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Abstract
Background: DNA microarray technology allows for the measurement of genome-wide
expression patterns. Within the resultant mass of data lies the problem of analyzing and presenting
information on this genomic scale, and a first step towards the rapid and comprehensive
interpretation of this data is gene clustering with respect to the expression patterns. Classifying
genes into clusters can lead to interesting biological insights. In this study, we describe an iterative
clustering approach to uncover biologically coherent structures from DNA microarray data based
on a novel clustering algorithm EP_GOS_Clust.

Results: We apply our proposed iterative algorithm to three sets of experimental DNA
microarray data from experiments with the yeast Saccharomyces cerevisiae and show that the
proposed iterative approach improves biological coherence. Comparison with other clustering
techniques suggests that our iterative algorithm provides superior performance with regard to
biological coherence. An important consequence of our approach is that an increasing proportion
of genes find membership in clusters of high biological coherence and that the average cluster
specificity improves.

Conclusion: The results from these clustering experiments provide a robust basis for extracting
motifs and trans-acting factors that determine particular patterns of expression. In addition, the
biological coherence of the clusters is iteratively assessed independently of the clustering. Thus, this
method will not be severely impacted by functional annotations that are missing, inaccurate, or
sparse.

Background
DNA microarray technology allows investigators to mon-
itor simultaneously the expression behavior of essentially
all the genes within an entire genome and can provide
information on gene functions and transcriptional net-

works. However, the large number of genes and the com-
plexity of the underlying biological networks make
extracting this information a formidable task. A common
first step to interpret DNA microarray data is to cluster the
data on the basis of similarity of expression patterns. Since
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genes with similar function often show a common expres-
sion pattern, clustering genes of known functions with
poorly characterized genes provides a means of gaining
insights into the functions of the latter [1]. Furthermore,
patterns seen in genome-wide expression data can reveal
potential gene regulation networks and relate cellular
processes to changes in cellular conditions [2,3]. How-
ever, the extent to which clustering reveals useful informa-
tion about the system under study depends on the extent
to which the clustering method successfully groups intrin-
sically related elements. Example classes of clustering
algorithms include (a) single and complete link hierachi-
cal clustering [4], (b) K-family of clustering algorithms [5-
7], (c) optimization-based clustering approaches [8-10],
(d) fuzzy clustering [11,12], (e) quality threshold cluster-
ing (QTClust) [13], (f) artificial neural networks for clus-
tering, such as the self-organizing map (SOM) [14] and a
variant that combines the SOM with hierachical cluster-
ing, the self-organizing tree algorithm (SOTA) [15], (g)
information-based clustering [16,17], and (h) stochastic
approaches such as clustering by simulated annealing
[18,19]. Some of these algorithms, while novel in their
own rights, suffer from certain shortcomings. For
instance, the K-clustering methods require a user-specified
cluster number. The QTClust approach is computation-
ally expensive and assumes at each iteration that the larg-
est cluster formed is necessarily the best grouping. And the
simulated annealing approach requires a consistently
good cooling schedule, subjective inputs for the upper
bound cutoff distance and the allowable lower bound
false negatives, and can become computationally more
expensive than exhaustive search algorithms. Whichever
the clustering algorithm used, we need an intuitive and
relevant tool to first assess the quality and significance of
the clusters formed.

One approach to assess cluster quality is based on the idea
that if the clustering result reflects robust structures, exist-
ing clusters should accurately estimate the appropriate
cluster labels for new data points [20]. [21] extend the pre-
diction strength concept by proposing a figure of merit
(FOM) measure, which describes the mean deviation of
the gene expression levels with respect to the pertinent
cluster centers. Other methods of measuring cluster valid-
ity have also been proposed, such as the Davies-Bouldin
Validity Index [22], which is a function of the ratio of the
sum of within-cluster scatter to between-cluster separa-
tion.

These approaches all rely solely on mathematical coher-
ence to assess cluster quality. However, in uncovering bio-
logically coherent structures from DNA microarray data,
categorizing gene clusters on the basis of known function-
ally related groups is very relevant. This provides useful
insights into key biological themes among the genes and

enables progress in the studies of gene regulatory net-
works and signal transduction pathways [23]. The biolog-
ical coherence of each cluster can be scored according to
the percentage of its genes covered by annotations signif-
icantly enriched in the cluster in question, using func-
tional classification schemes in Martinsried Institute of
Protein Sciences (MIPS) or the Gene Ontology (GO) data-
bases [24,25] to generate a p-value reflecting the likeli-
hood that such enrichment would happen by chance.
Auxiliary to this central issue is the question of rigorously
identifying and isolating outlier genes since it is highly
probable that only a subset of genes participate in any cel-
lular process or biological studies of interest. On the other
hand, genes with similar expression profiles may not have
common functional characteristics or expression profiles
of genes in the same functional category may still be dis-
similar due to the existence of unknown functional sub-
categories and sparse or inaccurate functional annota-
tions.

A remedy then is to integrate known biological knowledge
into the clustering procedure itself. Most knowledge-
based clustering methods directly incorporate GO knowl-
edge into the algorithm. This assumes that the current GO
knowledge is correct because genes known to have a sim-
ilar functional annotation are 'pushed' more closely to
one another in a biased fashion. However, this could
handicap the clustering process if the organism is sparsely
annotated. Methods that work solely on a modified dis-
tance measure [26] can thus over-estimate the distances of
the genes with unknown functions, thus depriving them
of a chance of being 'discovered'. An alternative is to mod-
ify the similarity measure to be a linear combination of
the expression profile similarity and functional similarity.
This would however not work well with organisms that
are not well annotated and is always highly subjective as
to the contribution score of each similarity measure.
Another approach allows genes sharing common func-
tions to have a common prior probability as compared to
genes with different functions [27]. In an earlier work
[28], the clustering process is regulated by must-link con-
straints, which apply to genes with known common func-
tions, and cannot-link constraints, which apply to genes
known not to be associated with one another. This class of
knowledge-based clustering algorithms could distort the
'chance' of genes with unknown functions to be fairly
clustered. It also assumes that the current GO annotations
are accurate and comprehensive enough. A recent novel
approach for knowledge-based clustering [29] involves
the use of selectively snipping the edges of a typical hier-
archical clustering tree to induce clusters that are maxi-
mally consistent with available background information
such as functional annotations. This method is tested and
reported to outperform another recent knowledge-based
clustering method [30].
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In addressing the various aforementioned concerns of
many current knowledge-based clustering methods, we
choose not to interfere with the measured distances of the
genes or data points and instead cluster them based on the
fundamental intuition that genes in the same cluster
should behave similarly. Then, we introduce a secondary
refinement process using the GO annotations to check the
level of biological coherence of the clusters. We use the
entire set of yeast GO annotations available throughout
our study. The iterative nature of our procedure means
that if the GO annotations are somehow wrong to begin
with, subsequent iterations of our algorithm will still
show a strong persistence in pushing seemingly 'unre-
lated' genes together, thus giving a hint that maybe these
genes should have a common function after all. If the GO
annotations are unknown, then the unknown genes
would be still fairly clustered with their counterparts, as
their measured experimental behavior has not been tam-
pered with. In organisms that are sparsely annotated, the
emphasis on these intuitive factors such as unaltered dis-
tances and response correlation provides opportunities
for (a) genes with known functions and verified with sim-
ilar experimental behavior to be clustered together and
(b) genes with unknown functions to find cluster mem-
bership in clusters with known functions if they correlate
well or in clusters with unknown functions containing
counterparts that show similar expression behavior.

Our iterative clustering approach has as its backbone an
optimization-based clustering algorithm, EP_GOS_Clust,
presented in an earlier paper [10]. The algorithm is based
on a variant of the GBD algorithm, the Global Optimum
Search (GOS) [31-33]. This is a robust algorithm that
compares favorably with many commonly-used cluster-
ing algorithm in defining clusters that are as dissimilar
from one another as possible (that is, a large inter-cluster
error sum) while assigning members that are as similar to
one another as possible into the same cluster (that is, a
small intra-cluster error sum). It also incorporates a meth-
odology to predict the optimal number of clusters for a
given dataset. In measuring the biological coherence of
the clusters, we assert that the appropriate performance
indicators are the cluster p-values and the proportion of
genes that are in clusters of high coherence quality. The
first reflects the functional richness of a cluster and is an
intuitive measure of coherence, while the second reflects
the potential to extract the maximum amount of useful
information for subsequent studies of motif analysis and
regulatory structure searches. We also look at cluster cor-
relation and functional specificity as consistency checks.
We then test our proposed method on three datasets of
actual DNA microarray expression results.

Results and discussion
Outline of proposed approach for uncovering biological 
coherence
Our iterative approach extends a recently-proposed algo-
rithm, the EP_GOS_Clust, as a backbone for clustering the
expression data. Specifically, we perform an initial cluster-
ing run on a given data as previously described to reach
the optimal number of clusters [10] and then apply a GO
analysis of the data to obtain a preliminary assessment of
the level of biological coherence. Those clusters that
exhibit better biological coherence than a prescribed
benchmark value are retained as seeds for the next round
of clustering. As a consistency check, we also look at clus-
ter correlation and specificity. Those genes that fall into
clusters lacking the benchmark level of coherence are sub-
jected to a subsequent round of EP_GOS_Clust clustering,
in which each gene is placed either in an existing cluster
having a similar expression profile or aggregated with
other unclustered genes having similar expression profiles
to form a new cluster. This overall process is repeated until
we observe an asymptotic saturation either in the optimal
number of clusters or the proportion of genes that are
placed into clusters with strong levels of biological coher-
ence. The approach is described in greater detail in the
Methods section.

Dataset I
Dataset I consists of DNA microarray data obtained from
a study in the role of the Ras/protein kinase A pathway
(PKA) on glucose signaling in yeast [34]. The Ras/PKA sig-
nal transduction pathways provide a major conduit to
couple cellular responses to the availability of carbon
sources such as glucose [35-37]. [34] measure the levels of
RNA for each of the 6237 yeast genes over time in wild
type and various mutant strains following glucose addi-
tion to cells grown on a non-fermentable carbon source.
These experiments are designed to assess the extent to
which the Ras/PKA pathway mediated transcriptional
effects induced by glucose. [See additional file 5]

Each of the eight test and control experiments consist of
four time points over a hour period, yielding 32 data
points for each of the 6237 genes. Before clustering the
array data, we filter the data to remove unreliable data. In
particular, we retained all genes for which all the time
points are deemed present by the Affymetrix software
suite (4105 genes), all the genes for which greater than
50% of the time points are deemed present and all the
genes for which the present/absent calls exhibit a consist-
ent and biologically relevant pattern (e.g., PAAA for the
four time points in the experiment, indicating repression
of expression of that gene over the course of the experi-
ment). In all, we retain 5652 genes.
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Clustering dataset I using the EP_GOS_Clust algorithm
described previously [4] results in 237 optimal clusters,
out of which 46 were singleton clusters. We perform a GO
analysis of the clusters and determined that 64% of the
5652 genes fall into clusters with significant functional
coherence (p-values of 10-3 or less; 32% of the genes fall
into clusters with p-values of 10-4 or less). Ignoring the
singleton clusters, we also find that the average cluster size
is 30.4, while the average size of clusters with p-values of
10-3 or less is 36.2, thus indicating that clusters formed
using the EP_GOS_Clust do not show strong biological
coherence just because of a size bias. In fact, the average
size of clusters with p-values of 10-4 or less is only 36.9.
We select as a cut-off standard a p-value of 10-3, which
encompass 64 clusters containing a total of 2318 genes.
Reclustering the remaining 3334 genes by another round
of EP_GOS_Clust decreases the optimal number of clus-
ters to 112, out of which 81% (or 4570 of the 5652 genes)
of the genes fall into clusters with p-values of 10-3 or less.
After 6 iterations of this process, we find that the optimal
number of clusters saturated at 62, with over 90% of the
genes falling into clusters with p-values of 10-3 or less. We
also find that the proportion of genes that fall into clusters
with p-values of 10-4 or less increases from 32% to 69%.
Figure 1 illustrates the results of the clustering process. As
evident from this Figure, the proposed clustering method
yields a monotonic increase in the average -log10(P) val-
ues and in the proportion of genes that found placement
in quality coherent clusters, as well as a steady decrease in
the optimal number of clusters, indicating the growing
compactness and economy of the clustering. We further
note that over 75% of the genes that were placed into sin-
gleton clusters for the first iteration remain in singleton
clusters throughout suggesting that these genes are biolog-
ical outliers. We also compare our clusters with that
obtained using representative methods from the K-family
of clustering approach [5-7], the Self-Organizing Map

(SOM) [14], a variant that combines the SOM with hier-
archical clustering, the Self-Organizing Tree Algorithm
(SOTA) [15], and the QT-Clust method [13]. Table 1
shows that just the EP_GOS_Clust backbone already com-
pares favorably against the other methods, and that the
iterative approach further refines the cluster quality. In
short, this iterative method clearly provides a means of
enhancing the biological coherence of clusters obtained
from microarray data.

Dataset II
We examine a second dataset derived from experiments
designed to determine comprehensively the contribution
of different signaling pathways to the glucose response in
yeast. In addition to the Ras/PKA pathway, at least three
other signaling pathways mediate transcriptional changes
attendant on addition of glucose to cells [36,37]. In one
pathway, glucose addition leads to reduced activity of the
AMP-activated protein kinase encoded by SNF1, thereby
unfettering a transcriptional repressor encoded by Mig1/2
and suppressing several transcriptional activators [38,39].
The second pathway, mediated by Rgt1, couples expres-
sion of the hexose transporter genes to the level of availa-
ble glucose. Binding of glucose to plasma membrane
glucose sensors promotes degradation of repressors of
hexose transporter genes by the SCFGrr1 ubiquitin ligase
complex, allowing Rgt1 activation of these genes. Finally,
the AGC kinase Sch9 acts in parallel to PKA to induce
expression of many genes normally regulated by PKA
[40]. To test the roles of each of these pathways, we meas-
ure expression changes following glucose induction in
wild type and mutant cells lacking specific components of
the different pathways. Levels of RNA for each of the 6237
yeast genes in each of the RNA samples are assayed using
Agilent microarray chips, out of which measurable signals
are registered from 5657 of them. This dataset consists of

Table 1: Comparison of biological coherence of clusters obtained for dataset I by different clustering algorithms

Proportion of Genes (%) in Clusters of p-values

Average Correlation <= 10-4 <= 10-3

(Clustering Method) EP_GOS_Clust 0.617 32.8* 64.9*
Iterated EP_GOS_Clust 0.685* > 69* > 90*
KMedians 0.615 30.8 62.2*
KCityBlk 0.398 27.5 56.7
KCorr 0.630* 32.6* 60.1
KMeans 0.614 25.1 55.2
KAvePair 0.567 25.2 54.4
QTClust 0.572 31.1 56.9
SOTA 0.604 30.2 58.9
SOM 0.623* 30.5 59.2

Shown are the comparative biological coherence formed by various clustering methods on dataset I. The 2 shaded rows represent clustering done 
by the standalone EP_GOS_Clust backbone and the proposed iterative approach.
* The top three performers in each category are indicated with an asterisk.
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Results of iterative clustering with dataset IFigure 1
Results of iterative clustering with dataset I. A. Number of clusters as a function of the number of iterations of clustering 
dataset I with a p-value cutoff of 10-4. B. Percent of genes residing in biologically coherent clusters as a function of iteration 
cycle. Data are shown for the percent of clusters with a minimum of biological coherence of p-value less than 10-3 and of p-val-
ues less than 10-4. C. Average p-value over the entire set of clusters as a function of iteration cycle.
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results from 23 time course experiments, each with 2–5
time points. [See additional file 5]

Clustering of dataset II using EP_GOS_Clust results in 224
optimal clusters, out of which 130 are singleton clusters.
As before, we find the singleton clusters to be poorly
related to the other genes, with a low average correlation
coefficient of only 0.08. We perform a GO analysis of the
clusters and note that 79% of the 5657 genes fall into clus-
ters with p-values of 10-4 or less and 66% of the genes fall
into clusters with p-values of 10-5 or less. This in itself
already represents a highly robust quality of clustering. As
a separate analysis, we ignore the singleton clusters and
find that the average cluster size is 59.8, while the average
size of clusters with p-values of 10-4 or less is 78.2, thus
indicating that clusters formed using the EP_GOS_Clust
are unlikely to show strong biological coherence just
because of a size bias. In fact, the average size of clusters
with p-values of 10-5 or less is only 81.1. For this dataset,
we select as a cut-off standard a p-value of 10-5, which
gives 44 clusters containing a total of 3737 genes. We
apply the proposed methodology to improve the biologi-
cal coherence of our clusters and found that after 6 itera-
tions, the optimal number of clusters saturates at 189 (out
of which 114 are singleton clusters), with 84% of the
genes falling into clusters with p-values of 10-5 or less (Fig-
ure 2, Table 2). We highlight that this is less than the final
gene placement of over 90% obtained for dataset I for two
main reasons. First, dataset II is drawn from a larger
number of DNA microarray experiments and has 75 fea-
ture points compared to 24 for dataset I, thus introducing
a greater range of variability within the data. Second, we
imposed a stricter cut-off p-value of 10-4 or less, as
opposed to the previous choice of 10-3. Figure 2 summa-
rizes the utility of our proposed methodology in improv-
ing cluster validity and placing the largest possible
proportion of genes into biologically coherent clusters.
We also find that the mean -log10(P) value of the clusters
increases monotonically from 8.39 to 9.14.

At completion of the iterative process, we obtain 38 clus-
ters with p-values of 10-5 or less, containing 4747 (or
84%) of the original 5657 genes. We note that these clus-

ters exhibit a tight grouping, as evidenced by a visual
inspection of the gene expression time course plots [See
additional files 1 and 2], as well as the relatively high val-
ues of correlation coefficients for these clusters (an aver-
age value of 0.667 over all clusters, with a maximum of
0.925 and a minimum of 0.387).

Comparison of clustering methods for dataset II
We examine the coherence of the clusters obtained by our
iterative version of EP_GOS_Clust versus the non-iterative
version as well as other clustering methods. These include
the well established K family of partition-based clustering
algorithms [5-7], self organizing tree algorithms (SOTA)
[15] and a recently proposed information theoretic-based
method (IClust) [17]. As can be seen from the results in
Table 3 the initial iteration of EP_GOS_Clust performs as
well or better than any of these other methods, whether
corrected for multiple testing or not, as measured both by
the percent genes resident in clusters with high biological
coherence and by the average expression correlation
within individual clusters. Moreover, the clusters from the
final iteration of the algorithm exhibit a higher level of
expression correlation. Thus, the iterative EP_GOS_Clust
compares favorably with other clustering methods.

Function prediction based on expression profiles
An application of any clustering approach is the ability to
predict the functions of unknown genes by clustering
them together with counterparts with known functions.
This is a particularly important consideration when work-
ing with organisms that are not as well-annotated as yeast.
We test the capability of our proposed iterative procedure
in this respect through a simulated study. We do this by
randomly de-annotating 20% and 30% of the genes in
dataset II. We then apply our iterative clustering approach
to the entire dataset II and take into consideration the
entire set of functional annotations reported on the SGD.
Naturally at each iterative step, the clusters are scored as if
the de-annotated genes have no known function, thus
affecting the p-value. As a result, we find that our iterative
procedure demonstrates a 61.5% level of prediction accu-
racy for the dataset with 20% de-annotation and 50.4%
for the dataset with 30% de-annotation. We feel these

Table 2: Improvement in biological coherence after iterative clustering of dataset II

Proportion of Genes (%)
p-value <= 10-4 p-value <= 10-5 p-value <= 10-4 p-value <= 10-5

(Uncorrected) (Bonferroni-Corrected)

Initial Iteration 79.4 66.1 57.2 52.2
Final Iteration 86.2 83.9 73.1 68.9

Shown are the percentages of genes in clusters in which one or more subsets of the genes in the cluster exhibit a statistically non-random 
membership in a common biological function, as defined by Gene Ontology (GO) classification, either at a significance level of 10-4 or 10-5, either 
uncorrected (left) or Bonferroni corrected for multiple hypothesis testing (right). The values are for the clusters obtained following initial 
EP_GOS_Clust clustering or after six round of the iterative algorithm described in Methods.
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Results of iterative clustering with dataset IIFigure 2
Results of iterative clustering with dataset II. A. Number of clusters as a function of the number of iterations of cluster-
ing dataset II with a p-value cutoff of 10-4, either including all 5657 genes in the Dataset (No Noise Adjustment) or including 
only those 4346 genes that exhibit a 1.7 fold change for at least 10% of the time points (1.7-Fold Change Noise Adjusted). B. 
Percent of genes residing in biologically coherent clusters as a function of iteration cycle. Data are shown for percent of clus-
ters with a minimum of biological coherence of p-value less than 10-4 and 10-5 for all genes in the dataset and for a biological 
coherence of p-value less than 10-4, 10-5 and 10-6 for the subset of genes that exhibit a 1.7 fold change for at least 10% of the 
time points (minimal fold-change for meaningful clustering).
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results compare favorably to the other knowledge-based
clustering methods reported in the literature [29,30].
These methods report a prediction accuracy of between
30–70%. However, these accuracies are found using
restricted datasets of only 2–3 function classes (each con-
taining 200–300 genes) and clustering is done up to 10–
14 clusters. Furthermore, we observe there is very little
variation in the percentage of prediction accuracy as our
algorithm steps through the iterations. As a case in point,
the prediction accuracy for the 20% test case in the 4 iter-
ations it took for the optimal number of clusters to stabi-
lize is 59.1%, 60.9%, 60.8%, and finally 61.5%. This and
the relative high level of prediction accuracy by our itera-
tive algorithm is a result of the clustering not being driven
by the extent of known functional annotations, which can
handicap the clustering process if the data is sparsely or
wrongly annotated, but rather by fundamental indicators
of cluster goodness. Hence, we expect the clustered results
from a de-annotation simulated study or a GO permuta-
tion study to not severely affect the final results.

Motif identification
Another means of evaluating the effectiveness of our clus-
tering regimen is to determine the extent to which it
reveals information regarding the underlying transcrip-
tional network responsible for the observed pattern of
transcription. For instance, are genes in specific clusters
enriched for motifs corresponding to transcription factors

known to be involved in regulation under the conditions
tested? Several methods are available to identify motifs
enriched in groups of genes and we applied a recent
method – FIRE, which uses the concept of mutual infor-
mation to predict functional motifs from gene expression
data [41]. We compare the results obtained on this dataset
clustered as described above with that from an expanded
version of the same dataset clustered by K-means with a
cutoff correlation of 0.85 [Zaman & Broach, unpub-
lished]. Both sets of clusters reveal the role of the PAC/
RRPE motif, sites for the transcription factors Msn2/4,
Mbp1, Rap1 and Rpn4 as well as the 3' RNA binding fac-
tor Puf3. The K-means clusters also reveal a role for Gcn4,
Hap4, Reb1 and Cbf1 while our iterative algorithm iden-
tifies Bas1 and Mig1. All these factors have been impli-
cated in glucose regulation and the overlapping but non-
identical results with the two cluster sets indicates the
value of interrogating an expression dataset with multiple
clustering methods.

Abridged iterative approach
We examine the capabilities of an abridged version of our
iterative algorithm. In the standard EP_GOS_Clust algo-
rithm, we allow the formation of singleton clusters as a
strategy to identify and isolate genes that are clear outliers.
Mathematically, these singleton clusters have p-values of
zero. Since it is reasonable to assume these genes play lit-
tle or no part in the biological/cellular process of interest,

Table 3: Comparison of biological coherence of clusters obtained for dataset II by different clustering algorithms

Proportion of Genes (%) in Clusters of p-values
<= 10-4 <= 10-5 <= 10-4 <= 10-5

(Uncorrected) (Bonferroni-Corrected)

EP_GOS_Clust 79.4* 66.1* 57.2 52.2*
Iterated EP_GOS_Clust 86.2* 83.9* 73.1* 68.9*
K-Means 78.0 62.1 58.0* 51.7
K-Correlation 77.1 63.9 57.3* 51.8
K-Medians 78.8* 65.3 56.9 52.2*
SOTA 75.2 66.9* 57.1 39.3
IClust 66.0 54.0 34.2 29.1

Cluster Correlation -log10(P) Values
Max. Min. Ave. Average

EP_GOS_Clust 0.920 0.454* 0.730* 9.17*
Iterated EP_GOS_Clust 0.956* 0.489* 0.750* 11.09*
K-Means 0.961* 0.049 0.668 9.01
K-Correlation 0.964* 0.398* 0.717* 9.13
K-Medians 0.923 0.203 0.683 9.09
SOTA 0.911 0.285 0.624 9.20*
IClust N.A. N.A. N.A. 9.01

Methods include EP_GOS_Clust backbone, the iterative algorithm described in this report, the K-family of partitional clustering algorithms with 
pre-assigned clusters, self organizing tree algorithm (SOTA), and mutual information based clustering (IClust) [28]. Data in the upper table are 
presented as described in the legend to Table 2 while the lower table presents data on expression correlation within clusters and the average -
log(P) values for biological coherence over all the clusters.
* The top three performers in each category are indicated with an asterisk.
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having been put through a rigorous placement process, we
drop these genes from future consideration instead of
retaining them in the dataset for the iterative sorting proc-
ess. As a result, the initial iteration on dataset II results in
224 optimal clusters. We then apply a p-value cut-off of
10-5 or less as above, confirm the poor correlation of the
singleton genes with the other genes, and then remove
these from further consideration. We perform the same set
of iterations and arrive at 118 as the final optimal number
of clusters after only 3 rounds, out of which 31 are single-
ton clusters. Of these, 44 clusters have p-values of 10-5 or
less, as compared to 38 when using the full methodology.
Nonetheless, Table 4 shows that the abridged method
yields comparable results to the complete approach
except in placing genes into clusters Bonferroni-corrected
p-values of 10-5 or less. Hence, as long as hypothesis test-
ing errors are not a concern, the abridged proposal is valid
and useful.

Minimal expression level for meaningful clustering
Gene expression measurements typically contain a certain
amount of noise, which can come from hybridization
errors due for instance to chip imperfections, as well as
stochastic fluctuations in transcriptional processes. These
are typically filtered by the appropriate microarray soft-
ware, as described in the Methods section. As another area
of interest, we then ask ourselves, noise aside, whether
there can still be a minimal level of fold change for a par-
ticular gene to be considered relevant and can be mean-
ingfully clustered.

We assume that for any particular gene's expression to be
relevant, it should show a significant level of expression

variation over at least 1–2 experiments. For dataset II,
which contains 23 experiments, with 2–5 time points
each, this corresponded to about 10% of the time points.
Applying an arithmetic mean regression to this dataset
yields a 1.7-fold change cut-off as the condition in which
genes would demonstrate significant variation for at least
10% of all time points [See additional file 3]. From this,
we derive a feasible region for fold-change cut-off by com-
bining the constraint brackets of a time point allowance of
at least 5–20% and the number of genes showing a rea-
sonable level of intensity variation [See additional file 4].
We then cluster dataset II using several of these fold-
change criteria candidates. Specifically, we parametrically
test for (a) 1.9-fold change for at least 5% of time points
– 4317 genes, (b) 1.8-fold change for at least 10% of time
points – 4045 genes, (c) 1.7-fold change for at least 10%
of time points – 4346 genes, and (d) 1.6-fold change for
at least 15% of time points – 4280 genes. The results from
this analysis are presented in Tables 5 and 6 and Figure 2.

The first observation from Tables 5 and 6 is that the results
of clustering improve significantly after undertaking some
form of gene expression relevance threshold. The second
observation is that an over-strict and over-lenient fold-
change threshold results in the respective deletion of use-
ful information or the retention of non-information. As
can be seen from Table 5, even though a cut-off criterion
of 1.8-fold change for at least 10% of all time points
results in the least number of genes and the best clustering
economy in placing the genes into a lowest number opti-
mal clusters, it does not result in the best overall correla-
tion between members within the same clusters and
clusters of the strongest biological coherence. On the

Table 5: Effect of imposing minimal gene expression levels on cluster correlation

No Adjustment 1.9-fold, at least 5% time 
points

1.8-fold, at least 10% 
time points

1.7-fold, at least 10% 
time points

1.6-fold, at least 20% 
time points

Number of Genes 5657 4317 4045 4346 4280
Optimal Clusters 224 135 118 123 140
Ave. Correlation 0.666 0.706 0.728 0.735 0.719
Max. Correlation 0.925 0.925 0.940 0.947 0.934
Min. Correlation 0.387 0.445 0.478 0.474 0.469

We compare the effects on genes retention and correlation results of within-cluster elements after clustering dataset II by the iterative algorithm.

Table 4: Comparison of cluster coherence between the full and abridged versions of the iterative clustering algorithm

Proportion of Genes (%) – Final Iteration
p-value <= 10-4 p-value <= 10-5 p-value <= 10-4 p-value <= 10-5

(Uncorrected) (Bonferroni-Corrected)

Full Method 86.2 83.9 73.1 68.9
Abridged Method 86.3 84.5 72.7 65.1

Results from applying either the full iterative method or an abridged iterative method, as described in the text, to dataset II, executed with a 
threshold significance of 10-5.
Data are presented as described in the legend to Table 1.
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other hand, the criterion of 1.7-fold change for at least
10% of the time points appear to produce the tightest
clusters with the highest level of biological coherence
despite having the largest number of genes as compared to
the other fold-criteria tests. This is particularly noticeable
from Table 6, where it places the largest proportion of
genes into coherent clusters, but also has the smallest pro-
portion of genes leftover for the weaker clusters. In addi-
tion, while this criterion does not lead to the lowest
number of clusters, the resultant data groupings exhibit
the strongest correlation. This leads us to conclude that a
1.7-fold cut-off for at least 10% is probably the appropri-
ate screening criteria for dataset II.

We then assess the clusters using a newly-proposed func-
tional genomics gold standard based on an expert cura-
tion of the Gene Ontology [42]. This allows us to assess
our iterative process using only GO terms that are deemed
specific enough to imply a meaningful biological relation-
ship between any two annotated proteins. The iterative
clustering of dataset II with a 1.7-fold cutoff gives a final
72 optimal clusters, of which 42 are quality clusters with
p-values below the cut-off of 10-5. We performed a gold
standard GO analysis of these 42 clusters and found that
41 of these returned meaningful annotation results based
on this standard, and that the average precision and recall
values of these clusters was 25.1% and 15.4% respectively
(see Methods section). This significantly exceeds the aver-
age background of 1.8%. On the other hand, the average
precision and recall values of the non-adjusted version of
dataset II of 20.8% and 12.6% respectively, showing that
the fold-change cutoff helps in improving the meaning-
fulness of the clustered results.

Dataset III
Natural genetic variation can cause significant differences
in gene expression, and clustering and linkage analysis
can yield meaningful insights on how natural polymor-
phisms affect gene regulation. We test our iterative cluster-

ing approach on dataset III, which is obtained by
measuring the expression levels of all yeast genes in a lab-
oratory and a wild strain, and in 113 segregants from a
cross between them [43,44]. The dataset consists of mul-
tiple replicates of parental strains and single arrays for
each of the segregrants using spotted microarrays, yielding
131 experiments each with 7085 gene expression meas-
urements. These genes correspond to 5740 known yeast
genes, as well as 489 dubious ORFs and 856 control spots.
[See additional file 5]

Unlike the previous two datasets, which were obtained
under controlled experimental conditions, dataset III is a
much more diverse set of expression conditions, render-
ing it more challenging to cluster. Clustering dataset III
using EP_GOS_Clust results in 49 optimal clusters. We
note that even at this level, the cluster correlation and bio-
logical coherence compares favorably against previous
hierarchical clustering results [44], which for a minimum
pair-wise correlation of 0.725 yields 763 clusters of at least
two genes containing a total of only 2522 genes out of the
original 7085. As a test, we first adopt a multi-stage
approach with progressive filtering to cluster it. The
rationale for this approach is that successively extracting
the higher correlated clusters allows subsequent clustering
in the absence of these strong attractors. The scheme we
follow and the results of that process are outlined in Fig-
ure 3.

The process of sequential clustering allows us to identify a
total of 1864 genes in 62 quality clusters (indicated by A,
C and E) that annotates for known biological functions, as
well as 21 clusters (indicated by B, D and F) that contain
1057 genes of unknown biological processes. This com-
pares favorably both in coverage and compactness with
the 2544 genes sorted into 763 clusters by the hierarchical
clustering method previously applied to this dataset. Fur-
thermore, application of our iterative clustering approach
at two instances (A and E) allowed us to improve cluster

Table 6: Effect of imposing minimal gene expression levels on biological coherence

No Adjustment 1.9-fold, at least 5% time 
points

1.8-fold, at least 10% time 
points

1.7-fold, at least 10% time 
points

1.6-fold, at least 20% time 
points

% of Genes in Clusters with -log10(P) Values Ranges

> 0 and < 2 0.49 0.18 0.19 0.12 0.36
> 4 79.39 81.70 82.55 82.60 80.24
> 5 66.06 70.76 71.14 73.95 69.31

Comparison of -log10(P) Values

Mean Value 8.39 8.84 9.25 9.27 8.81
Best Value 59.82 66.67 70.96 69.44 66.23

We compare the effects on biological coherence of genes within clusters of dataset II obtained by the iterative algorithm.
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Schematic showing the multi-stage clustering process for dataset IIIFigure 3
Schematic showing the multi-stage clustering process for dataset III. The full set of genes, including dubious ORFs 
and control samples are clustered by EP_GOS_Clust to yield 49 clusters. Those clusters with correlation ≥ 0.5 are retained 
and split into two groups. Those with ≥ 60% of their member genes annotated as unknown biological function are set aside as 
group B. The second group is subjected to iterative clustering as described in Methods, with a threshold p-value of 10-4, yield-
ing 21 clusters (group A). The remaining genes from the initial clustering process are first filtered to remove those with little 
correlation to any other gene or limited expression. Those genes passing the filter are subjected to EP_GOS_Clust and those 
clusters exhibiting expression correlation ≥ 0.5 are examined. Those clusters that also have at least 30% their genes annotated 
to a common function with a p-value less than 10-3 are retained as group C. Those with ≥ 50% of their member genes anno-
tated as unknown biological function are set aside as group D. The remaining genes are once again clustered by 
EP_GOS_Clust, yielding one cluster with ≥ 40% of their member genes annotated as unknown biological function (group F) and 
several clusters with the indicated correlation, precision and coherence. The remaining 3,760 genes are then stringently fil-
tered. Since the genes have already been subjected to clustering, we can assume that the most useful information has already 
been sieved out. The remaining 3562 genes are probably all irrelevant, but we would still like to identify the genes that have sig-
nificant levels of expression. We hence look at the number of genes that has a minimum proportion of feature points falling 
within the data mean ± 0.5*(standard deviation), and find that as the pre-determined proportion is decreased, the number of 
genes increases almost linearly until the 77% mark, where it then starts to grow exponentially. We take this to signify an 
increasing bulk of spurious genes and set the cut-off at 77% to extract 206 genes for further clustering. This yields the final 
group of clusters (group E).
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quality, in terms of member correlation, cluster precision,
and p-value. The iterative approach also improves the
number of genes placed into good clusters. For instance,
for group A, the number of genes falling within clusters
with p-values of 10-6 and below improves from 986 to
1084, while for group E, the number goes from 85 to 164.

We evaluate the clustered results in two ways. First, as
described for the previous dataset we apply FIRE to extract
regulatory motifs associated with individual clusters. Sec-
ond, we applied linkage analysis to the clustered expres-
sion data to determine whether the pattern of expression
in a particular cluster could be associated with an
unlinked site in the genome. This process identifies genes
whose product would likely be acting in trans to modulate
expression of genes in a particular cluster [43,44]. The
results of these analyses are presented in Figure 4 and
summarized in Table 7. As evident from this summary,
the serial clustering approach yields highly coherent clus-
ters, both in expression correlation and in biological func-
tion, even in the third round of clustering (group E).
Moreover, analysis of the genes clustered by this method
identifies most of the cis-acting motifs and the trans-active
sites that had been extracted from this dataset previously.
In addition, the FIRE analysis of the clustered data identi-
fies a number of enriched motifs in the 3' sequence of
genes, which have not been extracted previously from this
dataset but which correspond to a number of previously
noted motifs associated with mRNA stability, including
Puf3, Puf4 and PRSE, as well as a motif associated with the
PAU gene family of unknown function [45]. As previously
recognized, the trans-acting factor(s) that affect(s) expres-
sion of genes in a cluster generally does not correspond to
the transcription factor(s) associated with the motifs
enriched in genes in that cluster. Rather, these trans-acting
factors predominantly define physiological processes –

mating type (MAT) or prototrophy (leu2 versus LEU2), for
example – or signaling networks – Ira1, Ira2, Ras1 or Gpa2
– that impinge on the expression patterns indirectly. In
this context, though, it is intriguing to note that the same
allele variation in a trans-acting can induce multiple, dis-
tinct expression patterns, witnessed by the fact that the
same locus is linked to several different clusters. This
would suggest that the factor may work in combination
with other loci segregating in the cross to yield a variety of
transcriptional patterns. Such polygenic effects are
expected but have only begun to be rigorously explored.

Next, as a test of our iterative procedure, we subject data-
set III to this algorithm without any intermediate filtering
or multi-stage processing. From the initial clusters
obtained from the first round of clustering, the iterative
procedure results in 106 optimal clusters after 6 iterations,
based on a p-value cutoff of 10-5. A subsequent analysis of
the clusters reveals results comparable to that obtained
from the application of intermediate filtering as described
previously. The large clusters that annotate for major func-
tions such as translation, ribosome biogenesis, cellular
component organization, and chromatin assembly
appear in both instances, and have about 60% of their
member genes in common. The smaller clusters that
annotate for flocculation, cytokinesis, vitamin B6 metab-
olism, RNA-mediated transposition, and sterol biosynthe-
sis far even better, with 75% of common genes recovered
in both cases. The average specificity of the clusters
obtained by using just the iterated procedure is 33%,
which compares well with the 25–75% specificity range
(average of 52%) obtained earlier. We also note the
uncovering of several clusters whose majority of genes
have unknown biological processes. In both applications,
the cluster specificity is high – an average of 33% com-
pared to a range of 40–60% by using multi-stage cluster-

Table 7: Summary of clustering results with dataset III

Cluster Group Cluster Size -log10(P) Values Correction Correlation Precision
Max. Min. Ave. Max. Min. Ave. Ave. Ave.

B 61 4 2.5 4.2 1.2 1.7 0.609 0.753
D 175 8 5.5 13.7 1.5 3.9 0.362 0.641
F 102 102 2.9 2.9 2.9 0.9 0.172 0.494

A Initial 271 2 20.0 140.1 0a 19.7 0.655 0.461
Final 271 2 21.7 140.1 1.8b 20.6 0.707 0.522

C 116 2 10.4 33.3 3.2 9.5 0.672 0.735
E Initialc - - - - - - - -

Final 88 2 4.4 11.4 1.1 3.4 0.635 0.440

Genes in dataset III are clustered by EP_GOS_Clust through a sequential process outlined in Figure 3. Genes in cluster groups A and E are further 
clustered by the iterative algorithm, yielding an initial and final set of clusters. Precision is defined as the fraction of genes within a cluster assigned 
to the predominant functional group within that cluster.
aThe cluster p-value is zero if a GO search did not manage to uncover any significant annotation.
bAfter iteratively clustering 184 genes into 15 initial clusters ('A' on Figure 3), just one poor cluster remains. The next worse cluster has a -log10(P) value of 4.1.
cThere are no applicable initial values here since the remaining genes to be clustered are subjected to the second filter before being re-clustered into the initial 6 
clusters (see Figure 3).
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ing with intermediate filters. In addition, the number of
clusters obtained (i.e, 106) is similar to the total of 89
quality clusters retained by the previous application. We
note however that the optimal clusters obtained by using
just the iterated approach without any filters is lower – an
average of 0.497 versus 0.656. This and the comparatively
lower cluster specificity is understandably the result of the
two filters implemented in the former process, including
one that involves correlation filtering. Nonetheless, the
recovery of several common-function clusters with over-
lapping genes leads us to believe that our iterative
approach would be effective in uncovering clusters with a

strong level of biological coherence even without apply-
ing various levels of additional filtering to a dataset.

Conclusion
Uncovering biological insights from DNA microarray data
is a promising but challenging task. Generally, the first
step in organizing and analyzing microarray data is clus-
tering genes into groups related by expression patterns,
which often then reveals biological coherence. In our
study, we observe that the task of placing genes into
strongly coherent clusters may not necessarily be achieved
with a single round of clustering, no matter how robust

Functional analysis of dataset III clustersFigure 4
Functional analysis of dataset III clusters. Genes in clusters obtained as described in Figure 3 are assessed for motif 
enrichment in their 5' and 3' flanking regions using FIRE. On the left is the subject of clusters (columns) exhibiting statistically 
significant enrichment (shades of yellow) or exclusion (shades of blue) of a motif (rows) whose consensus sequence is shown 
to the right. If known, the name of the motif or the factor that likely binds to it is provided. The clusters are also examined to 
determine whether the expression pattern of genes in a clustered are associated with a gene segregating in the cross from 
which the data is derived. The LOD (log of the odds) score of linkage to each 20 Kb bin across the entire yeast genome is 
shown for a representative subset of the clusters. A potential trans-acting factor encoded within the interval of the elevated 
LOD score is shown next to the peak.
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the clustering algorithm has proven to be. To address this
limitation we formulated a methodology that filters out
the genes placed in clusters of weak biological coherence
and iteratively seeks the best placements for these genes.
We show that on the whole our proposed algorithm
unambiguously refines the biological quality of gene clus-
ters. The extent of improvement over the iterations is sig-
nificant, from a 20% increase in the number of genes in
biologically coherent clusters for dataset III to a 40%
increase for dataset I. We note also the increasing level of
average cluster correlation as the iterative sorting
progresses. The latter observation is significant, since clus-
ter correlation is not a factor explicitly used in the algo-
rithm to target clusters for recycling.

We apply this algorithm to a variety of datasets. Two of
these datasets are strongly focused on the question of
nutritional regulation in yeast. We select the third dataset
as a test for this method since, due to experimental design,
it is as diverse a collection of expression patterns as any in
the literature (Myers C, personal communication). We
evaluate our results from the second dataset against those
obtained by a number of standard clustering algorithms
and find that our method assigns a higher proportion of
genes to biologically coherent clusters than any of the oth-
ers. Moreover, the average expression correlation of genes
in the clusters is higher by our method than by any of the
others. In addition, subsequent analysis of the clusters
reveals a strongly overlapping set of predictions for cis-act-
ing regulatory sequences to that obtained from clusters
generated by other methods. Our results with the third
dataset also compare favorably with other methods. Our
algorithm, applied in a multi-stage fashion, assigns 2921
genes to 83 clusters compared with 2544 genes in 763
clusters previously compiled by hierarchical clustering
with a correlation value cutoff. This reduced number of
clusters facilitates subsequent analysis of the data while
retaining essentially all of the information content, as
assessed by analysis of linkage to trans-acting factors and
identification of cis-acting regulatory domains.

An issue with incorporating annotative knowledge is that
the clustering process can be limited when applied to
datasets from sparsely or inaccurately annotated organ-
isms. In this respect, our iterative procedure still performs
comparatively well under these situations. On its own, the
clustering backbone EP_GOS_Clust compares favorably
against several well-known clustering algorithms based
on not just the usual quantitative attributes but also the
level of biological coherence based on GO resources. The
procedure has as its pre-processing step a complete clique
search (itself a rigorous search process) amongst the data
points for strong pre-clusters. In our iterative procedure,
GO knowledge is not considered during the clustering
itself, but rather in post-processing and cluster refinement

steps. The clustering backbone thus considers only intui-
tive quantitative attributes, so a lack of functional annota-
tion does not affect the result as adversely as other more
involved knowledge-based clustering approaches. The
iterations then smooth any distortions brought about by
issues with existing annotation databases or measurement
inconsistencies.

Based on the results of this study, we believe our work to
be valuable in uncovering biologically meaningful data
structures. Since the complex functions of a living cell are
carried out through a concerted activity of many gene and
gene products, it is important to be able to effectively clus-
ter DNA microarray data to uncover functional relation-
ships and regulatory modules to help understand the
complex biological mechanisms involved in signaling.

Methods
Notation
We denote the distance measure of a gene i, for i = 1,....,n
with k features (or dimensions), for k = 1,....., s as aik. Each
gene expression pattern is transformed into a k-dimen-
sional vector, for which each element indicates the change
in normalized expression level between time points for
each gene, aik. Each gene is assigned to only one (hard
clustering) of c possible clusters, each with center zjk, for j
= 1,....,c. The binary variables wij indicates whether gene i
falls within cluster j (wij = 1, if yes; wij = 0, if no).

Microarray data processing
The experiments for datasets II and III are carried out
using the Agilent microarray platform. All arrays are
hybridized and processed using a SSPE wash according to
the manufacturer's protocols, and the microarrays are
imaged using a Agilent microarray scanner. The images
are then extracted with Agilent Feature Extraction version
A7.5.1 and the data analyzed with Rosetta Luminator 2.0
gene expression analysis system (Rosetta Informatics,
Seattle, WA). Using a rank consistency filter, features are
subjected to a combination linear and LOWESS normali-
zation algorithm, the recommended algorithm for this
microarray platform. The Agilent microarray scans feed
directly into the Princeton University Microarray Data-
base (PUMAdb) [46], where the noise filtering is per-
formed in tandem. PUMAdb is based on the Stanford
Microarray Database software package [47]. The filtering
process involves identifying the Cy3 and Cy5 intensities
above the background levels and picked out features that
were either population outliers or non-uniformity out-
liers.

Handling missing data points
DNA microarray results often contain missing data points
for a variety of reasons. In our study, dataset II contains
about 0.4% of missing data points. To address this, we
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examine the row average of the unblemished data points
and apply a variant of the K-Nearest Neighbor algorithm
to estimate the missing points [48]. The procedure we use
is as follows:

(i) For a particular gene with missing data points, we cal-
culate its level of similarity with all other genes that have
values present for the particular data points. The similarity
metric is consistently computed by excluding the data col-
umn containing the missing data point. In this respect, we
test both the Euclidean distance and Pearson Correlation
Coefficient as measures of data similarity and find that
both work similarly well in estimating the 'removed' data
points.

(ii) For each gene with missing data points, we create a
rank-order list of its similarity with its reference genes.
Depending on the spread of similarity level, we estimate
the missing data point by taking the sum average of its
nearest 10–20 neighbors.

Normalization and pre-clustering
Pre-clustering the data helps minimize the computational
resources required to solve the hard clustering problem by
(i) identifying genes with similar experimental responses,
and (ii) removing outliers deemed not to be significant to
the clustering process. A straightforward pre-clustering
approach to provide just the adequate amount of discrim-
inatory characteristics so that the genes can be pre-clus-
tered properly is to reduce the quantities represented in
the k-dimensional expression vectors into a set of repre-
sentative variables [+, o, -]. The (+) variable represents an
increase in expression level compared to the previous time
point, the (-) variable represents a decrease in expression
level from the previous time point, and the (o) variable
represents an expression level that does not vary signifi-
cantly across the time points (which we take for the pur-
pose of this study as a range of ± 10% from the zero
normalized value). We can also pre-cluster the expression
data by creating a rank-ordered list of gene proximities
based on Euclidean distance or correlation. We then
group genes that demonstrate an obvious level of proxim-
ity, such as a separation of only at most 1% of the maxi-
mum inter-gene distances. Here, we choose to pre-cluster
the proximity genes that form a complete clique. This
means the pre-clustered genes that belong uniquely to
only one cluster, or in other words, there is a link between
every gene within the same cluster. With this choice, we
can perform a maximal clique search by using various lev-
els of pre-clustering criteria. In pre-clustering over a range
of cut-off values, we are able to select the appropriate cri-
terion as the point where the maximum number of com-
plete cliques is formed [49]. In this study, we first z-
normalize the expression data across each gene and then
compute the feature vector (that is, the change in expres-

sion level between time points). The normalization
reduces expression data to a standard normal N(0,1)
according to:

EP_GOS_Clust clustering algorithm
We perform EP_GOS_Clust clustering by the method
described in detail in [4].

The global optimization approach seeks to minimize the
sum of the Euclidean distances between the data and the
assigned cluster center. There are two sets of variables in
the problem, wij and zjk. While the bounds of wij are
clearly 0 and 1, that of zjk is obtained by observing the
range of aik values.

The basic clustering problem is:

wij are binary variables, zjk are continuous variables

The proximity study in pre-clustering will determine the
spread of clusters each gene is suitable for. This can be
described by an additional binary parameter suitij. A data
point that has been determined to belong uniquely to just
one cluster in the pre-clustering process will only have
suitij = 1 for only one value of j and zero for the others,
whereas a data point restricted to a few clusters will have
suitij = 1 for only those clusters. The suitij parameters obvi-
ate the need for constraints that prevent the redundant re-
indexing of clusters and help reduce the computational
demand required for the clustering process.

The objective function in Problem 1.1, when expanded is:

Together with the necessary first-order optimality condi-
tion:
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(i.e., the vector distance sum of all genes within a cluster
to the cluster center should be intuitively zero), and the
constraint that each gene is allowed to belong to only one

cluster, (i.e. ), the formulation becomes:

The first set of constraints are the necessary optimality
conditions, the second demand that each gene can belong
to only one cluster, and the third state that there is at least
one and no more than (n-c+1) data points in a cluster.

Note also that the  term in the objective function

of Problem 2 is a constant and can be dropped, though for
the sake of completeness we will retain the term through-
out.

Problem 1.2 is a Mixed Integer Nonlinear Programming
(MINLP) problem with bilinear terms wij.zjk in the objec-
tive function and the first constraint set. However, MINLP
problems are difficult to solve and theoretical advances
and prominent algorithms for approaching such prob-
lems have been extensively studied. We utilize the Global
Optimum Search (GOS) algorithm [31-33] to handle the
MINLP formulation. The algorithm decomposes the non-
linear problem into a primal problem and the master
problem. The former optimizes the continuous variables
while fixing the integer variables and provides an upper
bound solution, while the latter optimizes the integer var-
iables while fixing the continuous variables and provides
a lower bound solution. The two sequences of upper and
lower bounds are iteratively updated until they converge
in a finite number of iterations. Even though the algo-
rithm does not have a theoretical guarantee of finding the
global optima, its application in a robust clustering proce-
dure has been shown to perform favorably against existing

clustering methods when applied to DNA microarray data
[31].

The primal problem results from fixing the binary varia-
bles to a particular 0–1 combination. Here, wij is fixed and
zjk is solved from the resultant linear programming (LP)
problem. The primal problem is given by:

In Problem 2.1, all the other constraints drop out since
they do not involve zjk, the variables to be solved in the
primal problem. Besides zjk, the Lagrange multipliers λjk

m

for each of the constraints above is obtained. The objec-
tive function is the upper bound solution. These go into
the master problem. The master problem is essentially the
problem projected onto the y-space (i.e., that of the binary
variables). To expedite the solution of this projection, the
dual representation of the master is used. This dual repre-
sentation is in terms of the supporting Lagrange functions
of the projected problem. Also, the optimal solution of
the primal problem as well as its Lagrange multipliers can
be used for the determination of the support function,
which are gradually built up over each successive itera-
tion. The master problem is:

The master problem, which is a Mixed Integer Linear Pro-
gramming (MILP) problem solves for wij and μB, and gives
a lower bound solution in the objective function. The wij
solutions then go back into the primal and the process is
repeated. A new support function is added to the list of
constraints for the master problem with each iteration.
Thus in a sense, the support functions for the master prob-
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lem build up with each iteration, forming a progressively
tighter envelope and gradually pushing up the lower
bound solution until it converges with the upper bound
solution. In addition, after every run of the master prob-
lem, in which a solution set for wij is generated, an integer
cut is added for subsequent iterations to prevent redun-
dantly considering that particular solution set again. The
cut is expressed as:

In implementing the algorithm we let the initial clusters
be defined by a robust set of pre-clustered genes and com-
pute the centers of these clusters. As a good initialization
point we place the remaining genes into the nearest clus-
ter. A proximity study assesses each gene's suitability in an
appropriate number of clusters. After the initial GOS [31-
33] run, the worst placed gene is removed and used as a
seed for a new cluster. This gene has already been sub-
jected to the initial search for parameters so there is no
reason for it to belong to any one of the older clusters.
Based on the updated centers, the iterative steps are
repeated. With each GOS [31-33] cycle, the number of
clusters builds up progressively. At each cluster number,
we compute the clustering balance, which is the α-
weighted sum of the intra-cluster and inter-cluster error
sums. The clustering balance parameter reaches a mini-
mum at the optimum cluster number, when intra-cluster
similarity is maximized and inter-cluster similarity is min-
imized. Hence, the incrementing of the cluster number
can be stopped once this turning point is reached.

Biological coherence assessment and refinement

We determine the biological coherence of each cluster by
assessing whether it contained genes assigned to a com-
mon biological function, as specified by Gene Ontology
(GO) annotations available through the Saccharomyces
Genome Database [50]. This is quantified as the likeli-
hood that the subset of genes in that cluster with a com-
mon biological function could have been assigned to that
cluster by chance (p-value). Since a single full run of the
EP_GOS_Clust does not necessarily assign a number of
genes to clusters of high biological coherence, we employ
an iterative approach to clustering by imposing a coher-
ence floor based on p-values to demarcate genes that have
already been well clustered. As described by the original
EP_GOS_Clust algorithm, we take these quality clusters as
the initial set of clusters. We then compute the Euclidean
distance between each of the remaining genes (coming
from clusters with low biological coherence) and these
initial centers and as a good initialization point placed

these genes into the nearest cluster based on

. We create a rank-order list

for each of these remaining genes for its distance to each
of the initial clusters, and for each gene allow its suitabil-
ity in the nearest clusters via suitij parameters. The initiali-

zation point and suitij parameter assignments are then

utilized in the GOS algorithm all over again. Through
these iterations, we offer the poorly-placed genes an
opportunity either to find relevant membership in one of
the strongly coherent clusters or to regroup among them-
selves to form quality clusters. We have found that reiter-
ation of this process eventually yields a saturation point
whereby the optimal number of clusters becomes con-
stant of the proportion of genes distributed within clusters
of high biological coherence levels off. This algorithm can
be summarized by the schematic in Figure 5.

Calculating cluster p-value

The p-value of each cluster is a measure of the statistical
significance for functional category enrichment. The bio-
logical coherence of each cluster is scored according to the
percentage of its genes covered by annotations signifi-
cantly enriched in the cluster in question, and is com-
puted using a hypergeometric distribution. If G is the
number of genes annotated to a term and N is the total
number of genes in the genome with GO annotations,
then the probability p of a randomly selected gene being

annotated to a particular GO term is . Given a cluster

of n genes, in which × of them have been annotated to a
given GO term, the probability of having × out of n anno-
tations assigned to the same GO term by chance is px(1 -
p)n-x. Within a list of n genes, there are multiple permuta-
tions by which × of them have this annotation. The

number of permutations is . However, annota-

tions to a particular term are low probability events. Thus
instead of calculating the probability of having × of n
genes annotated to a term, a more conservative approach
is to calculate the probability of × or more of n genes
being annotated to a particular term. This is given as

. In analyzing the gene clus-

ters, we consider the p-value of the most significant term
associated with each cluster.

Sometimes, a cut-off for the p-value, known as alpha, is
chosen, such that p-values below the alpha are deemed
significant. For instance, an alpha level of 0.05 means that
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Schematic of the EP_GOS_Clust clustering algorithm used in this studyFigure 5
Schematic of the EP_GOS_Clust clustering algorithm used in this study. Although the formulation in this study has 
been notated for DNA microarray data, the algorithm framework can be adapted for clustering any numeric data.
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in no more than one in 20 statistical tests will the test
show 'something' while there is in fact nothing (a type I
error). However, when more than one statistical test is car-
ried out, there is an increasing chance of committing a
type I error due to fluctuations. This chance is given by 1-
(1 - α)k, where k is the number of tests (i.e. the number of
elements in a cluster). A possible solution known as the
Bonferroni correction is to divide the test-wise signifi-
cance level by the number of tests. For instance, given an
initial alpha of 0.05, the chance of a type I error if 10 tests
are made is 0.4. The Bonferroni correction adjusts the
alpha so the overall risk for the tests remains at 0.05, by
applying a significance level of 0.005 instead of 0.05. We
include both the p-values provided by the SGD and our
Bonferroni-corrected values in our manuscript for the
sake of completeness.

Filtering dataset III
The first filter applied to dataset III eliminates those genes
for which 75% of the values were zero, after background
subtraction, or that show a correlation of less than 0.1
with any other gene. The second filter involves computing
the expression mean and standard deviation over all seg-
regants (feature points) for all of the 3,760 genes that
remain after an initial clustering of Set B data (see Figure
3), which yields a normal distribution. We then deter-
mine for each gene what proportion of feature points had
values falling outside the data mean ± 0.5 (standard devi-
ation). Plotting the cumulative number of genes with a
given proportion of feature points that lie outside this
limit versus proportion of feature points, we find that as
the proportion of feature points decreased from 100%,
the number of genes increases almost linearly until the
77% mark, at which point the number of genes increases
essentially exponentially. We take this to signify an
increasing bulk of spurious genes and set the cut-off at
77% retained those 206 genes with values between 77%
and 100% for further clustering.

Linkage analysis
Linkage analysis is performed on the average phenotype
of each cluster. After mean centering each transcript, the
average value of all transcript levels within a cluster is cal-
culated and treated as a quantitative phenotype as previ-
ously described [44]. Linkage analysis is then performed
using the nonparametric test in R/qtl [51] with 2894 pre-
viously described markers [43]. Empirical permutation
tests [52] are used to determine a false discovery rate
(FDR), with a LOD score of 3.4 estimated as a cutoff for a
5% false discovery rate.

'Gold standard' evaluation of functional genomic data
Rigorous analysis of gene clusters for functional annota-
tions requires a quality collection of genomic functional
categories. [42] propose a unified standard based on

expert curation so that only functional terms that are spe-
cific enough to be confirmed or refuted experimentally
and yet general enough to provide relevant information
for high-throughput assays are considered. The evaluation
framework and gold standard can be found at [53]. As per-
formance measures, we use the recall, which is the ratio of
the number of relevant records retrieved to the total
number of relevant records in the database, and the preci-
sion, which is the ratio of the number of relevant records
retrieved to the total number of irrelevant and relevant
records retrieved. Given the number of true positives (TP)
– protein pairs associated by data and annotated as posi-
tives in the gold standard, false positives (FP) – protein
pairs associated by data and annotated as negatives in the
gold standard, and false negatives (FN) – protein pairs not
associated by data and annotated as positives in the gold
standard, for each cluster, the metrics are given by:

In addition, we introduce as a minimal benchmark of
gold standard validation the background, given by:

This is the minimal benchmark as it signifies the probabil-
ity of drawing a gene annotated for a particular function
from the entire genome of interest without even consider-
ing the clustering results based on differential DNA
expression levels.

Computational resources
All optimization formulations are written in GAMS (Gen-
eral Algebraic Modeling System) [54] and solved using the
commercial solver CPLEX 8.0. GAMS is a high level mod-
eling system specifically designed for mathematical opti-
mization. It consists of a language compiler and an
integrated high performance solver such as CPLEX,
DICOPT, or XPRESS.
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