
extensibility.  Statistics and Computing 2000, 10:325-337.

30. Spiegelhalter D, Best N, Carlin B, Linde A: Bayesian measures of
model complexity and fit.  Journal of Royal Statistical Society, B 2002,
64(4):583-639.

31. Do KA, Muller P, Tang F: Bayesian mixture model for differen-
tial gene expression.  Journal of the Royal Statistical Society, Series C
2005, 54(3):627-644.

32. Kim S, Tadesee MG, Vannucci M: Variable selection in clustering
via Dirichlet process mixture models.  Biometrika 2006,
93(4):877-893.

33. Agresti A: Categorical data analysis second edition. John Wiley & Sons,
Ltd; 2002. 

34. Ma P, Castillo-Davis CI, Zhong W, Liu JS: A data-driven clustering
method for time course gene expression data.  Nucleic Acids
Research 2006, 34(4):1261-1269.

35. Luan Y, Li H: Clustering of time-course gene expression data
using a mixed-effects model with B-spline.  Bioinformatics 2003,
19:474-482.

36. Luan Y, Li H: Model-based methods for identifying periodically
regulated genes based on the time course microarray gene-
expression data.  Bioinformatics 2004, 20:332-339.

37. Tibshirani R: Regression shrinkage and selection via the lasso.
J Royal Statist Soc B 1996, 58(1):267-288.

38. Wang L, Zhu J, Zou H: Doubly regularized support vector
machine.  Statistica Sinica 2006, 16:589-615.

39. Sun W, Cai T: Oracle and adaptive compound decision rules
for false discovery rate control.  J American Statistical Association
2007, 102:901-912.

40. Liang Y, Kelemen A: Statistical Advances and Challenges for
Analyzing Correlated High Dimensional SNP Data in
Genomic Study for Complex Diseases.  Statistics Surveys 2008,
2:43-60.

Additional file 1
WinBUGS code. Use WinBUGS software to view WinBUGS code.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-354-S1.odc]
Page 13 of 13
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2105-9-354-S1.odc
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9432250
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9432250
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9262502
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8619108
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8619108
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12884057
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12884057
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12884057
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18229708
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18229708
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18229708
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17343745
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17343745
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15117756
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15117756
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15117756
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15180663
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15180663
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15145810
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15145810
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15145810
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14988124
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14988124
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14596642
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14596642
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12823866
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12823866
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11934740
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11934740
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12217911
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12217911
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15860564
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15860564
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15860564
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16510852
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16510852
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12611802
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12611802
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14960459
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14960459
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14960459

	Abstract
	Background
	Results and conclusion

	Background
	Multiple-tissues affymetrix data sets, preprocessing and normalization

	Results and discussion
	Bayesian categorical model for estimating the proportion of the 'call'
	Hierarchical Bayesian Mixture model and meta-analysis
	Results from three tissue data
	Pair-wise comparisons between two tissues
	Table 1

	Bayesian meta-analysis
	Table 2
	Table 3
	Table 4
	Table 5

	Simulation and sensitivity analysis
	Table 6
	Table 7


	Conclusion
	Authors' contributions
	Additional material
	Acknowledgements
	References

