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Abstract
Background: False discovery rate (FDR) methods play an important role in analyzing high-
dimensional data. There are two types of FDR, tail area-based FDR and local FDR, as well as
numerous statistical algorithms for estimating or controlling FDR. These differ in terms of
underlying test statistics and procedures employed for statistical learning.

Results: A unifying algorithm for simultaneous estimation of both local FDR and tail area-based
FDR is presented that can be applied to a diverse range of test statistics, including p-values,
correlations, z- and t-scores. This approach is semipararametric and is based on a modified
Grenander density estimator. For test statistics other than p-values it allows for empirical null
modeling, so that dependencies among tests can be taken into account. The inference of the
underlying model employs truncated maximum-likelihood estimation, with the cut-off point chosen
according to the false non-discovery rate.

Conclusion: The proposed procedure generalizes a number of more specialized algorithms and
thus offers a common framework for FDR estimation consistent across test statistics and types of
FDR. In comparative study the unified approach performs on par with the best competing yet more
specialized alternatives. The algorithm is implemented in R in the "fdrtool" package, available under
the GNU GPL from http://strimmerlab.org/software/fdrtool/ and from the R package archive
CRAN.

Background
The false discovery rate (FDR) plays a prominent role in
many high-dimensional testing and model selection pro-
cedures. Consequently, FDR methodologies are ubiqui-
tous in the analysis of high-throughput data, such as in
differential gene expression, SNP biomarker selection,
peak detection in proteomic mass spectrometry data, or
inference of edges in a network.

False discovery rate analysis starts with the seminal works
by Schweder and Spjøtvoll [1] and by Benjamini and
Hochberg [2]. Many others have followed suite, so that to
date an impressive number of different algorithms for

controlling and estimating false discovery rates have
appeared in the literature.

In a nutshell, FDR estimation algorithms may be broadly
categorized by the type of

• FDR,

• input test statistic, and

• employed inference procedures.
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There are two main types of FDR, the "classic" tail area-
based FDR (= Fdr) and local FDR (= fdr). Most FDR pro-
cedures are concerned either with Fdr or fdr, simultaneous
estimation of both types of FDR is only possible with a
few selected algorithms. With regard to test statistics, FDR
calculations typically rely on p-values. However, FDR can
be easily extended to other test statistics, such as correla-
tions [3]. Relaxing the requirement of having p-values as
input has the additional benefit that it allows for empiri-
cal null modeling [4]. Further key differences among the
various FDR methods relate primarily to their respective
procedures for density estimation and for inferring the
proportion of null statistics.

Here, a unified statistical procedure for FDR estimation is
described that generalizes a number of previous algo-
rithms, specifically those of [5,6,4] and [7]. Notable fea-
tures of thus approach include simultaneous estimation
of Fdr and fdr from a diverse range of test statistics, its sim-
plicity, very little a prior modeling assumptions, and the
option of fitting the empirical null model.

The remainder of this paper is set out as follows. In the
first part of the 'Methods' section a brief overview is given
of the basic theory and definitions related to FDR and its
estimation. In the second part of the 'Methods' section the
proposed unified FDR procedure is described in detail. In
the remaining part of the paper the new procedure is eval-
uated in comparison with other competing FDR estima-
tion schemes.

Methods
Basic theory of FDR
This section gives a very brief review of the two compo-
nent FDR model and the local and tail area-based FDR cri-

teria. For a more refined discussion it is referred to [8] and
references therein.

Throughout the paper the Efron naming conventions are
followed. Specifically, "fdr" denotes the local false discov-
ery rate, "Fdr" denotes the tail area-based false discovery
rate, and "FDR" is a generic term encompassing both var-
iants. Similarly, FNDR is the generic abbreviation for the
false non-discovery rate [9].

In the following m simultaneous tests are considered,
resulting in m test statistics such as t1,...,tm or z1,...,zm and
corresponding p-values p1,...,pm.

Tail area-based FDR

In order to control the number of false discoveries, i.e. the
expected ratio E(V/R) of the number of false positives V
among all significant tests R, Benjamini and Hochberg [2]
introduced the following linear step-up procedure. First,

the p-values are ordered so that p(1) ≤ ... ≤ p(m). Second,

each value p(i) is compared with , where q is the

desired FDR level. Finally, with k = max(i : p(i) ≤ ) all

hypotheses belonging to p(1),...,p(k) are rejected. [2] show

that when the test statistics are independent then this pro-

cedure controls E(V/R) at level ≤ q.

The above procedure suggests the following simple correc-
tion of p-values, in the following called Benjamini-Hoch-
berg (BH) rule:

Here order(pi) equals one for the smallest and m for the

largest p-value, respectively. For comparison, the standard

Bonferroni correction [10] is , and hence

.

A way to intuitively understand BH rule is to consider the
following two-component mixture of the observed p-val-
ues,

For p-values the null density f0 is the uniform distribution
U(0,1) and corresponds to the "uninteresting" p-values,
whereas fA is an unspecified alternative density for the
"interesting" p-values. This mixture model may also be
written in terms of distribution functions,

q i
m

q i
m

p p
m

pi
i mi i

BH

order
= =

( )
, ,..., .1 (1)

p p mi i
Bf =

p p pi i i≤ ≤BH Bf

f p f p f p

f p
A

A

( ) ( ) ( ) ( )

( ) ( ).

= + −
= + −
η η
η η

0 0 0

0 0

1

1
(2)

Two-component mixture model for p-values with cutoff point ycFigure 1
Two-component mixture model for p-values with 
cutoff point yc. This implies a decision rule with 
errors α1 and α2. Further abbreviations: FP, false positives; 
TP, true positives; FN, false negatives; TN, true negatives. 
Note that here these quantities are all fractions (not counts) 
and that FP + TP + FN + TN = 1.
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Fig. 1 illustrates the p-value mixture model using the trans-
formed statistic y = 1 - p.

This two-component model provides the means for defin-
ing the tail area-based false discovery rate "Fdr"and also
the false non-discovery rate "Fndr"[9]. Specifically, Fdr(p)
= η0p/F(p) – see also Table 1. This "Bayesian" definition of
"Fdr" [11] is closely related but not identical to the origi-
nal approach by Benjamini and Hochberg. The key differ-
ence is that being density-based it implicitly assumes that
the number of hypotheses is large (m → ∞). Intriguingly,
this allows to view most FDR procedures based on the
observed test statistics as providing estimates of "Fdr"
(note the subtle but important difference of estimating
FDR versus controlling FDR).

In case of the BH-corrected p-values (Eq. 1), it turns out
that this rule is simply the nonparametric empirical esti-
mator of Fdr:

Plugging in the empirical cumulative density function

(ECDF)  as estimator of F(p) and using

the conservative guess  = 1 yields

It is instructive to compare the definitions of "Fdr" and
"Fndr" for a given threshold y with those of "sensitivity"
and "specificity" – see Table 1. Note that the order of con-
ditioning is reversed in the two instances, but otherwise
the definitions are very similar. Furthermore, both "Fdr-
Fndr" and "sensitivity-specificity" offer the means for
determining an optimal decision rule. In a conventional
test situation the threshold y is chosen to maximize both
sensitivity and specificity (i.e. typically specificity is fixed
and power is maximized). Analogously, in an FDR analy-
sis one seeks to minimize Fdr and Fndr (e.g, by fixing Fndr
and minimizing Fdr). Hence, there is a tradeoff between
Fndr and Fdr, just as there is a tradeoff between sensitivity
and specificity. Note that the formal similarities between
Fdr/Fndr and sensitivity/specificity is yet another reason
for prefering the Bayesian variant of FDR over other more
operational definitions.

The BH rule is popular due to its simplicity. However,
often it is a rather conservative estimator of Fdr. One way
to improve the BH rule is to substitute a more appropriate
estimate of the null proportion η0. This leads directly to
the well-known q-values, which are refined BH estimates
with various suggested options for the estimation of η0
[12,7].

Additionally, monotonicity is another issue where the BH
rule is open to improvement. Specifically, direct applica-
tion of the BH correction easily yields corrected p-values
with a different ordering than that of the original test sta-
tistics. This unpleasant property has already been noted
by [2], and indeed the "max" function in the original step-
up procedure provides a corresponding fix (albeit a rather
adhoc one). [5,6] point out that this issue can be more ele-
gantly resolved by requiring the distribution function F(p)
of the p-values to be concave and, correspondingly, the
marginal density f(p) to be monotonically decreasing.
There many different ways for fitting the two component
FDR mixture model (Eqs. 2 and 3) and for estimating den-
sities and η0. This explains the multitude of FDR
approaches in existence. Common to all is some form of
"zero assumption" to render the mixture model identifia-
ble. Typically, for large p-values one assumes that there is
no contamination with the alternative distribution, i.e.
Fndr(p → 1) = 0 and therefore f(p → 1) = η0
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Table 1: Definitions of FDR quantities contrasted with that of 
specificity and sensitivity.

Quantity Definition

Fdr = Prob("not interesting"|Y ≥ y)

Fndr = Prob("interesting"|Y ≤ y)

Sensitivity, Power = Prob(Y ≥ y|"interesting")

Specificity = Prob(Y ≤ y|"not interesting")

fdr = Prob("not interesting"|Y = y)
fndr = Prob("interesting" |Y = y) = 1 - fdr

Note that in the above definitions TP, FP, FN, FP are assumed to be 
the true fractions – see Fig. 1. If instead observed counts are used, 
additionally the expectation E(.) must be taken, conditioned on seeing 
a non-zero denominator (cf. [7,11]).

= +
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Local FDR
An alternative to the classic tail-area based FDR is the local
FDR, abbreviated here as "fdr". Specifically, the local FDR
is the probability of the null model conditioned the
observed test statistic (see Table 1). Note that the local
FDR takes is computed at the density level, in contrast to
the Fdr that is based on cumulative densities.

This approach has mainly been advocated by Efron and a
few others [13-15]. The key virtue of local FDR is that it is
more readily interpretable than Fdr, as it is an empirical
Bayesian posterior probability and not some variant of a
corrected p-value. However, due to the use of densities it
is also more difficult to estimate, in particular if the alter-
native distribution in the two-component model is not
parametrically specified.

An important relation between Fdr and fdr is the property
Fdr(p) ≤ fdr(p) that holds if fdr(p) is monotonically
decreasing with decreasing p-value.

Test statistics other than p-values and empirical null modeling
Virtually all FDR procedures – both local and tail area-
based methods – are designed to work with p-values as
input test statistics. Regardless the popularity of p-value-
based approaches, in many instances it is often more ben-
eficial to base the FDR calculations on the actual test sta-
tistic, such as on a regularized t-score, a z-score, or a
correlation, rather than on a p-value.

The reason for this is as follows. Very often the theoretical
null model is misspecified, due to dependencies among
test statistics and other factors [16]. In turn, this may lead
to overly pessimistic or too optimistic p-values, and thus
to a violation of the implicit assumption of the FDR two-
component model for p-values (namely that the null p-
values are drawn from the uniform distribution). In such
a case the resulting FDR values will also be biased, and
thus unreliable.

Efron has shown that this can be elegantly avoided by
retaining free parameters in the null model for the origi-
nal test statistics (typically for location or scale) and esti-
mating these parameters from the data [4]. Intriguingly,
this empirical null modeling is greatly facilitated by high
dimensions – and hence it is one of the few instances
where high-dimensionality is not a curse but a blessing.
There are various attempts to take account of the depend-
encies among p-values in FDR calculations, however it
seems much more natural (and easier) to simply conduct
Fdr and fdr calculations on the level of the original test sta-
tistic whilst employing an empirical null. In a recent paper
these considerations are confirmed from a decision theo-
retic point of view [17].

Despite these apparent advantages empirical null mode-
ling is currently available in only two FDR estimation
algorithms, "locfdr" [4] and "fdrtool" (this paper). Note
that fitting an empirical null is not tied to z-scores and the
assumption of a normal null distribution, it is equally
well feasible for any other test statistic, e.g., correlations
[3].

Unified procedure for FDR estimation
Overview and motivation
From the discussion in the previous section it is clear that
there exists a veritable range of FDR-related methods. An
brief overview is given in Table 2, which lists thirteen FDR
procedures for which an implementation for the R plat-
form [18] is available.

The aim of this paper is to introduce an FDR estimation
procedure that brings together many aspects that other-
wise are only considered separately into one common and
coherent setting. Thus, in a sense this offers a unified algo-
rithm for FDR analysis.

Specifically, a procedure is proposed

• for the simultaneous estimation of both Fdr and fdr,
regardless of the type of test statistic,

• that does not treat p-values any different from other test
statistics,

• that maintains the ordering of original test statistics,

• that uses efficient and well tested techniques for estimat-
ing η0 and null distribution,

• and that remains (largely) compatible with the well
established "locfdr" and "qvalue" algorithms.

Furthermore, the algorithm is conceptually simple. Com-
ponents in this scheme for Fdr/fdr analysis are a general-
ized definition of the test statistic, a non-parametric
density estimator, an approach of fitting the null model,
combined together in an effective fashion.

The present approach, discussed in detail in the following
subsections, is best described as a marriage of the non-par-
ametric Grenander approach of [5] and [6] with the
empirical null modeling of [4]. An implementation is
available in the R package "fdrtool" [19].

Generalized test statistic
Central to the algorithm is a generic definition of the
underlying test statistic. Specifically, a statistic y ≥ 0 is con-
sidered with properties such that large values of y indicate
an "interesting" case, and, conversely, small values close
Page 4 of 14
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to zero an "uninteresting" case. Examples for suitable sta-
tistics y include:

• y = 1 - p where p is a p-value,

• y = |z| where z is a normal score,

• y = |r| where r is a correlation, and

• y = |t| where t is a t-score.

Note that the choice of test statistic y automatically
implies a corresponding null model f0(y; θ), e.g., the uni-
form, half-normal, etc., which possibly contains some
parameters θ. In terms of y the two-component model
becomes

f(y) = η0f0(y; θ) + (1 - η0)fA(y) (4)

and

F(y) = η0F0(y; θ) + (1 - η0)FA(y). (5)

Accordingly, for a test statistic y the local FDR and the tail
area-based FDR are given by

and

Furthermore, the p-value corresponding to the test statistic
y equals 1 - F0(y; θ).

Density estimation using a modified Grenander approach
A central part of FDR analysis consists of the estimation of
the marginal density f(p) and the associated distribution
function F(p) from p-values picorresponding to the
observed test statistics yi.

The most simple approach is to use the empirical cumula-
tive density function (ECDF) as estimator of F(p). Note
that the ECDF is the non-parametric maximum-likeli-
hood estimate (NPMLE). The ECDF is very widely used in
FDR analysis, including the two most popular FDR
approaches (BH rule, "qvalue" algorithm). However, the
ECDF has the disadvantage that it requires careful post-
processing in order to achive monotone FDR values. Fur-
thermore, it is a non-trivial issue to derive a density from
the ECDF (see, e.g., [15] for an approach using loess
smoothing). This important if computation of local FDR
values is desired.

Another popular option, pursued in the "locfdr" program,
is to estimate the density by spline Poisson regression on
the histogram counts [21]. This work extremely well in
general but can be problematic if the distribution has a
strong peak – which is not uncommon, e.g., for p-values
or partial correlations. Furthermore, this approach intro-
duces additional parameters such as the histogram bin
width or the degrees of freedom of the spline, which for
some data may need diligent adjustment. In addition, as
the approach does not place any monotonicity constraints
on the density there is no guarantee that the order of the
scores is maintained in the corresponding FDR values.

fdr( )
( ; )
( )

y
f y

f y
=η θ

0
0 (6)

Fdr( )
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.y
F y

F y
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Table 2: Overview over some commonly used FDR estimation procedures.

Name FDR Type Input Data Comments Description of Algorithm

fdrtool fdr, Fdr p-values, Modified Grenander density, This paper
z-scores, estimate, empirical null model,
t-scores, correlations. selection of truncation point by FNDR.

BUM fdr, Fdr p-values Completely parametric model. [27]
SAGx fdr, Fdr p-values Grenander density estimate. [5,6]

qvalue Fdr p-values Diverse estimates of η0 available. [12,7]
nFDR Fdr p-values Bernstein polynomial density. [24]
multtest Fdr p-values Benjamini-Hochberg algorithm. [2]
LBE Fdr p-values Location-based estimator. [32]

locfdr fdr z-scores Regression spline density estimate, empirical null model. [4,28]
nomi fdr z-values Normal mixture modeling of non-null density. [22]
LocalFDR fdr p-values Uses loess smoothing. [15]
kerfdr fdr p-values Kernel density estimator. [23]
twilight fdr p-values KS fit of truncation point. [30]
localFDR fdr p-values Based on stochastic order model. [33]

Note: The first column refers to an R package or R script implementing the respective FDR algorithm.
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Other possibilities recently proposed for FDR density esti-
mation include, e.g., normal mixtures [22], kernel-based
approaches [23] and Bernstein polynomials [24].

An further alternative approach is provided by the
Grenander density estimator [25]. In contrast to most
other density estimators it has two main benefits which
are highly useful in the context of FDR estimation: it
explicitly incorporates monotonicity constraints (to pre-
serve ordering of original test statistics) and provides
simultaneous estimates of both PDF and CDF (to allow
computation of both fdr and Fdr). Nonetheless, it is only
slightly more complicated than than the ECDF. For FDR
analysis the Grenander estimator has been first suggested
by [5] and by [6].

Fig. 2 illustrates the mechanics behind Grenander density
estimate. In essence, the Grenander density estimator is
the decreasing piecewise-constant function equal to the
slopes of the least concave majorant (LCM) of the ECDF.
In the example shown in Fig. 2 the data x are n = 30 ran-
dom samples from the exponential distribution with
mean one. The left part of the figure shows the estimated
monotonically decreasing density and the right part the
corresponding empirical cumulative distribution. Note
that the resulting distribution F is piecewise linear,
whereas the density f is piecewise constant. The
Grenander estimator is easy to obtain, as the LCM of the

ECDF can be computed by monotone regression with
weights [26]. Specifically, let xi and yi denote the coordi-
nates for the ECDF, and Δxi = xi+1 - xi and Δyi= yi+1 - yi. The
slopes of the LCM are then given by antitonic regression
of the raw slopes Δxi/Δyi with weight Δxi (see also the cor-
responding functions monoreg, lcmgcm and grenander in
the "fdrtool" package). Like the ECDF, the Grenander esti-
mator is also the NPMLE, with the added constraint of an
underlying decreasing density.

Unfortunately, the standard Grenander estimator exhibits
a severe shortcoming when applied the two-component
FDR model: it leads to inconsistencies with the estimated
η0. This problem is extensively discussed in [5], and in fact
causes these authors to abandon the Grenander estimator
despite its favorable properties.

The point that is made here is that this deficiency can be
easily fixed. Specifically, it is argued that the Grenander
estimator is indeed very well suited for FDR analysis, but
needs further modification in order to satisfy the addi-
tional constraints imposed by the two-component model.

The key problem can be understood best by going back to
Eq. 3 which describes the FDR p-value mixture model on
the level of the CDF. Effectively, this equation implies two
constraints that any distribution compatible with the two-
component model must satisfy:

Illustration of the Grenander density estimatorFigure 2
Illustration of the Grenander density estimator. Left: Grenander density estimate (blue line); right: the corresponding 
concave distribution function (blue line) and the underlying ECDF (thine black lines).
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• First, the CDF has to fulfill the condition F(p) ≥ η0p
because F(p) = η0p + (1 - η0)FA(p).

• Second, the condition 1 - F(p) ≥ η0(1 - p) must be met,
because of

1 - F(p) = η0(1 - p) + (1 - η0)(1 - FA(p)).

The second constraint is easy to overlook but is particu-
larly important as Fig. 3 illustrates. There, it can be seen
that the two-component model enforces a corridor of
allowed values of the ECDF, where the width of this corri-
dor depends on the parameter η0. Note that the upper
boundary (second constraint) ensures that the minimum
possible slope equals η0.

For FDR calculation this has the following consequence.
The ECDF need not only be modified for monotonicity
(Grenander estimator) but also need to be tailored to fit
the constraints of the two-component model. This can be
done as follows:

1. Compute the ECDF on the basis of the p-values.

2. Given η0 impose the mixture model conditions on the

ECDF for the p-values. Specifically, set (pi) = η0pi if

(pi) <η0pi (i.e. obey the lower boundary shown in Fig. 3)

and likewise set (pi) = 1 - η0 (1 - pi) if (pi) > 1 - η0 (1

- pi) (upper boundary).

3. The "modified" Grenander estimator is obtained as the
standard Grenander estimator computed from the modi-
fied ECDF.

Note that the modified Grenander estimator retains the
key property of the standard Grenander estimator (i.e.
monotonicity) but in addition satisfies the constraints
imposed by the two-component mixture model model. In
particular, there are no inconsistencies with respect to the
parameter η0. This is illustrated in Fig. 4 where the modi-
fied Grenander estimator is applied with three different
settings of η0 to an example p-value data set. Note that by
construction the modified Grenander density equals η0
for large p-values.

Estimation of null sub-density by truncated maximum-likelihood
For computing p-values and the modified Grenander den-
sity suitable estimates of the parameters θ and η0 are
required. In other words, the null sub-density η0f0(y; θ) of
the two-component model (Eqs. 4 and 5) needs to be fit
to the observed test statistics. This is straightforward inˆ ′F

F̂

ˆ ′F F̂

Constraints imposed by the p-value mixture model on the ECDF of p-valuesFigure 3
Constraints imposed by the p-value mixture model on the ECDF of p-values. The lower diagonal line corresponds 
to the constraint F(p) ≥ η0p whereas the upper diagonal line represents the constraint 1 - F(p) ≥ η0(1 - p). Right: the unmodi-
fied ECDF; left: the ECDF subject to the constraint η0 = 0.7.
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fully parametric models such as BUM [27]. However, it is
often preferred to leave fA(y) unspecified. As a conse-
quence, standard procedures for inferring mixture models
such as the EM algorithm cannot be applied.

Instead, a truncated maximum-likelihood approach is
applied here. In more detail, in this method the data are

censored at some threshold yc, so that only test statistics yt

= {yi : yi <yc} are retained. The underlying assumptions is

that for yi <yc (nearly) all data points belong to the null

part. This is called the "strong zero assumption" in [28].

The truncated null density becomes (y; θ) = f0(y; θ)/Ff t
0

The modified Grenander estimator computed from p-values for three different choices of η0Figure 4
The modified Grenander estimator computed from p-values for three different choices of η0. Note that the 
underlying data are the same in all three instances and that the density of the modified Grenander equals η0 for large p-values.
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(yc; θ) for y < yc and  = 0 otherwise. Maximization of the

corresponding likelihood function returns  as well as

an estimate of its asymptotic error. Similarly, the propor-

tion of null values η0 is inferred by assuming a binomial

model for the observed number mt of hypotheses in the

set yt, which leads to the simple estimate

 plus an associated error.

Truncated maximum-likelihood is the basis of the
"locfdr" MLE algorithm [29,28]. If the test statistics are p-
values then the truncated maximum-likelihood algorithm
reduces to the simple cutoff technique used in "qvalue"
and most other p-value-based packages.

Selection of suitable truncation point using the false non-discovery 
rate
Fitting the null model and the associated parameters θ
and η0 by truncated maximum-likelihood depends on the
choice of a suitable cutoff point yc. In general, one wishes
to select yc such that the threshold is small enough to
ensure that the zero assumption is met and that there is
minimal bias due to contamination with the alternative
fA(y). On the other hand, yc needs be chosen large enough
so that the number of data points in yt is sufficient for reli-
ably estimating θ and η0.

The default "smoothing" approach employed in "qvalue"
specifically aims at achieving an unbiased estimate of η0
[7]. This is obtained by varying the cutoff point between
zero and one, and subsequently estimating η0 by interpo-
lation at yc = 1, i.e. for complete censoring.

For empirical null modeling the choice of an optimal yc is
more complicated. Table 3 lists the algorithms employed
in various versions of the "locfdr" algorithm. Essentially,
"locfdr" either uses a fixed yc or it relies on a heuristic ana-
lytical formula aimed at reducing the mean squared error
of the null sub-density [28]. Both approaches are not
straightforward to extend to arbitrary test statistics yi.
Instead, here a more simple alternative procedure is pro-
posed that enforces the "zero assumption" by requiring

that the false non-discovery rate (Fndr) is minimized (i.e.
yc is chosen such that Fndr(yc) is small). Intriguingly, this
leads to the following circular inferential problem: in
order to determine a suitable cutoff yc the Fndr must be
known, yet to compute Fndr and other FDR quantities a
suitable value for yc must be specified. Fortunately, for
most data sets the location of the cutoff point yc need only
be known approximately. The "FNDR" strategy employed
in "fdrtool" proceeds in two stages. In the first step, the
mixture model is fit approximately, which leads to an
approximate Fndr curve from which an approximately
optimal yc is obtained. In the second step truncated maxi-
mum-likelihood estimation on the basis of the approxi-
mate cutoff yc is used for a refined fit of the mixture model
which in turn allows to compute FDR quantities of inter-
est.

A simple approximate fit of the null model is achieved by

matching its median  (1/2; θ) with that of the

observed yi. Thus, a robust estimate of scale is used just as

in the "locfdr" algorithm, see Table 3 (note that the
median for the half-normal distribution corresponds to
the interquartile range (IQR) of the corresponding normal
with mean zero). Subsequently, after converting the test
statistics into p-values an approximate estimate of the null

proportion is determined by estimating η0 for various cut-

off-points and finally settling for the 0.1 quantile of the

resulting distribution of corresponding η0.

In addition to selecting yc by the above "FNDR" approach,
further methods available in the "fdrtool" package
include the "locfdr" cutoff method [28] and the specifica-
tion of the fraction of data points to be considered for esti-
mating the empirical null. In a practical analysis it is
always advisable to conduct the FDR calculations for var-
ious choices of yc, (even though truncated maximum-like-
lihood appears to be fairly robust with regard to yc).

Gluing it all together
With the above preliminaries, a general algorithm for esti-
mating Fdr and fdr from an arbitrary test statistics yi can be
put together as follows:

f t
0

η̂0

ˆ max{ , / ( ; ˆ)}η θ0 1= mt
m F yc

F0
1−

Table 3: Various choices of normal truncation points implemented in "locfdr".

Version Released Truncation Point Reference

1.1–1 July 2006 z0 = 2

1.1–3 December 2006   with b = 3.55 – 0.44 log10(m),  = median(zi) and  = IQR(zi)/1.349.

1.1–6 November 2007 as version 1.1–3, but with b = max(1, 4.3m-0.112966) [28]

Note that  and  are robust location and scale estimates, respectively.

z b0 = +ˆ ˆμ σ μ̂ σ̂

μ̂ σ̂
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1. Determine a suitable truncation point yc.

2. Estimate the null model and its parameters, yielding 

and .

3. Convert test statistics into p-values via pi = 1 - F0(y| ).

4. Estimate the PDF (p) and CDF (p) of the p-values

using the modified Grenander estimator (note that this

requires ).

5. Compute estimates of Fdr and fdr values based on p-val-
ues:

6. Compute estimated Fdr and fdr values as a function of
the original test statistics y:

7. Compute CDF and PDF on the y-scale:

Note that this transformation is directly derived from the
definition of fdr and Fdr in Eqs. 6 and 7.

8. Estimate alternative sub-density:

Results and discussion
Computer simulations for p-value-based analyses
In order to assess the performance of the "fdrtool" algo-
rithm it was compared with a number of other FDR pro-
cedures. Specifically, the R packages "fdrtool" version
1.2.4, "qvalue" version 1.1 [7], "locfdr" version 1.1–6 [4],

"twilight" version 1.14.1 [30], "kerfdr" version 1.0.0 [23]
and "nFDR" version 0.0 [24] were investigated.

First, FDR approaches based on p-values were studied. As
generative model p-values were simulated from a mixture
of the uniform U(0, 1) with either the truncated exponen-

tial density  or with the

uniform fA(p; a) = U (0, a). Sample size and mixture

model parameter a were varied, and from each generated
data set the proportion of null p-values, and the squared
error of the local FDR and the tail area-based FDR was esti-
mated. The references for computing the squared error
were the theoretical Fdr and fdr values derived from the
assumed model.

Fig. 5 displays the results for three different cases: "model
1" is a uniform-exponential mixture with η0 = 0.8 and a =
5, "model 2" is identical to "model 1" except for a = 20,
and "model 3" utilizes the uniform-uniform mixture with
a = 0.2. In all cases there were B = 1000 repeats and the
number of p-values was m = 200.

The first column of Fig. 5 shows the accuracy in estimating
η0. Overall, the "kerfdr" and the "fdrtool" algorithms
exhibit the smallest variability at the expense of a slightly
biased estimate of η0, especially for "model 1". In con-
trast, "qvalue" always produces nearly unbiased estimates
but has a much higher variance. The "twilight" and
"nFDR" are similar to "qvalue", but are less variable.

The second and third columns of Fig. 5 depict the error in
the actually estimated Fdr and fdr values for various algo-
rithms under the three model scenarios. In terms of cor-
rectly estimating fdr values all investigated packages with
capability of computing local FDR (i.e. "fdrtool", "kerfdr",
and "twilight") perform roughly equally well across all
scenarios For "model 3" the "fdrtool" appears to have a
slight advantage over the competing approaches. When
comparing the accuracy of Fdr values "fdrtool" outper-
forms both "qvalue" and "nFDR", even though the differ-
ences are not large. The squared error of Fdr computed by
"qvalue" and by "nFDR" exhibits more extreme outliers
than those of "fdrtool".

Simulations and analysis of gene expression data for z-
scores
In a further simulation study estimation of FDR from z-
scores was considered with empirical null modeling. Spe-
cifically, data were simulated from a mixture of the nor-
mal distribution N(μ = 0, σ = 2) with the symmetric
uniform alternatives U(-10, -5) and U(5, 10).
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An example of the results from the simulations for sample
size m = 200, B = 1000 repeats and η0 = 0.8 is shown in
Fig. 6. The estimates of the mixing parameter η0 and of the
scale parameter s are slightly upwardly biased in "locfdr"
but more importantly they also exhibit larger variability
compared to "fdrtool". The mean squared error of the fdr
vales are similar for both algorithms. Note that in this
simulation a 75% quantile cutoff point was employed in
"fdrtool" for the truncated maximum-likelihood estima-
tion of the null model. The third row of Fig. 6 shows the
FDR errors for z-scores with absolute values larger than 2.
In this domain both investigated algorithms perform
again very similar, but the average error is larger in com-
parison to the situation when all z-scores are included in
the analysis. In order to further compare the empirical
null modeling a HIV and a breast cancer (BRCA) microar-

ray gene expression data set was reanalyzed, following
[31] and [4]. For the detailed biological background and
the experimental setup it is referred to the original papers.

The HIV data consists of 7680 z-scores. The fit of "fdrtool"
to the median-centered data is shown in Fig. 7. Specifi-
cally, the standard deviation of the null normal density

was estimated to be  = 0.786 and the mixing parameter

 = 0.9575. The number of discoveries with a fdr value

smaller than 0.2 was 119. The "locfdr" algorithm finds a

very similar null model, namely  = 0.754 and  =

0.9342. Corresponding to the smaller  "locfdr" detects

160 significant z-scores with fdr < 0.2.

σ̂
η̂0

σ̂ η̂0

η̂0

Comparison of the estimates of the proportion of null p-values and the squared error of Fdr and fdr for various p-value-based FDR estimation procedures under three different simulation scenariosFigure 5
Comparison of the estimates of the proportion of null p-values and the squared error of Fdr and fdr for various 
p-value-based FDR estimation procedures under three different simulation scenarios. The box plots summarize 
the estimates from B = 1000 repetitions of the simulations. The sample size (i.e. the number of multiple tests) was m = 200.
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The breast cancer data has size 3226. After median-center-
ing the data were again supplied to both the "fdrtool" and
"locfdr" packages. Both algorithms indicated that there

was overdispersion (  = 1.51 versus  = 1.55) and and

the proportion of null values was estimated to be  = 1.

Correspondingly, for the BRCA data there were no signif-
icant z-scores (note that this is in contrast to claims other-
wise in [31]). In short, "fdrtool" and "locfdr" provide very
similar analyzes both in terms of empirical null estima-
tion and inferred fdr values.

σ̂ σ̂
η̂0

Accuracy and variability of estimates of the null proportion η0 and the scale parameter s as well as the squared error of Fdr and fdr for z-score based algorithmsFigure 6
Accuracy and variability of estimates of the null proportion η0 and the scale parameter s as well as the squared 
error of Fdr and fdr for z-score based algorithms. As in Fig. 5 m = 200 and B = 1000 was used. For the plots in the third 
row only z-scores with |z| > 2 were used.
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Computational efficiency
Finally, the investigated FDR procedures were also com-
pared in terms of computational efficiency. The (by a large
margin) slowest program is "twilight". In contrast, the
fastest algorithms are "fdrtool", "locfdr" and "qvalue", fol-
lowed by "kerfdr" and "nFDR".

Conclusion
False discovery rate analysis is a key statistical innovation
that has found widespread application in the study of
high-dimensional data. One of the intriguing aspects of
FDR is that can be understood both from a frequentist and
Bayesian perspective. This has lead to a plethora of FDR
criteria and FDR inference procedures.

The goal for the development of the "fdrtool" procedure
was to establish a common framework that brings
together the most compelling features of existing FDR
methods. Specifically, novel features of the proposed "fdr-
tool" algorithm include

• a unified treatment of p-values and other test statistics,
with identical algorithms and learning procedures,

• simultaneous and coherent estimation of both Fdr and
fdr,

• empirical null modeling for test statistics other than z-
scores,

• a method for selecting the truncation point based on
controlling FNDR, and

• a simple semiparametric model using a modified
Grenander density estimator.

Hence, "fdrtool" allows to compute local FDR values from
p-values but also Fdr values from z-scores while taking
account of an empirical null model. Despite the generality
of the algorithm, it was shown that the accuracy of the
algorithm is on par with the best competing yet more spe-

Graphical output provided by "fdrtool" for the HIV data setFigure 7
Graphical output provided by "fdrtool" for the HIV data set. The first row shows the densities, the second the distri-
bution function and the last row the local and tail area-based false discovery rates.
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cialized FDR procedures. Moreover, the modular structure
of the "fdrtool" procedure facilitates future extensions.

In summary, the "fdrtool" package and algorithm consti-
tutes a comprehensive and feature-rich tool for a wide
range of FDR-type analyzes.

During revision a referee pointed out that the distribution
of observed p-values might be U-shaped [20]. This occurs,
among other possibilities, if the null model is misspeci-
fied. As a result, the computed null p-values do not follow
a uniform distribution, and thus by definition are
improper. "fdrtool" cannot be applied directly to
improper p-values, however, in these instances it might
instead be preferable to conduct the FDR analysis on the
level of the original test statistics.
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