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Abstract

Background: Growing interest on biological pathways has called for new statistical methods for
modeling and testing a genetic pathway effect on a health outcome. The fact that genes within a
pathway tend to interact with each other and relate to the outcome in a complicated way makes
nonparametric methods more desirable. The kernel machine method provides a convenient,
powerful and unified method for multi-dimensional parametric and nonparametric modeling of the
pathway effect.

Results: In this paper we propose a logistic kernel machine regression model for binary outcomes.
This model relates the disease risk to covariates parametrically, and to genes within a genetic
pathway parametrically or nonparametrically using kernel machines. The nonparametric genetic
pathway effect allows for possible interactions among the genes within the same pathway and a
complicated relationship of the genetic pathway and the outcome. We show that kernel machine
estimation of the model components can be formulated using a logistic mixed model. Estimation
hence can proceed within a mixed model framework using standard statistical software. A score
test based on a Gaussian process approximation is developed to test for the genetic pathway effect.
The methods are illustrated using a prostate cancer data set and evaluated using simulations. An
extension to continuous and discrete outcomes using generalized kernel machine models and its
connection with generalized linear mixed models is discussed.

Conclusion: Logistic kernel machine regression and its extension generalized kernel machine
regression provide a novel and flexible statistical tool for modeling pathway effects on discrete and
continuous outcomes. Their close connection to mixed models and attractive performance make
them have promising wide applications in bioinformatics and other biomedical areas.

Background of the genetic aspect of various diseases. Knowledge-based
The rapid progress in gene expression array technology in ~ approaches, such as gene set or pathway analysis, have
the past decade has greatly facilitated our understanding  become increasingly popular. In such gene sets/pathways,
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groups of genes act in concert to accomplish tasks related
to a cellular process and the resulting genetic pathway
effects may manifest themselves through phenotypic
changes, such as occurrence of disease. Thus it is poten-
tially more meaningful to study the overall effect of a
group of genes rather than a single gene, as single-gene
analysis may miss important effects on pathways and dif-
ficult to reproduce from studies to studies [1]. Researchers
have made significant progress in identifying metabolic or
signaling pathways based on expression array data [2,3].
Meanwhile, new tools for identification of pathways, such
as GenMAPP [4], Pathway Processor [5], MAPPFinder [6],
have made pathway data more widely available. However,
It is a challenging task to model the pathway data and test
for a potentially complex pathway effect on a disease out-
come.

One way to model pathway data is through the linear
model approach, where the pathway effect is represented
by a linear combination of individual gene effects. This
approach has several limitations. Activities of genes
within a pathway are often complicated, thus a linear
model is often insufficient to capture the relationship
between these genes. Furthermore, genes within a path-
way tend to interact with each other. Such interactions are
not taken into account by the linear model approach.

In this paper we propose a nonparametric approach, the
kernel machine regression, to model a pathway effect. The
kernel machine method, with the support vector machine
(SVM) as a most popular example, has emerged in the last
decade as a powerful machine learning technique in high-
dimensional settings [7,8]. This method provides a flexi-
ble way to model linear and nonlinear effects of variables
and gene-gene interactions, unifies the model building
procedure in both one- and multi-dimensional settings,
and shows attractive performance compared to other non-
parametric methods such as splines.

Liu et al. [9] proposed a kernel machine-based regression
model for continuous outcomes. In this paper, we pro-
pose a logistic kernel machine regression model for binary
outcomes, where covariate effects are modeled parametri-
cally and the genetic pathway effect is modeled paramet-
rically or nonparametrically using the kernel machine
method. A main contribution of this paper is to establish
a connection between logistic kernel machine regression
and the logistic mixed model. We show that the kernel
machine estimator of the genetic pathway effect can be
obtained from the estimator of the random effects in the
corresponding logistic mixed model. This connection pro-
vides a convenient vehicle to connect the powerful kernel
machine method with the popular mixed model method
in the statistical literature. This mixed model connection
also provides an unified framework for statistical infer-
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ence for model parameters, including the regression coef-
ficients, the nonparametric genetic pathway function, and
the regularization and kernel parameters. Based on the
proposed logistic kernel machine regression model, we
develop a new test for the nonlinear pathway effect on dis-
ease risk. An appealing feature of the proposed test is that
it performs well without the need to correctly specify the
functional form of the effects of each gene or their interac-
tions. This feature has a significant practical implication
when analyzing genetic pathway data, as the true relation-
ship between the pathway and the disease outcome is
often unknown. We extend the results to generalized ker-
nel machine regression for a class of continuous and dis-
crete outcomes and discuss its connection with
generalized linear mixed models [10].

Recently, Wei and Li [11] proposed a nonparametric path-
way-based regression (NPR) to model pathway data. NPR
is a pathway-based gradient boosting procedure, where
the base learner is usually a regression or classification
tree. It provides a flexible approach in modeling pathways
and interactions among genes within a pathway.
Michalowski et al. [12] proposed a Bayesian Belief Net-
work approach for pathway data. Neither method is like-
lihood-based. Thus parameter estimation and inference
cannot be casted within a unified likelihood framework.
It is hence difficult to estimate and quantify the overall
pathway effect on disease risk and assess its statistical
uncertainty. Secondly, a primary interest in this paper is to
test for the statistical significance of the overall pathway
effect on the risk of a disease. Both NPR and Bayesian
belief network do not provide such a statistical test for the
pathway effect. For example, NPR uses an importance
score to rank the relative importance of each pathway. It
lacks formal inferential procedure for assessing the statis-
tical significance of a pathway. Further, when considering
a single pathway, the importance score loses its meaning
in assessing the importance of a pathway. Our method, on
the other hand, is based on penalized likelihood, and esti-
mation and inference can be conducted in a systematic
manner within the likelihood framework. We also pro-
pose a formal statistical test for the significance of a path-
way effect on the risk of a disease.

Goeman et al. [13] proposed a linear mixed model to
relate the pathway effect with a continuous outcome. They
modeled the pathway effect using a linear function with
each gene entering into the model as a regressor. They
assumed the regression coefficients of the gene as random
from a common distribution with mean 0 and an
unknown variance. The pathway effect can then be tested
through a variance component test for random effects.
Our approach is different from theirs in the following
aspects. First, we model the pathway effect by allowing for
a nonparametric model rather than a parametric one. As
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we commented earlier, the highly complicated nature of
activities of genes within a pathway makes the linear
model assumption untenable. Secondly, the kernel func-
tion used in kernel machine regression usually contains
unknown tuning parameters. The parameter is present
under the alternative hypothesis but disappears under
null hypothesis. This makes tests as proposed in [13,14]
not applicable. Our proposed test, on the other hand,
works quite well under this scenario. Third, Goeman et al.
[14] extended their linear model results to discrete out-
comes using basis functions. A key advantage of the kernel
machine approach over this basis approach for modeling
multi-gene effects is that one does not need to specify
bases explicitly, which is often difficult for high-dimen-
sional data especially when interactions are modeled.

Results

Analysis of prostate cancer data

In this section, we apply the proposed logistic kernel
machine regression model (3) as described in the Meth-
ods section to the analysis of a prostate cancer data set.
The data came from the Michigan prostate cancer study
[15]. This study involved 81 patients with 22 diagnosed as
non-cancerous and 59 diagnosed with local or advanced
prostate cancer. Besides the clinical and demographic cov-
ariates such as age, cDNA microarray gene expressions
were also available for each patient. The early results of
Dhanasekaran et al. [15] indicate that certain functional
genetic pathways seemed dys-regulated in prostate cancer
relative to non-cancerous tissues. We are interested in
studying how a genetic pathway is related to the prostate
cancer risk, controlling for the covariates. We focus in this
analysis on the cell growth pathway, which contains 5
genes. The pathway we describe was annotated by the
investigator (A. Chinnaiyan) and is simply used to illus-
trate the methodology. Of course, one could take the
pathways stored in commercial databases such as Ingenu-
ity Pathway Analysis (IPA) and use the proposed method-
ology based on those gene sets.

The outcome was the binary prostate cancer status and the
covariate includes age. Since the functional relationship
between the cell growth pathway and the prostate cancer
risk is unknown, the kernel machine method provides a
convenient and flexible framework for the evaluation of
the pathway effect on the prostate cancer risk. Specifically,
we consider the following semiparametric logistic model

logit(P(y = 1)) = B, + S,age + h(gene, ..., genes),
(1)

where h( -) is a nonparametric function of 5 genes within
the cell growth pathway. The detail of the estimation pro-
cedure is provided in the Methods section. In summary,
we fit this model using the kernel machine method via the
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logistic mixed model representation and using the Gaus-
sian kernel function in estimating h( - ). Under the mixed
model representation, we estimated (f, f;) and h(-)
using penalized quasi-likelihood (PQL), and estimated
the smoothing parameter 7and the Gaussian kernel scale
parameter p simultaneously by treating them as variance
components. The results are presented in Table 1.

The test for the cell growth pathway effect on the prostate
cancer status H,: h(z) = 0 vs H;:h(z) # 0 was conducted
using the proposed score test as described in the Methods
section. For the purpose of comparison, we also con-
ducted the global test proposed by Goeman et al. [13] that
assumed a linear pathway effect. Note that our test allows
a nonlinear pathway effect and gene-gene interactions.
Table 1 gives the p-values for both tests. The p-value of our
test suggests that cell growth pathway has a highly signifi-
cant effect on the disease status, while the test from Goe-
man et al. [13] indicates only marginal significance of the
growth pathway effect.

Simulation Study for the Parameter Estimates

We conducted a simulation study to evaluate the perform-
ance of the parameter estimates of the proposed logistic
kernel machine regression by using the logistic mixed
model formulation. We considered the following model

logit(P(y;= 1)) = x; + h(z;;, U, z), (2)

where the true regression coefficient § = 1. We consider
p =5 and set h(z,, .., z5) = 2{sin(z,) - z3 + z, exp(-z;) -

sin(z,) cos(z;) + z3 + sin(z,) cos(z,) + z2 + z3z5}. To

allow x;and (z;;, U, z;,) to be correlated, x; was generated
as x; = sin(z;;) + 2u;, where y;and z; (j = 1, U, p) follow
independent Uniform(-0.5, 0.5). The Gaussian kernel was
used throughout the simulation. All simulations ran 300
times. Settings 1, 2, and 3 correspond to sample size
n =100, 200, and 300, respectively.

The simulation results are shown in Table 2. Due to the
multi-dimensional nature of the variables z, it is difficult

to visualize the fitted curve h (z). We hence summarized

the goodness-of-fit of h (+) in the following way. For each
simulated data set, we regressed the true h on the fitted

value h, both evaluated at the design points. We then

empirically summarized the goodness-of-fit of fl( -) by
calculating the average intercepts, slopes and R2?'s
obtained from these regressions over the 300 simulations.
If the kernel machine method fits the nonparametric func-
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Table I: Analysis of prostate cancer data.

Covariate Estimate S.E. P-value
Intercept 0.9893 2.7552 0.7205
Age -0.0140 0.0425 0.7430
T 4.7362 3.6190
P 1.9093 0.6603

Score test for the genetic pathway effect Hy: h(z) = 0:

Test P-value
KM < 0.0001
GT 0.0661

Parameter estimates and score test of the logistic kernel machine
regression model for the genetic pathway effect applied to the
prostate cancer data. In the table, KM stands for Kernel machine
method using the Gaussian kernel, and GT for global test of Geoman
et al. [13] assuming linearity.

tion well, then we would expect the intercept to be close
to 0, the slope close to 1, and R2also close to 1.

Our results show that even when the sample size is as low
as 100, estimation of the regression coefficient and non-
parametric function only has small bias. When the kernel
parameter p is estimated, these biases tend to be small
compared with those when p is held fixed. With the
increase of sample size the estimates of f and h become
closer to the true values, especially when p is estimated,
while there are still some bias when p is fixed at values far-
ther away from the estimated one. Table 3 compares the
estimated standard errors of ﬁ with the empirical stand-
ard errors. Our results show that they agree to each other
well when p is estimated.

Table 2: Simulation results on estimation.

http://www.biomedcentral.com/1471-2105/9/292

Simulation Study of the Score Test for the Pathway Effect
We next conducted a simulation study to evaluate the per-
formance of the proposed variance component score test
for the pathway effect Hy: h(-) =0 vs H: h(-) #0. In order
to compare the performance of our test with the linearity-
based global test proposed by Goeman et al. [13], both
tests were applied to each simulated data set. Nonlinear
and linear functions of h(z) were both considered. For the
nonlinear pathway effect, the true model is logit(y) = x
+ah(z), where h(z) = 2(z, - z,)? + 2,25 + 3 sin(2z;)z, + z2 +
2 cos(z4)zs. For the linear pathway effect, the true model
is logit(y) = x + ah(z), where h(z) = 2z, + 3z,+z5 + 22,+zs.
All z's were generated from the standard normal distribu-
tion, and a = 0, 0.2, 0.4, 0.6, 0.8. To allow x and (z;;, U,
z;,) to be correlated, x was generated as x = z,+e/2 with e
being independent of z, and following N (0, 1). We stud-
ied the size of the test by generating data under a = 0, and
studied the power by increasing a. The sample size was
100. For the size calculations, the number of simulations
was 2000; whereas for the power calculations, the number
of runs was 1000. Based on the discussions in Section
"Test for the genetic Pathway Effect”, the bound of p is set
up by interval

[min;,; 215:1 (za—21)* /5 lomaxi;tjz;j:l (za—23)°],
and the interval is divided by 500 equally spaced grid
points. All simulations were conducted using R 2.5.0, and
the package "globaltest" v4.6.0 was used for the test pro-
posed by Goeman et al. [13] as a comparison.

Table 4 reports the empirical size (a = 0) and power
(a > 0) of the variance component score test for the path-

Model Parameter Estimates Regof hon h
setting true # z used # z n B P Intercept Slope R2
I 5 5 100 I.10 71.509(estimated) -0.06 1.06 0.82
.14 1.00 (fixed) -0.28 1.48 0.79
1.08 20.00 (fixed) -0.08 I.15 0.84
2 5 5 200 0.99 90.03 (estimated) 0.0l 1.04 0.87
1.05 1.00 (fixed) -0.01 1.13 0.84
0.96 20.00 (fixed) -0.00 1.07 0.87
3 5 5 300 0.98 I11.76 (estimated) -0.01 1.04 0.90
1.03 1.00 (fixed) -0.02 1.10 0.87
0.97 20.00 (fixed) -0.01 1.06 0.90

This table shows the simulation results of estimated regression coefficients fand the nonparametric function h(-) in model logit(7) = x+ h(z) for

binary outcomes based on 300 runs. True = I. In the table, 9is the average of the estimated /5 from 300 simulations.
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Table 4: Simulation results on score test.

Size Power
h(z) Method a=0 a=02 a=04 a=08
Nonlinear KM 0.054 0.142 0.896 1.000
GT 0.068 0.098 0.110 0.156
Linear KM 0.055 0.265 0.896 1.000
GT 0.065 0.302 0.900 1.000

This table shows the simulation study results of standard error

estimates of 3 in model logit(7) = x/3+ h(z) for binary outcomes

based on 300 simulations.

way effect. When the true function h(z) is non-linear in z,
the results show that the size of our test was very close to
the nominal value 0.05, while the size of the global test of
Goeman et al. [13] is inflated. The results also show that
our test had a much higher power. This was not surprising
since the test of Goeman et al. [13] was based on a linear-
ity assumption of the pathway effect. When the true
underlying model is far from linear, the linearity assump-
tion breaks down and the test quickly loses power. The
results also show that the proposed test works well for
moderate sample sizes. When the pathway effect is linear,
the results show that the size of both tests were very close
to the nominal value 0.05 and their power were also very
close. This demonstrates that our test is as powerful as the
global test when the true underlying h(z) is linear. There-
fore our test could be used as a universal test for testing the
overall effect of a set of variables without the need to spec-
ify the true functional forms of each variable. This feature
is especially desirable for genetic pathway data, because
the relationship between genes and clinical outcome is
often unknown.

Conclusions and Discussion

In this paper, we developed a logistic kernel machine
regression model for binary outcomes, where the covari-
ate effects are modeled parametrically and the genetic
pathway effect is modeled nonparametrically using the
kernel machine method. This method provides an attrac-
tive way to model the pathway effect, without the need to
make strong parametric assumptions on individual gene
effects or their interactions. Our model also allows for par-
ametric pathway effects if a parametric kernel, such as the
first-degree polynomial kernel, is used.

A key result of this paper is that we have established a
close connection between the generalized kernel machine
regression and generalized linear mixed models, and
show that the kernel machine estimators of regression
coefficients and the nonparametric multi-dimensional
pathway effect can be easily obtained from the corre-
sponding generalized linear mixed models using PQL.
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The mixed model connection provides a unified frame-
work for estimation and inference and can be easily
implemented in existing software, such as SAS PROC
GLIMMIX or R GLMMPQL. The mixed model connection
also makes it possible to test for the overall pathway effect
through the proposed variance component test. A key
advantage of the proposed score test for the pathway effect
is that it does not require an explicit functional specifica-
tion of individual gene effects and gene-gene interactions.
This feature is of practical significance as the pathway
effect is often complex. Our simulation study shows the
proposed test performs well for moderate sample size. It
has similar power to the linearity-based pathway test of
Goeman et al. [13] when the true effect is linear, but much
higher power when the true effect is nonlinear.

We have considered in this paper a single pathway. One
could generalize the proposed semiparametric model to
incorporate multiple pathways by fitting an additive
model:

logit(P(y = 1)) =xT8 + hy(z;) + U + h,,(z,,),

where z; (j=1,U, m)denotes a p;x 1 vector of genes in the
jth pathway and hj(-) denotes the nonparametric func-
tion associated with the jth genetic pathway.

Machine learning is a powerful tool in advancing bioin-
formatics research. Our effort helps to build a bridge
between kernel machine methods and traditional statisti-
cal models. This connection will undoubtedly provide a
new and convenient tool for the bioinformatics commu-
nity and opens a door for future research.

Methods

The Logistic Kernel Machine Model

Throughout the paper we assume that gene expression
data have been properly normalized. Suppose the data
consist of n samples. For subjecti (i = 1, U, n), y;is a binary
disease outcome taking values either 0 (non-disease) or 1
(disease), x;is a ¢ x 1 vector of covariates, z;is a p x 1 vector
of gene expression measurements in a pathway/gene set.
We assume that an intercept is included in x;. The binary
outcome y; depends on x; and z; through the following
semiparametric logistic regression model:

logit(y;) = x1 B + h(z,), (3)

where 1= P (y;= 1| x; z;), fis a q x 1 vector of regression
coefficients, and h(z;) is an unknown centered smooth
function.

In model (3), covariate effects are modeled parametri-
cally, while the multi-dimensional genetic pathway effect
is modeled parametrically or nonparametrically. A non-
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parametric specification for h(-) reflects our limited
knowledge of genetic functional forms. Note that h(-) =0
means that genes in the pathway have no association with
the disease risk. If h(z) = %z, + U + g, model (3)
becomes the linear model considered by Goeman et al.
[13].

In nonparametric modeling, such as smoothing splines,
the unknown function is usually assumed to lie in a cer-
tain function space. For the kernel machine method, this
function space, denoted by H  , is generated by a given
positive definite kernel function K( -, -). The mathemati-
cal properties of H ;. imply that any unknown function
h(z) in H g can be written as a linear combination of the
given kernel function K(-, -) evaluated at each sample

point. Two popular kernel functions are the dth polyno-

mial kernel K(z,,z,)=(z!z,+p)? and the Gaussian

Kernel K(z,, z,) = exp{-|| z; - =z,||?/p?}, where
||z, -z, ||*= Zzl(zlk—zzk)2 and p is an unknown

parameter. The first and second degree polynomial ker-
nels (d = 1, 2) correspond to assuming h( -) to be linear
and quadratic in z's, respectively. The choice of a kernel
function determines which function space one would like
to use to approximate h(z). The unknown parameter of a
kernel function plays a critical role in function approxi-
mation. It is a challenging problem to optimally estimate
it from data. In the machine learning literature, this
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optimally estimate it from data based on a mixed model
framework.

The Estimation Procedure

Assuming h(-) € H g, the function space generated by a

kernel function K(-, -), we can estimate  and h(-) by
maximizing the penalized log-likelihood function

S}

i=1

J(h. B)

Hi 1 2
+log(l— ;) p—=Allh
i J og( ul)} 5 (1511,

Y (taT B+ h(z))  loglt + expla] B+ hz) ) = 5 111,

(4)

where A is a regularization parameter that controls the
tradeoff between goodness of fit and complexity of the
model. When A = 0, it fits a saturated model, and when 4
= oo, the model reduces to a simple logistic model logit
(1) = x B . Note that there are two tuning parameters in
the above likelihood function, the regularization parame-
ter A and kernel parameter p Intuitively, 4 controls the

magnitude of the unknown function while p mainly gov-
erns the smoothness property of the function.

By the representer theorem [16], the general solution for
the nonparametric function h(-) in (4) can be expressed
as

n
. ; T
parameter is usually pre ﬁx.ed at some values based on h(z;) = zai’K(Zi/Zi’) ~k'a, (5)
some ad-hoc methods. In this paper, we show that we can pan
Table 3: Simulation results on standard errors.
Standard Errors of [§
true used Empirical Model-based
setting #Hz #z n SE SE P
| 5 5 100 0.49 0.48 71.50 (estimated)
0.45 0.47 1.00 (fixed)
0.48 0.47 20.00 (fixed)
2 5 5 200 0.32 0.32 90.03 (estimated)
0.32 0.32 1.00 (fixed)
0.33 0.32 20.00 (fixed)
3 5 5 300 0.26 0.26 111.76 (estimated)
0.25 0.26 1.00 (fixed)
0.26 0.26 20.00 (fixed)

This table shows the simulation study results of standard error estimates of 8 in model logit(7) = x/3+ h(z) for binary outcomes based on 300

simulations.
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where k; = {K(z; z;), ..., K(z; z,)}Tand o= (o4, U, &,)7, an
n x 1 vector of unknown parameters.

Substituting (5) into (4) we have

J(B.a)= i[yi(xfﬁ +kla)- log{l + exp(xl:rﬂ +kla )}] - %AaTKa,

_ (©)

where K = K(p) is an n x n matrix whose (i, i')th element
is K(z; z;') and often depends on an unknown parameter

p.

Since J(B, ¢) in (6) is a nonlinear function of (4 ), one
can use the Fisher scoring or Newton-Raphson iterative
algorithm to maximize (6) with respect to fand c. Let (k)
denote the kth iteration step, then it can be shown (for
details see Appendix A.3) that the (k + 1)t update for S
and « solves the following normal equation:

xTpWk gl XTD(k)};(k)
1+ DWK || @D || p®yM |

(7)

x"p®Mx
D®Wx

where 70 = xg® + Ka® + p®” (y-u®y, 7= 1/4,
h() = Ko, and D" = Diag{ui(k)(l - ,Lti(k))} . The estima-

tors B and h at convergence are the kernel machine esti-

mators that maximize (6).

The Connection of Logistic Kernel Machine Regression to
Logistic Mixed Models

Generalized linear mixed models (GLMMSs) have been
used to analyze correlated categorical data and have
gained much popularity in the statistical literature [10].
Logistic mixed models are a special case of GLMMs. We
show in this section that the kernel machine estimator in
the semiparametric logistic regression model (3) corre-
sponds to the Penalized Quasi-Likelihood (PQL) [10]
estimator from a logistic mixed model, and the regulariza-
tion parameter 7 = 1/4 and kernel parameter p can be
treated as variance components and estimated simultane-
ously from the corresponding logistic mixed model. Spe-
cifically, consider the following logistic mixed model:

logit(u;) =x7 B +h;, (8)

where fis a g x 1 vector of fixed effects, and h = (h,, ..., h,))
is an x 1 vector of subject-specific random effects follow-
ingh ~N{0, 7K(p)}, and the covariance matrix K(p) is the
n x n kernel matrix as defined in previous section.

http://www.biomedcentral.com/1471-2105/9/292

As K is not diagonal or block-diagonal, the random effects
h;'s across all subjects are correlated. The ith mean response
M; depends on other random effects h;' (i' # i) through the
correlations of h; with other random effects. To estimate
the unknown parameters in the logistic mixed model (8),
we estimate £ and h by maximizing the PQL [10], which
can be viewed as a joint log likelihood of (5, h),

n

Y [l B+ ) ~log {1+ exp(/ B+ h)} |- h"Kh
T

i=1
)
Setting 7= 1/4 and h = Ko, one can easily see that equa-
tions (6) and (9) are identical. It follows that the logistic
kernel machine estimators ﬁ and h can be obtained by
fitting the logistic mixed model (8) using PQL. In fact,
examination of the kernel machine normal equations (7)
shows that they are identical to the normal equations
obtained from the PQL (9) [10], where y in (7) is in fact
the PQL working vector and Dis the PQL working weight
matrix.

Note that the estimators of f and h depend on the
unknown regularization parameter 7 and the kernel
parameter p. Within the PQL framework, we can estimate
these parameters d = (7, p) by maximizing the approxi-
mate REML likelihood

£4(B(8),8) =~ log| V |~ log | X"V 'X |-~ (7 - XB) V"G~ XB),

(10)
where V=D1+ 7K, and y is the working vector as defined
above. The estimator & of & can be obtained by setting
equal to zero the first derivative of (10) with respect to 6.
The estimating procedure for £, h, and d = (7, p) can be
summarized as follows: we fit the logistic kernel machine
model by iteratively fitting the following working linear
mixed model to estimate (5 h) using BLUPs and to esti-
mate J using REML, until convergence

y=XB+h+eg,

where y is the working vector defined below equation
(7), h is a random effect vector following N{0, 7 K(p)},
and & ~ N(0, D). The covariance of B is estimated by
(X™V-1X)1, and the covariance of h is estimated by
7K —7KPK , where P = V"1 - VIX(XTV1X)1XTV-1and V =

V( 5 ). The covariance of 5 can be obtained as the inverse

Page 7 of 11

(page number not for citation purposes)



BMC Bioinformatics 2008, 9:292

of the expected information matrix calculated using the
second derivative of (10) with respect to J. The square
roots of the diagonal elements of the estimated covariance

matrices give the standard errors of B, h, and & The

above discussion shows that we can easily fit the logistic
kernel machine regression using the existing PQL-based
mixed model software, such as SAS GLIMMIX and R
GLMMPQL.

Test for the Genetic Pathway Effect

It is of significant practical interest to test the overall
genetic pathway effect H: h(z) = 0. Assuming h(z) € H
one can easily see from the logistic mixed model represen-
tation (8) that Hy: h(z) = 0 vs H;: h(z) # 0 is equivalent to
testing the variance component zas Hy: 7=0vs H;: 7> 0.

Note that the null hypothesis places zon the boundary of
the parameter space. Since the kernel matrix K is not block
diagonal, unlike the standard case considered by Self and
Liang [17], the likelihood ratio for H,: 7= 0 does not fol-

low a mixture of 3 and y; distribution. We consider

instead a score test in this paper.

When conducting statistical tests for pathways, two types
of tests could be formulated. The first is called the compet-
itive test and the second the self-contained test [18]. The
competitive test compares an interested gene set to all the
other genes on a gene chip. An example of the competitive
test is the gene set enrichment analysis (GSEA) [1], where
an enrichment score of a gene set is defined and a permu-
tation test is used to test for the significance of the gene set
based on the enrichment score. The self-contained test
compares the gene set to an internal standard which does
not involve any genes outside the gene set considered. In
other words, the self-contained test examines the null
hypothesis that a pathway has no effect on the outcome
versus the alternative hypothesis that the pathway has an
effect. The variance component test of [13] for the linear
pathway effect is a self-contained test. Goeman and Biihl-
mann [18] pointed out that the self-contained test has a
higher power than a competitive test and that its statistical
formulation is also consistent for both single gene tests
and gene set tests, and the statistical sampling properties
of the competitive test can be difficult to interpret.

Our pathway effect hypothesis Hy,: h(z) = 0 vs H;: h(z) #0
is a self-contained hypothesis. We propose in this paper a
self-contained test for the pathway effect by developing a
kernel machine variance component score test for Hy: 7=
0vs H,:7> 0. The proposed test allows for both linear and
nonlinear pathway effects and includes the tests by Goe-
man et al. [13,14] as a special case. A key advantage of our

http://www.biomedcentral.com/1471-2105/9/292

kernel-based test is that we do not need to explicitly spec-
ify the basis functions for h( - ), which is often difficult for
modeling the joint effects of multiple genes, and we all let
the data to estimate the best curvature of h( -).

Zhang and Lin [19] proposed a score test for Hy: 7= 0 to
compare a polynomial model with a smoothing spline.
Goeman et al. [14] also proposed a global test against a
high dimensional alternative under the empirical Baye-
sian framework. The variance-covariance matrix used in
these tests do not involve any unknown parameters. How-
ever, the kernel function K(-, -) in a kernel machine
model usually depends on some unknown parameter p.
One can easily see from the mixed model representation
(8) that under H: 7= 0, the kernel matrix K disappears.
This makes the parameter p inestimable under the null
hypothesis and therefore renders the above tests inappli-
cable.

Davies [20,21] studied the problem of a parameter disap-
pearing under H,and proposed a score test by treating the
score statistic as a Gaussian process indexed by the nui-
sance parameter and then obtaining an upper bound to
approximate the p-value of the score test. We adopt this
line of approaches for our proposed score test.

Using the derivative of (10) with respect to 7, we propose
the following score test statistic for Hy: 7= 0 as

Qr(ﬁ(\)/P)_HQ
oQ '

S(p) = (11)

where

Q.(Bo. p)=(7-XBo) DK(p)D(F -~ XBo) =y — 1o) ' K(y - 1o),

where Bo is the MLE of funder H,: 7= 0,

fio = logit (X By) , g = tr{PK(p)}, 0 =

2t{PK(p)PoK(p)}, and Py = Dy — DoX(XTDX) ! XTD,,
where D, = diag{u;o(1 — u;0)} - Note that under H,: 7= 0,
model (3) reduces to the simple logistic model logit
(1) = x| B . Hence the BO is the MLE of funder this null

logistic model.

If the Gaussian kernel is used, then an arbitrary nonlinear
pathway effect is implicitly assumed. Our proposed test,
which is derived to test for any nonlinear effect, is there-
fore more powerful than tests based on a parametric
assumption. We show in Appendix A.1 that when p
becomes large in the Gaussian kernel, our test statistic
reduces asymptotically to the one based on linearity
assumption of genetic effects. Hence our test includes lin-
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ear model based test as a special case. From (11) it is also
clear that our test is invariant to the relative scaling of the
kernel function K( -, -).

Under appropriate regularity conditions similar to those
specified in [22], S(p) under the null hypothesis can be
considered as an approximate Gaussian process indexed
by p. Using this formulation, we can then apply Davies'
results [20,21] to obtain the upper bound for the p-value

of the test. Since a large value of Q_ ( B, p) would lead to
the rejection of H,,, the p-value of the test corresponds to

the up-crossing probability. Following Davies [21], the p-
value is upper-bounded by

<I>(—M)+Wexp(—%1\/12)/x/8_, (12)

where @ (-) is the normal cumulative distribution func-
tion, M is the maximum of S(p) over the range of p, W = |
S(p1) = S| +1S(p) = S(pr) [+ + [ S(U) = S(py) |, L
and U are the lower and upper bound of p respectively
and p, I =1, ..., m are the m grid points between L and U.
Davies [20] points out that this bound is sharp. For the
Gaussian kernel, we suggest to set the bound of p as

L =0.1 ming,; Zle (z; —zﬂ)2 and U = 100

max, ; 2; (zy — zﬂ)2 . For justifications, see Appendix

A2.

Extension to generalized kernel machine model

For simplicity, we focus in this paper on logistic regression
for binary outcomes. The proposed semiparametric
model (3) can be easily extended to other types of contin-
uous and discrete outcomes, such as normal, count,
skewed data, whose distributions are in the exponential
family [23]. In this section, we briefly discuss how to gen-
eralize our estimation and testing procedures for binary
outcomes to other data types within the generalized ker-
nel machine framework and discuss its fitting using gener-
alized linear mixed models.

Suppose the data consist of n independent subjects. For
subjecti (i = 1, ..., n), y;is a response variable, x;isa g x 1
vector of covariates, z;is a p x 1 vector of gene expressions
within a pathway. Suppose y; follows a distribution in the
exponential family with density [23]

p(yg@@hexp{””‘“””+c(yi,¢)}, (13)
¢/ mj

http://www.biomedcentral.com/1471-2105/9/292

where 6, is the canonical parameter, a(-) and ¢(-) are
known functions, ¢ is a dispersion parameter, and m, is a
known weight. The mean of y; satisfies y; = E(y;) = a'(6))
and Var(y;) = ¢ m;a"(6,). The generalized kernel machine
model is an extension of the generalized linear model [23]
by allowing the pathway effect to be modeled nonpara-
metrically using kernel machine as

8(u;) =x] B +h(z)), (14)

where g( - ) is a known monotone link function, and h( )
is an unknown centered smooth function lying in the

function space H i generated by a positive definite kernel
function K( -, -). For binary data, setting g(«) = logit(x) =

logﬁ gives the logistic kernel machine model (3); for

count data, g(u#) = log(u) gives the Poisson kernel
machine model; for Gaussian data, g(u) = u gives linear
kernel machine model [9]. The regression coefficients 4
and the nonparametric function h(-) in (14) can be
obtained by maximizing the penalized log-likelihood
function

X 1
10 BY= Y Hrpxivzi B} = ARl
i=1

(15)
where €(-) = In(p) is the log-likelihood, p is the density
function given in (13), and A is a tuning parameter. Using
the kernel expression of h( - ) in (5), the generalized kernel
machine model (14) can be written as

s(u)=x/B+kla,

and the penalized likelihood can be written

n
1, 1
I(ﬂ,a)=2f(yi,xi,zi;ﬂ,a)—2xa Ka, (16)
-
where K is an n x n matrix whose (i, j)th element is
K(z; z).

One can use the Fisher scoring iteration to solve for #and
a. The procedure is virtually the same as that described in
Section "The Estimation Procedure". The normal equa-
tion takes the same form as (7), except that now g; is spec-
ified under (14) and D = diag{var(y;)} under (13). Similar
calculations to those in Section "The Connection of Logis-
tic Kernel Machine Regression to Logistic Mixed Models"
show that model (14) can be fit using the generalized lin-
ear mixed model [10] via PQL
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s(ul)=xp+h,,

where 7=1/4, and h = (h, ..., h,) is an n x n random vector
with distribution N {0, 7K(p)}. The same PQL statistical
software, such as SAS PROC GLIMMIX and R GLMMPQL,
can be used to fit this model and obtain the kernel
machine estimators of fand h(-).

The score test (11) also has a straightforward extension.
The only change is that the elements in matrix D in (11)
be replaced by appropriate variance function var(y;) under
the assumed parametric distribution of y;.

Appendix

A. | Proof of the relationship of the proposed score test and
that of Goeman, et al [I3] under the linearity assumption
We show in this section when the scale parameter is large,
the proposed nonparametric variance component test for
the pathway effect using the Gaussian kernel reduces to
the linearity-based global test of Goeman et al. [13].

Suppose K( - ) is the Gaussian kernel. It can be shown that
the score statistic for testing H,: 7= 0 satisfies

Q.(B.p)=(7-XBy) " DK(p)D(F - XBo) = (y - W) K(p) (¥ - 1o),
(17)

where f1, is the MLE of x# under H,,. The test statistic of

Goeman et al. [13] takes the form

(y - 1) R(h - ), (18)

where R = ZZT. We now show when p is large relative to

p 2
max, ; 21:1 (zi —2j1)

Lo-m' K- =-w'Ry-p). (19)

Simple Taylor expansions show that

n_n P
-m) KP)r-p) = D N 0wy - u)expi= Y, (za -2/ o}
i=1 j=1 I=1

P

N i)+ D = ) - ) expi= Y (za = 2)* / o).
i=1

i#j =1

When max,; 2;’:1 (zq — zﬂ)2 / p is small, i.e,, when pis
large relative to max; -Zp (zy —z;)*, we have that
i#j 1=1 \<il j1

eXP{—ZL (20 = ij)z//?} ~1- ZL (20 = ij)z//? for

any i #j. Hence

http://www.biomedcentral.com/1471-2105/9/292

(- K(p)(y - m)

n p
= D) Y =) = D )~ ) a2
i=1 1

i#j i#] 1=
Since ijl(yj—uj)zo under the PQL, we have

2#1 (Yj - ,Uj) =—(y; — u;) . Hence

(y-m)"K(p)(y - )
4

n n 1
= 2()’1‘ *#1)2 *Z(Yﬁ */Ji)z *;Z(Y{ *lli)()’j */v‘;‘)Z(ZiZI —2zyz; + Z,?z)
i=1 i=j

i#] =1
2 n p 2 p
= ;zm _:ui)2zzi21 +;Z()’i = 1) (y; _:uj)zzllzjl
i=1 =1 i#] I=1

= %(y -w)'R(y - ).
This proves the approximate relation (19).

A.2 Calculations of the lower and upper bounds of p

Although in theory p could take any positive values up to
infinity, for computational purpose we would require p to
be bounded. For the proposed test statistic (11), its value
in fact only depends on a finite range of p values. We
describe why this is the case and how to find this range.
For a given data set, the proof in Appendix A.1 shows that

when is sufficiently large, the quantity O.SpQ,(ZIO . P)
converges to S, = (7 — my)" R(F — p,), which is free of p.

These arguments suggest that for numerical evaluation, it
is not necessary to consider all p values up to infinity.
Instead, a moderately large enough value would suffice.
Now the question comes down to how to decide on
appropriate upper and lower bounds for p. The proof in
Appendix A.1 requires max,; Zle (z3 —zﬂ)z/p be
close to 0. Let C, be some large positive number such that

1/C, = 0. If we take the upper bound of p to be C,
p p

MaX zlzl(zil _ij)z , then max;,; 21:1 (i _ij)z/P

would be close to 0. In practice we suggest taking C, = 100,

which would give good approximation. Using a similar

idea, we can find a lower bound for p. It is clear that when
min, ; Zle (zi — z]-l)2 /p — ¢ any non-diagonal element

of K(p) will be 0 and the kernel matrix reduces to an iden-
tity matrix. Hence, if we pick a small enough number C,

such that 1/C, — §, we can effectively set the lower bound
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of p to be C, min,; Zle (zj — zﬂ)2 . In practice we sug-

gest take C, = 0.1, which yields a good approximation.

A.3 derivation of normal equation (5)

Taking partial derivative of (6) with respect to £ and writ-
ing in matrix notation, we have X7(y-x). Similarly for ¢,
we have K(y - u) - A K. The gradient vector is thus

— XT(y_") (20)
K(y-p)-Ka |

Taking derivative of ¢ with respect to £ and ¢, we can get
the following hessian matrix

iq-_|X'DX  X'DK
KDX AK +KDK |’
where D = Diag{;(1 - 1)}. The Newton-Raphson itera-
tion states that the parameter value at the (k + 1)t itera-
tion can be updated by the following relationship

(21)

&es1) = ) — (H)-1 g(0), (22)

where 0= (f, of)T. Substitute (20) and (21) into (22), we
arrive at normal equation (7).
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