
BioMed CentralBMC Bioinformatics

ss
Open AcceMethodology article
Systems biology driven software design for the research enterprise
John Boyle*, Christopher Cavnor, Sarah Killcoyne and Ilya Shmulevich

Address: Institute for Systems Biology, 1441 N 34th Street, Seattle, WA 98103, USA

Email: John Boyle* - jboyle@systemsbiology.org; Christopher Cavnor - ccavnor@systemsbiology.org; 
Sarah Killcoyne - skillcoye@systemsbiology.org; Ilya Shmulevich - ishmulevich@systemsbiology.org

* Corresponding author    

Abstract
Background: In systems biology, and many other areas of research, there is a need for the
interoperability of tools and data sources that were not originally designed to be integrated. Due
to the interdisciplinary nature of systems biology, and its association with high throughput
experimental platforms, there is an additional need to continually integrate new technologies. As
scientists work in isolated groups, integration with other groups is rarely a consideration when
building the required software tools.

Results: We illustrate an approach, through the discussion of a purpose built software
architecture, which allows disparate groups to reuse tools and access data sources in a common
manner. The architecture allows for: the rapid development of distributed applications;
interoperability, so it can be used by a wide variety of developers and computational biologists;
development using standard tools, so that it is easy to maintain and does not require a large
development effort; extensibility, so that new technologies and data types can be incorporated; and
non intrusive development, insofar as researchers need not to adhere to a pre-existing object
model.

Conclusion: By using a relatively simple integration strategy, based upon a common identity
system and dynamically discovered interoperable services, a light-weight software architecture can
become the focal point through which scientists can both get access to and analyse the plethora of
experimentally derived data.

Background
Within the life sciences we continually see a steady
increase in the volume and complexity of data being gen-
erated by experiments. The management of this data
requires rapid development of high quality integration
and analysis tools. This paper discusses a software archi-
tecture designed to fulfil this need by providing a mecha-
nism for the structured integration of data, and analysis
tools, in an extensible and straightforward manner.

Systems biology has the same data management require-
ments as many other fields of science, but due to its inter-
disciplinary nature and strong association with high
throughput techniques these needs are more apparent.
These requirements are to allow for: the rapid introduc-
tion of new data sources derived from new and emerging
technologies; the interoperability between analysis tools
written in a variety of different languages; a means to inte-
grate data sources to support data mining and searching
operations; and the ability to directly access the experi-

Published: 25 June 2008

BMC Bioinformatics 2008, 9:295 doi:10.1186/1471-2105-9-295

Received: 17 December 2007
Accepted: 25 June 2008

This article is available from: http://www.biomedcentral.com/1471-2105/9/295

© 2008 Boyle et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 15
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18578887
http://www.biomedcentral.com/1471-2105/9/295
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Bioinformatics 2008, 9:295 http://www.biomedcentral.com/1471-2105/9/295
mental data and associated metadata. Designs based on
enterprise systems can provide solutions to these prob-
lems within an organisation, but they have to be tailored
to suit the specific needs of researchers.

Life science research enterprise data integration and proc-
ess management systems have evolved over the last 15
years, effectively since the creation of open interoperable
object based communications (e.g. CORBA). This evolu-
tion has been from single database based solutions
through to open, distributed, interoperable data manage-
ment solutions. This has been driven by demands for
rapid development, high levels of interoperability and
increases in data volume and complexity.

The development of data management systems to support
the life sciences has undergone a number of fundamental
changes in the last decade (see Figure 1). As in other areas,
the history of enterprise systems in the life sciences is, in
essence, one of a cultural change from the development of
proprietary solutions, designed from the top-down,
towards more flexible bottom-up architectures informed
by open standards solutions. This evolution of data inte-
gration and management technologies can be categorised
into three stages:

1. Data Centric
Initially, data repositories were developed, and inte-
grated using either external indexing services or data
warehouse mechanisms. The data repositories rely on
a variety of technologies, including index based (e.g.
SRS [1]), DBMS (e.g. Ensembl [2]), and federated
database approaches (e.g. DiscoveryLink [3]). The
development, of these data centric solutions, was
driven by the availability and standardisation (e.g.
OleDB, ODBC) of relational database management
systems, and the requirement for a federated approach
to data warehouse solutions. The lack of object inter-
operability of such data repositories gave an impetus
for the development of top-down object centric stand-
ards.

2. Object Centric
With these approaches, standards bodies (e.g. LSR [4],
I3C, caBIO project [5]) decided on interoperable
object standards which it was hoped would be taken
up by the life science industry. There has been some
success with such standards, but as they had to capture
all areas of a domain their complexity limited their
broad-scale adoption. This object level standardisa-
tion was largely driven by the maturation of object

History of integration systems for the life sciencesFigure 1
History of integration systems for the life sciences. Enterprise architectures for the life sciences have evolved. Limita-
tions in the flexibility of data repositories based solutions helped shape the development of integration frameworks. Integration 
frameworks suffered from complexity and interoperability problems, and so document based solutions are now becoming the 
norm.
Page 2 of 15
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:295 http://www.biomedcentral.com/1471-2105/9/295
based protocols (e.g. CORBA with pass-by-value or
DCOM) and associated object services (e.g. federated
registries, traders) which used interface definitions
(e.g. IDL, MIDL) to formalise the static distributed
interfaces. Such standards, either proprietary or open,
were mainly implemented using integration frame-
works built using application servers. They were intro-
duced into a large number of pharmaceutical
companies (e.g. Alliance from Synomics, GKP from
Secant, Discovery Center from Netgenics). These inte-
gration frameworks suffered as their rigidly typed sys-
tems were difficult to extend and could not keep pace
with evolving research requirements and new experi-
mental technologies. Processing pipelines were also
integrated within these tools. The requirements for
orchestration of analysis tools led to the growth in the
number of in-house tools designed specifically for
rapid development and deployment characteristics,
rather than interoperability or complexity (e.g. SOA-
PLab [6], GenePattern [7], SBEAMS [8]). The integra-
tion frameworks were built upon the maturing
application server products which were principally
Java based (e.g. EJB 2+)

3. Document Centric
Document based solutions (typically Web Service
based) became popular as they provided a means to
develop solutions that could: keep pace with the rapid
advances in research; were scalable, robust and easy to
develop; and were interoperable. These are now
widely used as a basis for integration (e.g. MRC's Can-
cerGrid, NCI's caGRID). The advantages of these
approaches are based on their lightweight specifica-
tions and ease of implementation (e.g. DAS). Newer
programming constructs, such as AOP, dramatically
reduce the complexity of code of Web Services, and
partly accounts for their widespread adoption (as can
be seen in EJB 3.0, .NET framework, Spring). One of
the challenges associated with Web Service architec-
tures is their lack of semantics. In response, ontology-
based solutions were developed (e.g. S-BioMoby),
although these largely depended on slowly evolving
globally accepted ontologies. Designs using distrib-
uted runtime type checking and type mapping are now
emerging [9], as these provide for a means of integra-
tion and robustness that place fewer restrictions on
developers. A number of eScience solutions were also
associated with similar architectures, although the
majority of these have converged with the mainstream
Semantic Web (e.g. myGRID [10]). A number of tools
to support these service oriented solutions have been
developed, including graphical tools (e.g. Taverna
[11]), schedulers (e.g. GridFlow [12]), and script
translation tools (GridAnt [13]). The semantic web
based solutions are being driven by both the conver-

gence of standards for document based enterprise
computing (e.g. WS-*), and the development of
knowledge representations and query standards (e.g.
OWL and RDF based querying solutions).

There is a natural progression with these systems, as they
generally follow the traditional approaches to software
designs that are prevalent at the time (e.g. MDA). This
means that the designs have an inherent underlying "pre-
dilection for the pedestrian". However, with each stage the
flexibility of the designs increases. This means that with
directed effort it is now feasible to extend the currently
available enterprise technologies to provide adaptive sys-
tems that are able to satisfy the unique nature of systems
biology based scientific research. Such an approach, how-
ever, requires a new type of thinking both in terms of dis-
tributed systems and algorithm development. The
traditional approaches that are currently being developed
are designed to work with "finished" data, not research
information. In such static views, reuse is generally based
upon the development of a standardised interface, fol-
lowed by adoption or implementation of the required
components. This style of architecture works well within
publishing scenarios, where information is to be made
available across the internet as a community resource.
When working within a research project, typically within
an intranet, where new technologies and ideas are contin-
ually being developed, these static publishing approaches
(even including semantic web and grid based technolo-
gies) are not appropriate. Instead, a flexible analysis and
access system is required that allows for the rapid intro-
duction and integration of many types of data.

This paper is technical in nature, and is designed to be of
use to both software developers working within research
environments and for their project managers. The results
section gives an overview of why the system was devel-
oped, and describes the architecture. The discussion sec-
tion outlines further areas where we feel work needs to be
focused. The final section gives our conclusions about
why systems similar to the one described herein are
needed. A glossary of terms is then given at the end of the
document.

Results
This paper discusses the requirements and design of the
ISB Informatics Infrastructure, which is abbreviated as I3

(or I-cubed). I3 is a light-weight service orientated archi-
tecture which is designed to integrate disparate data
sources and tools without the need for significant reim-
plementation or modification. The system is designed to
ensure that people can always get access to experiment
information, without the imposition of specific formats
or language restrictions. The system utilises a number of
common and open standards to: provide a high of inter-
Page 3 of 15
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:295 http://www.biomedcentral.com/1471-2105/9/295
operability with third party solutions; ensure that the code
can be easily maintained; and minimise the cost of devel-
opment.

The system was designed to support communities of
largely independent research groups who have a desire to
ensure that their data (and tools) can be easily shared. An
organisation should consider adopting this architecture,
or a similar mechanism, if the following are required:

• Non-intrusive means of integration
The approach we propose allows for tools to be inte-
grated "as-is", without the requirement for recoding
(e.g. glass box or black box integration). If it is diffi-
cult, or undesirable, to impose a high level standardi-
sation with an organisation then such a non-intrusive
development scheme will be useful.

• Tool and language interoperability
The system is designed to support a community which
uses a diverse mixture of environments (e.g. MatLab,
R), programming languages (e.g. Java, Ruby) and
applications (e.g. Cytoscape, Excel) by providing inter-
operability between both data access and analysis
tools.

• Flexible and rapid development
The software architecture, we have built, is designed to
work within research environments where the needs
of the scientists are continually changing. The system
can be rapidly adapted to integrate new experiment
technologies, analysis mechanisms and data sources.

The I3 integration is designed to be "as is", meaning that
wrappers (or proxies) must be implemented for each non-
standard component that is to be integrated. For standard-
ised components generic wrappers have been developed
(e.g. for JCR). The proxy systems provide the minimal
descriptions of the data sources or analysis tools that are
required to ensure a level of integration. For data sources
the proxies must be able to map to and from a global
identity scheme, so that both the data (and associated
metadata) can be uniquely referenced and retrieved. Anal-
ysis tools are made available as SOAP based Web Services,
with the interfaces they offer and a taxonomy defined
description being published on a central registry.

This section firstly introduces the design principles we
used when building the system, these were based on expe-
riences in delivering a system that works within a multi-
disciplinary research organisation. The architecture of the
system is then described, with an example use case and a
discussion of the shortcomings of the system.

Design Rationale
The design rationale behind the software architecture, dis-
cussed herein, has been driven by the requirements of sci-
entists and the types of data that they generate. The
architecture needed to be flexible enough to integrate
research data gathered using a varied collection of tech-
nologies and platforms, including: microfluidics based
cell growth analysis involving both FACS and specially
built LabView controlled 'lab on a chip' platforms; pro-
teomics mass spectrometry results generated via the Trans-
Proteomics Pipeline (TPP) [14], which were generated
from over 10 different mass spectrometry platforms;
genomics data from both microarray expression and
ChIP-chip platforms (from Agilent, Affymetrix and Nim-
blegen); and cellular imaging experiments involving a
large number of different microscopy based platforms
including confocal microscopy (both spectral scanning
and spinning disk equipment), automated software con-
trolled microscopy environments (e.g. IPLab controlled
Leicas) and automated machinery (e.g. LEAP system from
Cyntellect).

Flexibility is essential as the needs are research driven, so
it is rarely possible to foresee the use to which data from
these and future technologies will be applied. The results
of these technologies have to be made available to a varied
user community including: software engineers, who
require programmatic access in a variety of different lan-
guages; computational biologists, who require that the
results be available in a structured format for data mining
and integration; and bench scientists who desire direct
access to the data through a variety of tools and analyses.
Therefore, the developed architecture had to be able to
support a growing number of different experimental tech-
nologies and provide for a means to flexibly deliver the
required data and analysis tools to a variety of environ-
ments.

To ensure that the architecture would be suitable for our
needs, its design was driven by the following axioms:

1. Ad-hoc development must be supported
At the cutting edge of scientific research there is a con-
tinual requirement for the introduction of new data
sources, data analysis mechanisms, and changes in
project focus. These requirements mean that there is
minimal regard for formal design and data modelling.
To ensure the expediency of software, it is typically
continually being produced through rapid develop-
ment in an isolated and non-formally designed man-
ner (e.g. through the use of mathematical functional
languages using tools such as Matlab or R). This lack
of structured (formal) design is part of a growing glo-
bal trend [15]. This trend is exasperated by the fact that
within the scientific community there exists a rich and
Page 4 of 15
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:295 http://www.biomedcentral.com/1471-2105/9/295
varied user base, which ranges both in terms of soft-
ware experience (typically including lab scientists
using macro languages, statisticians and computa-
tional biologists using script based tools, and software
engineers developing enterprise solutions) and the
plethora of computing languages they use. This means
that it is important to accept that ad-hoc development
is the norm, and that scientists are required to work in
this manner if they are to carry out their research effec-
tively. To avoid a continuing series of iterations of
extensive and expensive reimplementation, strategies
must be developed to support such development prac-
tices. To support integration tasks requires either: the
development of a post hoc integration strategy (e.g. a
means to migrate scripts to a production environ-
ment); or the provision of a simplified integration
mechanisms, which the developers can use conven-
iently (e.g. using directly resolvable identifiers/URNs,
so that data items can always be mapped to each other
and any associated metadata).

2. Documents, not objects, are more useful to scientists
Over the last decade, in distributed computing, there
has been a shift in philosophy from thinking in terms
of the transportation of object graphs towards the retrieval
of related documents. The distinction between docu-
ments and objects is subtle, albeit important: objects
are for programs, whilst documents are for people. An
object is by its very essence a "black box" which con-
tains domain and platform specific information.
Objects must be explicitly translated between lan-
guages, and must be serialized (marshalled/external-
ised) for transmission through an object protocol (e.g.
CORBA, RMI, DCOM, .NET Remoting). Documents
are open and readable, and so lend themselves more
easily towards the social aspects of a distributed sys-
tem. With a document centric approach the interac-
tions are more natural and flexible: the document can
be saved and retrieved from a file system using stand-
ard desktop tools; the information can be retrieved
through numerous media, for example through a web
page or from an email received from a colleague; and
documents can be directly browsed and their contents
edited. This shift in thinking has been driven by
changes in technology, in essence: we now have the
desktop computing power required to deal with oper-
ations associated with handling and transforming
large numbers of documents. The detachment of doc-
uments from the underlying storage does present a
challenge when supporting collaborative operations,
as generally concurrent and transactional control strat-
egies have to be implemented that work within a state-
less environment.

3. Scientific enterprises operate better through a bottom-up service 
oriented, rather than top-down application oriented, architecture

As discussed above, the architectural decisions made
for systems biology based research enterprises are
driven by the need for functionality and rapid devel-
opment rather than shared data models and unit tests.
The traditional top-down approach to design is rarely
used, with a bottom-up approach being prevalent and
arguably preferred [16]. In the top-down approach
models are defined a priori and the designer uses them
as the 'lingua franca'. By contrast, in the bottom-up
approach models and designs arise out of ad-hoc
development and are user driven. To ensure that soft-
ware can be maintained, and that it is possible to build
upon the work of others, a combination of top-down
design with bottom-up development practices is often
needed (this is referred to as 'middle-out'). With 'mid-
dle-out' systems, top-down models are present, but are
not tightly bound to the individual data stores. Mid-
dle-out solutions generally work through either the
use of high levels of abstraction which can be easily
used by 'bottom-up' developers (e.g. relationships, life
cycle, identity services), or by allowing for formalised
descriptions of data and tools to be decoupled from
the implementation (e.g. BioMoby [17]).

4. Adoption and adaptation of technologies is better than 
"reinventing the wheel"

The risk with any research lead computing project is
that the novelty (or originality) of the software can
become more important than the production of inno-
vative functionality required to meet the demands of
science. By focusing on innovating through using and
extending existing solutions, the best use of the avail-
able computing technologies can be made. In the past
a number of high profile "omics" integration projects
have initially ignored the current mainstream software
architecture and standardisation efforts. Within a few
years these larger projects (e.g. caBIG from NIH,
myGRID from the UK eScience initiative) have aligned
themselves back with the mainstream. An example of
such adoption is the migration to standard technolo-
gies such as Web Services and Hibernate by later ver-
sions of the caCORE infrastructure. The reason for this
realignment is that these large scale projects have
found themselves attempting to implement solutions
which are clones of already existing well maintained
generic systems. These projects have gone on to inno-
vate, but they have done so by building on top of exist-
ing standards and solutions. When building systems it
is essential to reuse the best tools from other applica-
tion areas as this ensures a high return on investment.
This high return results directly from not continually
developing de novo solutions, which is a waste of
resources and funding, and typically leads to a sub
Page 5 of 15
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:295 http://www.biomedcentral.com/1471-2105/9/295
standard and non maintained solution. By using and
expanding available computing technologies, the
community can also gain an understanding as to their
limitations and what is required to ensure that they
can become more appropriate for research.

These axioms led us to develop the solution described in
the next section, which: is based on distributed docu-
ments, allows for a high level of interoperability and mul-
tiple integration mechanisms; uses third party
components, so that there is a high level of standardisa-
tion and the development costs are kept low; and does not
impose a rigid highly formal software structure, thus
allowing the scientists to keep the flexibility they required
to undertake research.

Distributed Architecture
The I3 is a modular, service-oriented, research enterprise
architecture which is capable of integrating emerging tech-
nologies (see Figure 2). This enterprise architecture is
designed for interoperability and extensibility, and uses
the facets of both 'top-down' and 'bottom-up' design (i.e.
middle-out). In I3 developers can use their own evolving
data models (bottom-up). However, formally defined
domain specific data models and services (top-down) are
provided through a number of services and formal defini-
tions.

This architecture is designed to be flexible, interoperable
and light weight, while enabling the rapid development of
new solutions and integration of new technologies.

Overview of I3 architectureFigure 2
Overview of I3 architecture. The system is loosely coupled and identity driven, so that services and data are dynamically 
discovered. There are two sides to the architecture: data access and data analysis. Data access uses an identity system for map-
ping data items to each other and to their metadata. Data analysis is based around Web Services, with descriptions of the serv-
ices being stored in a registry service, so that resources can be reasoned over and discovered at run time.
Page 6 of 15
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:295 http://www.biomedcentral.com/1471-2105/9/295
The solution discussed in this paper uses two approaches
for providing the desired middle-out functionality:

• A central registry is used to define the functionality
of distributed data analysis services. The data analysis
architecture is based around Web Services, with an
ontology describing the Web Service being stored in a
registry service, so that resources can be reasoned over
and discovered at run time. A central registry service is
used to store information about a set of individual
services, including: data about the functionality of the
service; and the group which offers the services. This
means that the formal top-down descriptions are
detached from the underlying bottom-up services.
These descriptions are standardised through the use of
a taxonomy, which describes the analysis methods
and the data that the registered services provide. This
"separation of concerns" means that the services can
be written easily and the definitions can be updated
independently of the individual services. Such
approaches do have limitations in terms of complexity
of data/algorithms that can be described, and do
require good coordination to function. A number of
alternative specifications which follow this pattern
have been proposed [17].

• A unifying identity based system is used for data
access. The data access uses URNs, which are encoded
as Life Science Identifiers (LSIDs) [18], to provide an
identity system for mapping data items to each other
and to their RDF defined metadata (relationships
between data items are also encoded using LSIDs).
This strong unifying identity system is used to link low
level data-oriented bottom-up services into a struc-
tured top-down infrastructure. The LSID identity sys-
tem has the advantage of being namespace based, so
allowing for the integration of a number of independ-
ent identity schemes. With a unified identity scheme
each item can be referenced, and so structure can be
imposed through the use of either: additional services
(e.g. relationship services to provide information
about links between items); the use of a project system
(e.g. to store information about collections of items
and annotations); or through the association of meta-
data as structured information (e.g. RDF). A number
of alternative ID schemes are also available (e.g. UUID
based, or PURLs).

Alternative middle-out solutions are becoming available.
In particular, the semantic web (Web 3.0) provides a
means to develop middle-out solutions, with each service
being closely coupled with a formalised description. The
semantic web offers a range of technologies which are use-
ful (e.g. OWL for definitions and SPARQL for access/que-
rying), although this work is still ongoing. The advantage

of the Web 3.0 approach is that data and semantics can be
served out using the same mechanism.

The I3 does not directly impose a structured data model on
clients, the system uses a standardised ID mechanism cou-
pled with the use of 'meta models' and service ontologies.
This means that to integrate new data sources "proxy com-
ponents" must be constructed which can provide map-
pings between underlying domain specific identities and
the universal identity system. In this way, all data items
(and their associated metadata) are uniquely identifiable
and can be directly retrievable. To ensure a high level of
interoperability, the integrated tools are made available
through SOAP based Web Services. All the tools and data
sources are registered with a central registry system, so that
they can be discovered at runtime.

The key features of the system are:

• Interoperable
The system is designed to be interoperable between
the target programming environments (e.g. Java,
Ruby, Perl and C#). Interoperability tests were devel-
oped for each of these languages, and the services
within the system adhere to a subset of the WSDL1.1
document/literal standard. These provide a collection
of standards for making remote method calls to
retrieve and analyse information. In brief, the salient
Web Service related technologies are: SOAP which
provides the means for transporting documents to and
from a Web Service; the WSDL which defines the inter-
face for the Web Service; and the UDDI registry which
stores information about the location and features of
the Web Service. These technologies have undergone a
number of evolutions, and with the adoption of the
WS-I basic profile there is now true interoperability
between Web Services. The use of standard literal docu-
ments coupled with a well defined interface (e.g. SOAP
1.2 with WSDL1.1+) means that clients and servers
from the major languages can now interoperate in a
stateless manner. The WS-* standards are a move
towards a level of interoperability which will provide
the features that are necessary to support a true enter-
prise application. By providing a high level of interop-
erability, researchers can develop algorithms in the
way they prefer.

• Rapid Application Development
An identified problem with SOAs is that their lack of
formalisation means that their adoption within an
organisation is problematic. The problems that arise
are due to the fact that people can use the services
without having to integrate their code. This means that
widespread adoption of the architecture requires polit-
ical persuasion, as well as technical argument. To
Page 7 of 15
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:295 http://www.biomedcentral.com/1471-2105/9/295
encourage adoption rapid application development
(RAD) is needed. RAD requires both rapid integration
of services by clients and rapid deployment of services
into the architecture. The architecture supports rapid
deployment of services by: the use of 3rd party code for
the generation of LSID services and development of
Java based Web Services from skeleton code (using
Axis 2 from Apache); and the rapid development of R-
based Web Services (using a purpose built Ruby proxy
tool which allows for the semi-automatic writing of
marshalling code and WSDL definitions). Rapid inte-
gration for the client is supported as developers only
need to know how to access their data (through auto-
matically generated WSDL defined stubs) and are not
required to adhere to a pre-specified object model.

• Non-intrusive
The system is designed to be non-intrusive, so that dif-
ferent groups can use their own object models and
data formats. As there is no overriding object model,
developers can integrate with the architecture in a
post-hoc manner. Fundamental to such non-intrusive
development is the use of a hierarchical identity sys-
tem, which can be used in the 'bottom-up' style of
SOAs that arise within the research enterprise. By
using such an identity system, each group can develop
their own sets of identity assignment and resolution
services, which can be integrated with external
resources. We have used the hierarchical naming sys-
tem LSIDs, which provide a unique ID system based
on URNs, where a unique identifier is sent to a server
which dynamically resolves it to a data document and
metadata. The metadata is encoded as Resource
Description Framework (RDF) documents. As the
identifiers themselves are resolved, the client can
always drill down to the experiment information with-
out having to conform to a specific object model or
data format.

• Extensibility and Maintenance
Wherever possible we have used common data and
computing standards. This means that we benefit from
using the best of 3rd party applications (e.g. jUDDI,
Apache SOAP, LSID stacks, JCR, common ontologies).
Such use of 3rd party tools means that both the devel-
opment and maintenance costs are considerably less
than with de novo development. The system is
designed to be dynamically extensible, so that new
services can be integrated using standard protocols
and tools.

• Dynamic Discovery
Central to the system is a registry service, which can be
reasoned over to discover the required service(s) at run
time. While Semantic Web technologies are not yet

mainstream, aspects of their behaviour can still be
used within any distributed environment. We have
defined ontologies to describe both the data and the
services that produce them. The service ontology is
three-faceted, and describes different aspects of the
services: an administrative ontology is used to define
behaviour associated with maintenance and version-
ing of the service; a functional ontology is used to pro-
vide a high level description of the group who control
the service and the function to which it is applied; and
a descriptive ontology allows for the development of
textual tags. The service description is stored in the reg-
istry, so that it is detached from the service itself.

We have used I3 to support a number of active research
areas at the ISB, including genomics, microfluidics and
imaging. An illustrative scientific application which has
been built using this architecture is given in the example
high throughput imaging section below. Further information
about technologies and usage are given on the associated
web site [19].

Example: High throughput imaging
We have applied the infrastructure in a number of core
areas at the ISB. In particular we have used the system to
develop: high throughput technology data repositories
(e.g. genomics, proteomics and imaging) and distributed
analysis systems (e.g. distributed 'R' language analysis
tools, imaging analysis pipelines, array annotation pipe-
lines).

An area where we have applied I3 is in the development of
software for the automatic analysis of high throughput
cellular imaging (see Figure 3). The imaging system con-
sists of a number of services, each of which is dynamically
locatable through our registry service. As these services are
designed to be orchestrated externally, they can be reused
within other distributed applications. The image data is
captured directly from the microscopes and specially built
drivers are used to integrate the equipment. Access to the
image repository service is through a SOAP publish inter-
face. When the data and associated metadata are pub-
lished they are passed through an extract-transform-load
(ETL) system into a data repository. The ETL system con-
sists of a staging area and a resource managed state
machine. Once the experiment information is available in
the image repository service it can be browsed and queried
using two different mechanisms: a SOAP/REST based
interface is available to provide querying and searching
functionality; and an LSID endpoint is available to pro-
vide direct retrieval of the data and associated RDF
encoded metadata. Analysis modules are written against
these query interfaces, and are run from within a specially
built analysis service (which is underpinned by GenePat-
tern). The system has been designed to scale to the level of
Page 8 of 15
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:295 http://www.biomedcentral.com/1471-2105/9/295
throughput required by the current generation of cell pop-
ulation based imaging experiments.

By integrating the repository with I3 we are able to provide
interoperable access and retrieval of the imaging informa-
tion. Such integration involved the development of a data
access component and the development of Web Services
for publishing and querying. Explicitly development of
the data access system required:

• Document Demarcation
The granularity of the information that is to be served
out, and the relationships between these items, must
be specified. In this case the documents mirror the

internal repository structure, which in turn mirrors the
OME [20] specification: project documents describe a
project (e.g. owner and description) and provides
URNs for related experiments; experiments describe
the conditions and equipment for individual micros-
copy runs, and provides URNs for the captured
images; and image (and image set) documents
describe the individual images, including extracted
features and image characteristics.

• Define the RDF metadata
The metadata associated with each data item must be
formalised. We use Dublin Core for describing rela-
tionships and basic document parts. Domain specific

Example usage of architecture for high throughput imagingFigure 3
Example usage of architecture for high throughput imaging. We have used I3 to provide a uniform mechanism for the 
capture of information from and the control of this instrumentation. For microscopy based imaging an end to end data capture, 
and control, system has been implemented. Image data is captured directly from the microscopes and specially built drivers are 
used to integrate the equipment. The data is captured from the device, parsed into an intermediate form and published via a 
SOAP interface to a data store. The data is held in a staging area in the data store until resources are available for processing, 
once processed the data can be queried via both LSIDs and SOAP.
Page 9 of 15
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:295 http://www.biomedcentral.com/1471-2105/9/295
ontologies are used to describe specific types of exper-
imental metadata.

• Build the endpoint
The LSID specification allows for FTP, HTTP and
SOAP endpoints. In this instance a SOAP endpoint
was used. This endpoint was constructed using the
freeware LSID stack. Alternatively the endpoint can be
constructed against the standardised WSDL and
deployed under Apache Tomcat.

• Registration
The namespace for the image repository, and the end-
point it should resolve to, were then registered with
the ISB central authority.

Image analysis was undertaken utilising GenePattern, and
so a query and publish interface were developed to allow
for individual analysis pipelines to pull information from
the repository, and for uploading of information. To
ensure the interoperability and integration with other
tools these were implemented as Web Services by:

• Publishing and Query interface definition
The WSDLs were developed following a specific subset
of the document/literal WSDL 1.1 specification. This
was done to ensure interoperability with our main cli-
ent platforms. The services themselves were built using
Apache Axis, and deployed under Apache Tomcat.

• Registration
The services were registered with the central service
registry, so that they could dynamically discovered
This involved adding information about the end-
points, administrative information (including version
and group information), and information about the
type of data/area within which the services function.

Shortcomings of I3
All middle-out solutions have limitations, as they attempt
to overlay structure on ad-hoc and unstructured services.
Generally middle-out solutions sacrifice richness of func-
tionality to provide flexible systems. The requirement for
interoperability and the reliance on standardised solu-
tions result in a number of disadvantages with the adop-
tion of the architecture discussed in this paper. The major
drawbacks to such a loosely coupled middle-out solution
are:

• It is Stateless
The main mechanisms for associating state informa-
tion, through external service(s) or use of a current
thread mapping system, are not applicable to the pro-
tocol independent document based interoperability
mechanism used within our system. As the method

calls are inherently stateless, custom engineering or a
stateful specification (e.g. session management calls)
are required to introduce state within the system. With
the convergence of the relevant standard implementa-
tions (e.g. WS-RF family) this problem can be
addressed, although true interoperability will require
further maturation of this family of technologies.

• Security is single logon
The system relies on the underlying protocol to pro-
vide security (e.g. SSL session based), which means
that fine level security based on an access control list
(ACL), or similar, is not available. As with state behav-
iour, there are a number of standards that will provide
this functionality in the future, but no truly interoper-
able implementations are currently available.

• Concurrency and Transactional behaviour are not supported
There is no simple mechanism to support resource
locking or leasing. This lack of distributed transaction
(e.g. two phase) behaviour will cause problems with
multi-step analyses, typically through the occurrence
of lost updates. Again, while this problem arises due to
the lack of current thread identity or explicit token
transference, there are solutions based on either cus-
tom engineering or arising standards efforts.

• Not process oriented
Top-down defined behaviour, typically in the form of
workflows, is an essential part of scientific analysis.
Such process-oriented architectures generally require
top-down design, as failsafe behaviour is generally
essential. While the architecture does not directly sup-
port this type of processing, workflow systems could
be overlaid on the services to provide process-oriented
views (e.g. through BPEL scripts). While such scripting
will allow for distributed processing, there is still a dis-
advantage with using the architecture for high demand
large scale processing, where the most efficient solu-
tion is to move the analysis to the data (and not vice-
versa).

While none of these disadvantages are showstoppers, it is
important to recognise that such ad-hoc service oriented
architectures have limitations. These limitations can be
overcome, but they require custom engineering which is
strongly dependent on the individual enterprise.

Discussion
It is no surprise that the evolution of enterprise software
for the life sciences closely follows technological and
methodological trends. There is an implicit understand-
ing that there exists a commonality between all enterprise
systems, in terms of the underlying design. It is assumed
that information and processes are the same no matter
Page 10 of 15
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:295 http://www.biomedcentral.com/1471-2105/9/295
what the domain. Unfortunately, this perceived common-
ality is a fallacy when applied to the life sciences. Software
is only part of the solution and the way in which people
work and interact is equally important and cannot always
be captured using simplistic requirements gathering
methodologies. In complex computing endeavours, the
social demands go beyond those usually considered in
more traditional "factory software" design and develop-
ment.

There is no such thing as the quintessential scientific
research project, as every one is unique. These differences
arise as each investigator and investigation studies the
unknown, which means that the rationalization, which is
typically needed for the design of expedient software util-
ities, is missing. However, it is possible to develop a level
of rationalization about such studies using abstractions
which describe different facets of the data and process
(e.g. data can be captured, equipment can be controlled,
content can be managed and analyses can be undertaken).
The majority of "off the shelf" scientific information inte-
gration systems are generally targeted towards the end
results of research, rather than aiding in the progression of
scientific understanding. To support the needs of research
driven science, architectures need to be provided which
can be adapted to new usage and have a low maintenance
cost. This flexibility requires working at a level of abstrac-
tion that is atypical for most software projects. To build
systems which others can readily use we need to focus on
the fundamentals of content and identity, rather than
solely attempting to model biological entities. Fortu-
nately, there are a number of existing technologies which
can be used as the foundations for such endeavours (e.g.
content repositories, identity driven retrieval systems).

Some of the development effort in a research environ-
ment is for one-off applications, while other projects are
geared towards more general usage. With general usage
software, even if it is well written with good interfaces, the
chances of the code surviving much past the end of the
research funding is small. The problem is largely one of
adoption and usage; unless there is a demand for the code
and it can easily be adapted for new usage, it is impractical
for other groups to adopt it. This is not a new phenome-
non in software engineering [21]. That stated, there are
areas where general software utilities can be developed
and are needed:

• Design of cross-cutting services
We recognise that the need for a "systems biology
enterprise" is to develop an architecture that provides
tools for manipulating data, without necessarily
understanding all aspects of the contents. While infor-
mation is an abstract concept, it is possible to formal-
ise how we deal with it within the enterprise. This

formalisation, in a service oriented architecture, takes
the form of generic cross-cutting services which can be
used in a large number of varied applications. The
Object Management Group (OMG), and other stand-
ards bodies, have outlined the functionality of such
services, including: relationship service, which can
dynamically provide relations between documents; a
synonym service to find documents of terms that iden-
tify the same concept; a query service to search
through collections; a registry service to host informa-
tion about other services; and a lexical service to allow
for a common ontology to be used across different
applications. While implementations of these services
exist, few are generic or mature enough to be readily
available. We feel that the development and mainte-
nance of such horizontal services will be of benefit to
the systems biology community, and so a large pro-
portion of our future work will be in this area.

• Development of services to support top-down analysis
There will always be a need for structured top-down
formalised analysis of scientific information. To allow
for such an analysis, middle-out architectures, which
marry the benefits of bottom-up and top-down, are an
ideal solution. Such middle-out architectures can be
achieved through the use of structured documents, as
we have used in I3. Additionally, the adoption of tech-
nologies that will allow for the overlay of top-down
functionality on a standardised SOA can provide the
required functionality. In particular, the Business
Process Execution Language (BPEL) and associated
graphical tools offer an attractive and low cost mecha-
nism to provide a means for the rapid development of
top-down workflows.

• Dynamic data resolution systems
Dynamic discovery of information is essential in all
data driven domains. The use of formalised methods
to ensure the resolution of individual data items, and
relationships between these data items, is essential. As
systems biology is largely data driven, we advocate the
adoption of a dynamic hierarchical identity system
(e.g. URNs encoded as LSID or similar). A hierarchical
identity system allows each group, with an organisa-
tion, to use their own namespace and ensures that that
no matter what format the data is in, or the delivery
systems that is used, it is always possible to resolve
back to the original experimental results. We also use
structured documents (RDF) to describe metadata,
these can also be used to capture a wide range of rela-
tionship types. The modelling of these relationships
typically evolved past the traditional composition
(part of), aggregation (has a) and generalisation (is a)
relationships towards operational relationships which
support a richer semantics based on both our scientific
Page 11 of 15
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:295 http://www.biomedcentral.com/1471-2105/9/295
understanding (e.g. spatial, temporal and logical) and
the data provenance. Any data resolution system will
be expected to understand data provenance informa-
tion including: history information to allow for the
discovery of different versions of documents; view
information to allow for the discovery of context
dependent transformed documents; and query infor-
mation to allow for the dynamic discovery of related
documents. At present there are no readily available
implementations of an identity scheme that support
all the required functionality.

Conclusion
The coupling of rapid development (e.g. using mathemat-
ical scripting tools and functional languages) and rapid
deployment (e.g. through Web Services) means that it is
now relatively easy for disparate groups, both within the
enterprise or throughout the Internet, to share informa-
tion in an ad hoc manner. This trend is even more appar-
ent at the cutting edge of scientific research in systems
biology, where there is a continual requirement for the
introduction of new data sources, data analysis mecha-
nisms, and changes in project focus, which means that
formal design and data modelling are minimal. Within
the scientific community there exists a rich and varied user
base, some develop software and some require a reliable
analysis system. The development community ranges
both in terms of software experience and the languages
they use. This paper perpetuates the view that the success-
ful development of an architecture to support such
research requires a different strategy to that of mainstream
enterprise systems. The adoption of grid systems or Serv-
ice Oriented Architectures are only a first step towards the
next generation of enterprise systems that will be of use to
the scientific community. We feel that due to the rapidly
evolving requirements of biological research, when com-
pared to that of rigorous software development, the next
generation of software architectures will be required to
support bottom-up integration. This means that architec-
tures will have to work at a higher level of abstraction, so
that they can be used to integrate data and tools without
the need for costly reimplementation. The core of such
integration will be operations using a rich identity driven
data system coupled with domain specific descriptions.

The development of integration strategies for systems
biology is problematic due to both the nature of science
and the organisation of scientists. It is typical that the
means to which a specific technology will be used, and the
methods used to analyse the resulting data, is unknown at
software design time. Scientific understanding evolves,
and so too does the work that is undertaken. A software
architecture that is designed to aid in such endeavours has
to be designed to support such evolution, meaning that
traditional approaches to development can rarely be

applied. As we do not know how the data will be used or
analysed, a flexible solution, like the one discussed in this
paper, is needed. In the future, we can expect a growth in
the requirement for such unstructured development.
Thus, the supporting integration systems will need to pro-
vide for the flexible post-hoc integration of black box
components as a fundamental design principle.

Availability
Related downloads and documentation can be found at
the ISB informatics group page: http://www.systemsbiol
ogy.org/informatics

Abbreviations
BPEL. The business process execution language is a speci-
fication designed to support the high level orchestration
of web services. The heart of the BPEL specification is the
scripting language which defines how services and data
produced by them are linked together. This specification
is rich enough to allow for most workflows and defines
both how method invocations and data are linked and the
how web services should be coordinated (e.g. concur-
rency, choices, sequential operations). The specification
also defines extensions to the WSDL which can be used to
specify links between services (which can be discovered
dynamically through UDDI querying). A number of
implementations are available, including those that run
under JBOSS [22] and ODE from Apache [23]. Informa-
tion about the specification can be found at OASIS.

CORBA. The Common Object Request Broker Architec-
ture supports interoperability between distributed proc-
esses (applications). Central to the architecture is an ORB
(object request broker) which both marshals data and
controls compartmentalisation (to allow for invocation
on specific the threads etc) of between the different proc-
esses. The specification was defined by the OMG, and
ORBS are available for most platforms.

DAS. The Distributed Annotation System [24] defines a
protocol for the retrieval of annotations from genomes.
Requests are sent using http encoding which returns an
XML document. A number of clients and servers are avail-
able, and it is used in a number of large scale genome
projects (e.g. Ensembl).

DBMS. A database management system is the environ-
ment in which database instances exists. A DBMS provides
a unified framework which can be used to control the
physical (tablespaces), conceptual (logical schemas) and
external (views) of databases.

DCOM. Provides for a means to make distributed calls
between COM (Component Object Model) objects.
Thread compartmentalisation and marshalling (using low
Page 12 of 15
(page number not for citation purposes)

http://www.systemsbiology.org/informatics
http://www.systemsbiology.org/informatics


BMC Bioinformatics 2008, 9:295 http://www.biomedcentral.com/1471-2105/9/295
level XML interchange) is handled automatically. For
application developers this has largely been superseded
by .NET Remoting.

EJB. An Enterprise Java Bean (EJB) is a server side compo-
nent that lives inside an EJB Container. There are different
types of EJBs, and each has a different purpose: an entity
bean which serves as a data cache from an underlying data
store, this is used for transformation and data integration
logic; a session bean which is typically used to hold appli-
cation logic which communicates with information
stored within entity beans; a stateless session bean which
typically represent simple stateless logic and generally act
as end points for high level services; and a message bean
which is used to pass message between the other beans.
The EJB 3.0 standard (2006) represented a major change
as the complexities of developing EJBs was inhibitive for
most projects, so a simplified process of building EJBs was
outlined (through the use of detachment, dependency
injection and aspects). Full details are available from Sun
[25].

EJB Container. The EJB container controls the life cycle of
the bean, facilitates access to core services and manages
server-based resources. The services that are available
through a EJB Container provide: security management,
including method level and ACL; transaction manage-
ment; including 2 phase/distributed commits; life cycle
management, including pooling of bean instances and
swapping beans in/out (persisting) of memory for
resource management; naming/directory management,
typically through JNDI; persistence management; using
ORM tools such as hibernate; remote access management,
so that the bean can be accessed via RMI-IIOP/CORBA
and Web Services; and a number of utility services (e.g.
mailing, clustering, caching, monitoring). A widely used,
and free, container is JBOSS [26].

I3C. The I3C was a short lived commercially led organisa-
tion established to standardise aspects of life science
informatics. The organisation was led by Oracle, Sun and
IBM. The I3C did promote the use of LSIDs, which have
been adopted by the OMG.

IDL. The Interface Definition Language formalises the
remote interfaces that can be accessed through CORBA.
IDL has evolved considerably, with the advent of pass-by-
value and components (facets). A WSDL serves the same
type of purpose for Web Services.

JCR. The Java Content Repository is a specific Java Stand-
ard (JSR-170) for defining the interface to a content repos-
itory. A content repository is a flexible system that is
typically customised for a specific usage, when customised
it is referred to as a Content Management System (CMS).

A number of implementations are available, including
Jackrabbit which is licensed through Apache [27].

LSID. The Life Science Identifier standard [28] provides a
concrete definition and implementation of a URN. The
LSID specification outlines how the URN is resolved to
two locations (the data and the metadata) through the use
of "an authority". In this way the authority acts as a regis-
try. The documents that are retrieved are returned as
objects and an associated RDF data file which encodes the
metadata. The standard also encompasses many aspects of
using URNS, and includes specifications for associated
services (e.g. assignment). Details about the specification
and implementations are available [29].

LSR. The Life Science Research group of the OMG [4]
defines standard in the "vertical" life science domain. The
body have defined and adopted a number of standards.
These standards cover a wide range of areas (including
"sequence" and "literature").

MDA. A Model Driven Architecture is one where the
model underlying the system is defined in a language
independent way, and the corresponding services/classes
are automatically pushed out from that model. Typically
the model is defined in UML and them XMI is used to
automatically generate stubs/skeletons which can be used
to provide implementations of the model.

MIDL. The Microsoft Interface Definition Language serves
a similar purpose to IDL, but is generally based on speci-
fying the remote procedure call interface which is used
between COM components.

.NET Remoting. The .NET framework provides a mecha-
nism for making remote calls called Remoting. Remoting
includes many useful features for the development of dis-
tributed systems, these include: life cycle management, so
that distributed behaviour/GC and leasing can be control-
led; protocol support for binary socket based communica-
tion and other streams; and specification of the behaviour
of a remote service/object (e.g. singleton).

ODBC/OLEDB. The Open Database Base Connectivity is a
definition of the interface presented by a DBMS. The
ODBC specification is well established and bridges with
other technologies (including JDBC). The OLEDB is an
extension to the ODBC offer richer functionality.

OMG. The Object Management Group [30] is an open not
for profit standardisation body. The OMG have produced
a number of horizontal (e.g. Trader service, Naming serv-
ice, Event Service) and vertical (see LSR [4]) standards for
use with CORBA.
Page 13 of 15
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:295 http://www.biomedcentral.com/1471-2105/9/295
OWL. The Web Ontology Language is an RDF description
of an underlying data resource. The ontology describes the
data items produced through a web service as well as the
relationships between them. Details are available from
the W3C [31].

RDF. The Resource Description Framework is a W3C
(WWW consortium) standard for describing resources
available on the Web. RDF forms the basis of formalised
descriptions of services (e.g. OWL) and can be used in
conjunction with extensible metadata descriptions (e.g.
Dublin core [32]). RDF consists of a series of connected
triples, so that complex representations can be con-
structed as a graph. Details are available from the W3C
[33].

REST. Representational State Transfer (REST) [34] can be
considered an alternative to SOAP, although it is consid-
erably easier to implement. REST uses pre-existing tech-
nologies as the basis for the protocol (e.g. "the web is the
platform"). There exists some confusion about what rep-
resents a Restful service, rather than just an HTTP encoded
request for an XML document. True REST is based upon
the verb/noun/type based calls, where you apply an oper-
ation (verb e.g. POST, GET, PUT and DELETE) to a URI
(noun) with a certain view (type).

RMI. Remote Method Innovation is a Java-to-Java solu-
tion for communication between distributed Java threads/
applications. RMI uses a number of abstraction layers
(remote reference layer/RRL and transport layer), this has
a number of advantages including the fact that different
underlying protocols can be used to actually provide the
communication (e.g. IIOP). Marshalling is done through
serialization, leasing is available, and distributed GC is
supported. RMI is a convenient, but not interoperable,
protocol.

SOA. A Service Oriented Architecture is one which con-
sists of loosely coupled federated services. There is typi-
cally little linkage between these services, and they are
generally discovered dynamically using a registry system
or similar. SOAs have grown in popularity within many
enterprises, as they provide a practical mechanism for dis-
parate groups to share information/processes.

SOAP. SOAP is a protocol for making requests on remote
services to return structured data. It is designed to use a
any high level protocol that supports the sending of infor-
mation, and is primarily used with HTTP. Much like
CORBA, interoperability is the big draw of SOAP, and
(unlike CORBA) SOAP has the advantage of being simple
to develop and test. The original stateless nature of SOAP
limited it usage, however with the advent of WS-RF (and
other standards) SOAP is maturing into a general purpose

object protocol. More information about SOAP specifica-
tions is available from the W3C [35].

SPARQL. The SPARQL Protocol and RDF Query Language
is designed to allow for the querying and retrieval of doc-
uments across multiple unstructured data stores. The
power of the system is the distributed RDF documents (or
other data stores) remain unchanged, but queries can be
run across them – and so it fits well with a "bottom-up"
approach. Such a unified approach to accessing informa-
tion is required to make the semantic web (Web 3.0) a
reality, and there do already exist some implementations
(e.g. Virtuoso [36]). More information about the query
specification is available from the W3C [37].

UDDI. Universal Description Discovery and Integration is
a WSDL (therefore interoperable) defined registry/dic-
tionary system. UDDI 2.0 is the currently used version,
and it supports the registration and querying of Web Serv-
ices using specific mappings. OASIS [38] have details of
the different standards (version 2 and 3), and Apache
have jUDDI which is a 2.0 implementation [39].

URN. A Uniform Resource Name is a type of URI (Uni-
form Resource Identifier). It is the logical counterpart to a
URL, in that it provides the name of a resource rather than
the exact location of a resource. A number of URN imple-
mentations are available, including LSIDs.

Web Services. A Web Service is a server which performs
request/response operations and (generally) works using
documents. A request is sent (either as a well formed doc-
ument or using http encoding), and a well formed docu-
ment is returned. The term Web Service originates from
the fact the web based protocols are generally used to pro-
vide the communications.

WS-*. The WS-* are a series of specifications for adding
functionality to SOAP. These extensions provide new
functionality such as security, messaging, binary object
attachment and state. These extensions generally involve
the addition of information to the SOAP message (within
the envelope). State information can be maintained
between SOAP calls through the use of resource frame-
works (e.g. WS-RF). OASIS [38] keep a large number of
specifications.

WSDL. The Web Service Description Language provides a
means to specify the interface exposed by a SOAP Web
Service. The WSDL document can be automatically
retrieved, and tools can be use to generate convenience
classes for specific languages, so that no XML parsing code
needs to be written by the developer. When writing a
WSDL a number of standards (e.g. WS-I) are available to
ensure interoperability, typically though the use of pro-
Page 14 of 15
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:295 http://www.biomedcentral.com/1471-2105/9/295
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

files with literal/document "styles". The W3C have details
of the standard [40].

Authors' contributions
JB designed the system, managed the development team,
and drafted the manuscript. SK worked on the high
throughput imaging system, worked on key services and
contributed to the manuscript. CC contributed to the
manuscript, provided implementations, and standardised
the metadata for the services. IS instigated and guided the
project. All authors read and approved the manuscript.

Acknowledgements
The project described was supported by Grant Number P50GMO76547 
from the National Institute of General Medical Sciences. The content is 
solely the responsibility of the authors and does not necessarily represent 
the official views of the NIMGS or the NIH.

The authors would like to acknowledge Jim Gellman, Hector Rovira, Dan 
Tenenbaum, Eric Walkingshaw and Tom Collins, each of whom have 
worked extensively with the architecture and provided invaluable advice.

References
1. Etzold TUA, Argos P: SRS: information retrieval system for

molecular biology data banks.  Methods Enzymol 1998,
266:114-128.

2. Birney E: An Overview of Ensembl.  Genome Research 2004,
14(5):925-928.

3. Haas LSP, Kodali P, Kotlar E, Rice J, Swope W: DiscoveryLink: A
system for integrated access to life sciences data sources.
IBM systems Journal 2001, 40(2):489-511.

4. LSR OMG   [http://www.omg.org/lsr]
5. caBIO   [http://cabio.nci.nih.gov/]
6. Senger MRP, Oinn T: SOAPLab – a unified Sesame door to

analysis tools.  UK e-Science All Hands Meeting Nottingham, UK 2003.
7. Reich MLT, Gould J, Lerner J, Tamayo P, Mesirov J: GenePattern

2.0.  Nat Genet 2006, 38:500-501.
8. Marzolf BDE, Moss P, Campbell D, Johnson M, Galitski T: SBEAMS-

Microarray: database software supporting genomic expres-
sion analyses for systems biology.  BMC Bioinformatics 2006,
7:286-291.

9. LexGrid   [http://informatics.mayo.edu/LexGrid/]
10. Goble C: Putting Semantics into e-Science and Grids in Proc

E-Science.  1st IEEE Intl Conf on e-Science and Grid Technologies. Mel-
bourne, Australia 2005.

11. Oinn TAM, Ferris J, Marvin D, Senger M, Greenwood M, Carver T,
Glover K, Pocock M, Wipat A, Li P: Taverna: a tool for the com-
position and enactment of bioinformatics workflows.  Bioinfor-
matics 2004, 20(17):3045-3054.

12. Cao J, et al.: GridFlow: Workflow Management for Grid Com-
puting.  3rd Intl Symposium on Cluster Computing and the Grid. IEEE
2003.

13. Amin K, et al.: GridAnt: A Client-Controllable Grid Workflow
system.  In #7th Intl Conf on System Sciences IEEE: Hawaii; 2004. 

14. Keller A, et al.: Empirical statistical model to estimate the
accuracy of peptide identifications made by MS/MS and data-
base search.  Anal Chem 2002, 74:5383-5392.

15. Scaffidi CSM, Myers B: Estimating the Numbers of End Users
and End User Programmers.  Proceedings of 2005 IEEE Symposium
on Visual Languages and Human-Centric Computing Dallas, Texas 2005.

16. Quackenbush J, et al.: Top-down standards will not serve sys-
tems biology.  Nature 2006, 440(7080):24.

17. Wilkinson M, Links M: BioMOBY: An open source biological
web services proposal.  Briefings in Bioinformatics 2002,
3(4):331-341.

18. Clark T, Martin S, Liefeld T: Globally distributed object identifi-
cation for biological knowledgebases.  Brief Bioinform 2004,
5(1):59-70.

19. ISB Informatics   [http://www.systemsbiology.org/informatics]

20. Goldberg I, et al.: The Open Microscopy Environment (OME)
Data Model and XML File: Open Tools for Informatics and
Quantitative Analysis in Biological Imaging.  Genome Biol 2005,
6:.

21. Winograd T: Beyond programming languages.  Commun ACM
1979, 22:391-401.

22. jBPM JBOSS   [http://www.jboss.com/products/jbpm]
23. ODE Apache   [http://ode.apache.org]
24. BIODAS   [http://www.biodas.org]
25. EJB Sun   [http://java.sun.com/products/ejb]
26. JBOSS   [http://www.jboss.org]
27. Jackrabbit Apache   [http://jackrabbit.apache.org]
28. LSID OMG   [http://www.omg.org/cgi-bin/doc?dtc/04-05-01]
29. LSID Implementation   [http://lsids.sourceforge.net]
30. OMG   [http://www.omg.org]
31. OWL W3C   [http://www.w3.org/TR/owl-features]
32. DublinCore   [http://dublincore.org/documents/dces]
33. RDF   [http://www.w3.org/RDF]
34. Fielding R, Taylor R: Principled Design of the Modern Web

Architecture.  ACM Transactions on Internet Technology 2002,
2(2):115-150.

35. SOAP W3C   [http://www.w3.org/TR/soap]
36. Virtuoso   [http://www.openlinksw.com]
37. SPARQL W3C   [http://www.w3.org/TR/rdf-sparql-query]
38. OASIS   [http://www.oasis-open.org]
39. jUDDI Apache   [http://ws.apache.org/juddi]
40. WSDL W3C   [http://www.w3.org/TR/wsdl]
Page 15 of 15
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15078858
http://www.omg.org/lsr
http://cabio.nci.nih.gov/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16642009
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16642009
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16756676
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16756676
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16756676
http://informatics.mayo.edu/LexGrid/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15201187
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15201187
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12403597
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12403597
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12403597
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16511469
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16511469
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12511062
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12511062
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15153306
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15153306
http://www.systemsbiology.org/informatics
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15892875
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15892875
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15892875
http://www.jboss.com/products/jbpm
http://ode.apache.org
http://www.biodas.org
http://java.sun.com/products/ejb
http://www.jboss.org
http://jackrabbit.apache.org
http://www.omg.org/cgi-bin/doc?dtc/04-05-01
http://lsids.sourceforge.net
http://www.omg.org
http://www.w3.org/TR/owl-features
http://dublincore.org/documents/dces
http://www.w3.org/RDF
http://www.w3.org/TR/soap
http://www.openlinksw.com
http://www.w3.org/TR/rdf-sparql-query
http://www.oasis-open.org
http://ws.apache.org/juddi
http://www.w3.org/TR/wsdl
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	1. Data Centric
	2. Object Centric
	3. Document Centric

	Results
	. Non-intrusive means of integration
	. Tool and language interoperability
	. Flexible and rapid development
	Design Rationale
	1. Ad-hoc development must be supported
	2. Documents, not objects, are more useful to scientists
	3. Scientific enterprises operate better through a bottom-up service oriented, rather than top-down application oriented, architecture
	4. Adoption and adaptation of technologies is better than "reinventing the wheel"

	Distributed Architecture
	. Interoperable
	. Rapid Application Development
	. Non-intrusive
	. Extensibility and Maintenance
	. Dynamic Discovery

	Example: High throughput imaging
	. Document Demarcation
	. Define the RDF metadata
	. Build the endpoint
	. Registration
	. Publishing and Query interface definition
	. Registration

	Shortcomings of I3
	. It is Stateless
	. Security is single logon
	. Concurrency and Transactional behaviour are not supported
	. Not process oriented


	Discussion
	. Design of cross-cutting services
	. Development of services to support top-down analysis
	. Dynamic data resolution systems

	Conclusion
	Availability
	Abbreviations
	Authors' contributions
	Acknowledgements
	References

