
BioMed CentralBMC Bioinformatics

ss
Open AcceMethodology article
An analytic and systematic framework for estimating metabolic flux 
ratios from 13C tracer experiments
Ari Rantanen*1,2, Juho Rousu1, Paula Jouhten3, Nicola Zamboni2, 
Hannu Maaheimo3 and Esko Ukkonen1

Address: 1Department of Computer Science, University of Helsinki, Finland, 2Institute of Molecular Systems Biology, ETH Zurich, Switzerland and 
3VTT Technical Research Centre of Finland, Finland

Email: Ari Rantanen* - ari.rantanen@iki.fi; Juho Rousu - juho.rousu@cs.helsinki.fi; Paula Jouhten - pjouhten@mappi.helsinki.fi; 
Nicola Zamboni - zamboni@imsb.biol.ethz.ch; Hannu Maaheimo - hannu.maaheimo@helsinki.fi; Esko Ukkonen - ukkonen@cs.helsinki.fi

* Corresponding author    

Abstract
Background: Metabolic fluxes provide invaluable insight on the integrated response of a cell to
environmental stimuli or genetic modifications. Current computational methods for estimating the
metabolic fluxes from 13C isotopomer measurement data rely either on manual derivation of analytic
equations constraining the fluxes or on the numerical solution of a highly nonlinear system of isotopomer
balance equations. In the first approach, analytic equations have to be tediously derived for each organism,
substrate or labelling pattern, while in the second approach, the global nature of an optimum solution is
difficult to prove and comprehensive measurements of external fluxes to augment the 13C isotopomer data
are typically needed.

Results: We present a novel analytic framework for estimating metabolic flux ratios in the cell from 13C
isotopomer measurement data. In the presented framework, equation systems constraining the fluxes are
derived automatically from the model of the metabolism of an organism. The framework is designed to be
applicable with all metabolic network topologies, 13C isotopomer measurement techniques, substrates and
substrate labelling patterns.

By analyzing nuclear magnetic resonance (NMR) and mass spectrometry (MS) measurement data obtained
from the experiments on glucose with the model micro-organisms Bacillus subtilis and Saccharomyces
cerevisiae we show that our framework is able to automatically produce the flux ratios discovered so far
by the domain experts with tedious manual analysis. Furthermore, we show by in silico calculability analysis
that our framework can rapidly produce flux ratio equations – as well as predict when the flux ratios are
unobtainable by linear means – also for substrates not related to glucose.

Conclusion: The core of 13C metabolic flux analysis framework introduced in this article constitutes of
flow and independence analysis of metabolic fragments and techniques for manipulating isotopomer
measurements with vector space techniques. These methods facilitate efficient, analytic computation of
the ratios between the fluxes of pathways that converge to a common junction metabolite. The framework
can been seen as a generalization and formalization of existing tradition for computing metabolic flux ratios
where equations constraining flux ratios are manually derived, usually without explicitly showing the
formal proofs of the validity of the equations.
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Background
From microorganisms to animals and plants, cells adjust
their metabolic operations to fulfill the demand of energy
and biosynthetic precursors. In nature this is a challenging
task because substrate availability is typically limited and
often changing in its composition. To ensure viability on
a broad palette of chemically heterogeneous substrates,
cells have developed intertwined enzymatic networks that
also confer robustness against genetic mutations. Opti-
mum redistribution of molecular fluxes in metabolism is
achieved by multilevel regulation circuits. In recent years,
experimental measurement of in vivo metabolic fluxes
has attracted much attention. For example, in biotechnol-
ogy metabolic fluxes are utilized to lead rational strain
engineering, whereas systems biologists assess fluxes to
unravel targets and mechanisms of metabolic regulation.

Metabolic fluxes are often estimated using flux balance
analysis (FBA) [1,2]. In FBA, fluxes are solved by fixing
some objective for the metabolism of an organism, such
as maximal growth. Then, a corresponding optimization
problem is solved by using the stoichiometry of the meta-
bolic network as a constraint to the optimization. FBA is a
viable method for studying the metabolic capabilities of
an organism, but as a method for estimating metabolic
fluxes it has some weaknesses. First, selecting the correct
objective for the metabolism is far from trivial [3], espe-
cially when mutant strains or behaviour in exceptional
environmental conditions is analyzed. Second, there can
be many biologically interesting flux distributions that
give an optimal solution to the optimization problem of
FBA.

A more direct method for experimental determination of
the metabolic fluxes is to feed an organism with 13C
labelled substrate, observe the fate of 13C atoms in the cell
at isotopomeric steady state with mass spectrometry (MS)
or nuclear magnetic resonance (NMR) measurements,
and then infer the metabolic fluxes from the measure-
ments. The rationale behind these 13C tracer experiment is
that, often alternative pathways between metabolites in
the network manipulate the carbon backbones of the
metabolites differently, thus inducing different 13C label-
ling patterns to metabolites. Then, constraints to fluxes
complementary to the basic stoichiometric constraints
can be derived by measuring the relative abundances of
different labelling patterns in the metabolites.

The main difficulty in applying the procedure in practice
is that current measurement techniques only can produce
incomplete information about relative abundances of dif-
ferent 13C labelling patterns, the isotopomer distributions, of
some metabolites, usually protein bound amino acids in
the network, and no isotopomer information at all for
many intermediate metabolites of interest [4-6]. This

imposes a highly non-linear dependency between the
measured isotopomer distributions of the metabolites
and the metabolic fluxes, which is very challenging to
solve both computationally and statistically.

Currently, two main approaches for 13C metabolic flux
analysis exist. In the global isotopomer balancing approach,
the problem of estimating metabolic fluxes from the iso-
topomer measurements is formulated as a nonlinear opti-
mization problem, where candidate flux distributions are
iteratively generated until they fit well enough to the
experimental 13C labelling patterns [7-11]. Global iso-
topomer balancing is a versatile approach that can be
applied with all network topologies, substrate labelling
distributions and with all measurement techniques – also
in short time scales where isotopomeric steady state is not
reached [12-14]. However, due to the nonlinearity of the
problem, it is hard to make sure that the optimization has
converged to a global optimum and that this optimum is
unique [15]. Also, to apply the global isotopomer balanc-
ing approach successfully, one usually needs comprehen-
sive information on the uptake and production rates of
external metabolites, as well as about biomass composi-
tion of the cell. This information can be hard to obtain,
especially in large-scale experiments where dozens to hun-
dreds of mutants or different organisms are comparatively
analyzed [16,17].

A metabolic flux ratio approach (METAFoR) [4,18,19] for
13C metabolic flux analysis has traditionally relied more
on the expertise of a domain specialist than advanced
computational techniques. In metabolic flux ratio analy-
sis, the aim is to write linear equations constraining the
ratios of fluxes producing the same metabolite. The equa-
tions are manually derived by domain experts, by careful
(and tedious) inspection of metabolic networks. The
motivation for the approach is that, in many cases, the
knowledge about the flux ratios already offers enough
information about the response of an organism to its
environment.

The ratio of competing fluxes or pathways producing the
same metabolite is easy to understand, and in many cases
easier to estimate reliably than all the fluxes in the net-
work – some interesting flux ratios might be obtainable
from scarce measurement data or from the incomplete
model of metabolic network that would not allow a relia-
ble estimation of a complete flux distribution using global
isotopomer balancing. Flux ratios can also be obtained
without knowing the uptake and production rates of
external metabolites of the biomass composition. And, if
enough non-redundant flux ratios are identified, it is pos-
sible to use this information to construct and solve an
equation system for the full flux distribution of the meta-
bolic network [20-22].
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As a downside, manually derived flux ratio equations
depend heavily on the topology of a metabolic network,
measurement capabilities and substrate labelling distribu-
tions. Thus, each time a new organism or new mixture of
substrates are introduced, flux ratio equations have to be
verified and new ones possibly derived. To date, flux ratio
equations are manually derived for central carbon metab-
olisms of three model organisms on glucose, S. cerevisiae
[17,23], B. subtilis [24] and for Escherichia coli [18,19].
Recently, flux ratio equations of S. cerevisiae were modi-
fied for Pichia pastoris grown on glycerol and on glycerol/
methanol mixtures [25,26]. Facilitating the process of
deriving flux ratio equations for other organisms and
other substrates clearly calls for automatic tools. Also,
many times the (simplifying) assumptions made by the
expert in the derivation and solution of flux ratio equa-
tions, are not reported in detail. Thus, it is often nontrivial
to verify the correctness of given flux ratio equations.

In this article we present a novel automatic framework for
deriving flux ratios when the measurement data and the
model of metabolic network are given as input. The
framework is based on the graph algorithmic flow analy-
sis of metabolite fragments in the metabolic network [27]
and on the interpretation and manipulation of both NMR
and MS data with vector space techniques [21]. The goal
of our work is to combine the good aspects of global iso-
topomer balancing and manual flux ratio analysis: like
global isotopomer balancing, our framework is systematic
and can be applied with all network topologies, substrates
and substrate labelling distributions and with all current
isotopomer measurement techniques. Thus, laborious
and error-prone manual inspection of metabolic network
models and the tailoring of the equation systems con-
straining the fluxes separately for each experimental set-
ting required in manual flux ratio techniques can be
avoided. On the other hand, during the automated con-
struction of flux ratios we resort to linear optimization
techniques only, combined with graph algorithms of pol-
ynomial worst case time complexity. Thus, our framework
is computationally efficient and avoids problems with
local and multiple optima frequently met in global iso-
topomer balancing. The trade-off of this philosophy is,
however, the requirement of measuring isotopomer distri-
butions of metabolites more rigorously to obtain full flux
distribution. Given insufficient measurements, our frame-
work can solve the flux ratios only for some, but not nec-
essary for all metabolites in the network. We expect that,
especially as measuring isotopomers of intermediate
metabolites becomes more routine, our framework will be
an attractive method for 13C flux analysis.

Results and Discussion
In this section we demonstrate the applicability of the pre-
sented framework by empirical results. We show that our

automatic and systematic framework is able to reproduce
flux ratios previously determined by a manual analysis
from NMR and GC-MS isotopomer measurements of pro-
tein bound amino acids of S. cerevisiae and B. subtilis on
glucose. Thus, we can conclude that the presented frame-
work is powerful enough to provide interesting flux ratio
information in the well studied experimental settings.
Furthermore, we show that the framework can be applied
to study less known experimental conditions without any
further effort by discovering the flux ratios that can be esti-
mated when B. subtilis is grown on malate instead of glu-
cose. The results of this analysis show that our framework
can detect profound effects the change of external sub-
strate can have to the flux ratio computations. The results
indicate that our framework is a good tool to study flux
ratios of microbes in different experimental conditions –
a claim that will try to validate with more experiments in
our further work.

We obtained NMR and GC-MS labelling data, where iso-
topomer distributions of protein bound amino acids of S.
cerevisiae and B. subtilis grown on different conditions
were measured. Then, available flux ratios were computed
with the presented framework. Models of metabolic net-
works applied in the analysis can be found from the sup-
plementary material of this article: additional files 1 and
2 contain the SBML model file and a visualization of the
model of S. cerevisiae, while additional files 3 and 4 con-
tain the same information for B. subtilis. In the models,
some simplifications common to 13C metabolic flux anal-
ysis were applied by pooling metabolites whose iso-
topomer pools can be assumed to be fully mixed (cf.
[28]). Pooling of metabolites was carried for (i) the three
pentose-phosphates in PPP, (ii) phopshotrioses between
GA3P and PEP in glycolysis, and (iii) oxaloacetate and
malate in the TCA cycle. In these cases, pooling is justified
by the existence of fast equilibrating, bidirectional reac-
tions between the listed intermediates and the empirical
evidence that their isotopic labeling is not distinguishable
with the current analytical tools. Cofactor metabolites
were excluded from the model as cofactor specificities and
activities are not accurately known for many reactions.

The bulk of the carbon mappings of reactions in the met-
abolic network were provided by ARM project [29]. Car-
bon mappings from amino acids to their precursors were
conform to [4] and [23]. Before the analysis of the real
measurement data, the correctness of the implementation
of the framework was empirically verified by estimating
flux ratios for junction metabolites in the metabolic net-
work of S. cerevisiae from the artificial data generated by
the 13C-FLUX software [8].
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NMR measurements from S. cerevisae on glucose
In the first experiment we analyzed NMR isotopomer
measurement data from protein bound amino acids of S.
cerevisiae that was grown on uniformly labelled glucose
(see Section Experimental NMR and GC-MS methods for
more details on experimental settings).

From the 15 measured amino acids we were able to esti-
mate flux ratios for seven junction metabolites: oxaloace-
tate, PEP, glycine and serine on cytosol and for
oxaloacetate, acetyl-CoA and pyruvate in mitochondria.
Furthermore, an upper bound for a ratio of GA3P mole-
cules that have visited the transketolase reaction was
obtained by manually simplifying the model to imitate
the previously reported ways to manually compute the
corresponding upper bound (cf. [4]). (The structural anal-
ysis of the metabolic network model described in Section
Structural analysis of isotopomer systems can help in discov-
ering such simplifications, but they also need some expert
insight. As the simplifications are currently not done auto-
matically, the systematical framework is unable to vali-
date them.)

The computed flux ratios were compared with the manu-
ally derived ratios [23], when the assumptions made in
the manual derivation of flux ratios were consistent with
the model used. In all cases, automatically computed flux
ratios agreed well with the manually derived ratios (Table
1). Differences between the estimations can be explained
by numerical instabilities and by differences in computa-
tional procedures: in manually derived ratios the estima-
tions are based on the breakage of a single bond in
different routes leading to a metabolite while in our
framework more isotopomer information is possible uti-
lized in the estimation.

GC-MS measurements from B. subtilis on glucose
In the second experiment we analyzed GC-MS isotopomer
measurement data from protein bound amino acids of
Bacillus subtilis that was grown on uniformly labelled glu-
cose (see Section Experimental NMR and GC-MS methods
for more details on experimental settings).

In comparison to eukaryotic S. cerevisiae, the metabolic
network of prokaryotic B. subtilis lacks cellular compart-
ments. Thus, from the point of view of 13C metabolic flux
analysis, there are fewer interesting junction metabolites
in the central carbon metabolism of B. subtilis where the
flux ratios can be estimated. From the GC-MS measure-
ments of 14 amino acids we were able to compute flux
ratios for four junction metabolites – oxaloacetate, pyru-
vate, PEP and glycine – when [U-13C]-glucose was used as
a carbon source. Furthermore, an upper bound for a ratio
of GA3P molecules that have visited transketolase reac-
tion was obtained by manually simplifying the model of
the metabolic network. Excluding pyruvate, we were able
to compute the same ratios with [1-13C]-glucose as a car-
bon source.

We compared the computed flux ratios to ones obtained
with the software FiatFlux [30] that is based on the manu-
ally derived analytic equations for computing flux ratios.
Currently, manually derived flux ratio equations for [1-
13C]-glucose as a carbon source exist only for PEP and for
the upper bound to the flux through oxidative pentose
phosphate pathway. In general, the flux ratios computed
with different methods from the same data and with the
same assumptions about the topology of metabolic net-
work were in good agreement (Table 2). (As a data clean-
ing procedure, we removed from [1-13C]-glucose data the
mass distributions of fragments whose fractional enrich-
ment deviated more than 5% from the assumed fractional
enrichment of 20% in [U-13C]-data. This was done
because differences in fractional enrichments can be
tracked in uniformly labelled data where the fractional
enrichment of each fragment is know a priori, but not in
positionally labelled data, where the fractional enrich-
ment of a fragment depends on the network topology and
the fluxes. This kind of irregularities are in general caused
by noise in fragments with low intensity or by coeluting
analytes with overlapping fragment masses.) Again, differ-
ences between the flux ratios estimated by different meth-
ods can be explained by numerical instabilities and by
differences in isotopomer information applied during the
estimation. Variation in the estimated flux ratios between
repeated experiments (six repetitions for [1-13C]-glucose

Table 1: Estimated flux ratios from NMR measurements of S. cerevisiae.

flux ratios our framework METAFoR

PYR(mit) from MAL(mit) : PYR(mit) from PYR(cyt) 0.05 : 0.95 0.03 : 0.97
OAA(mit) from TCA-cycle : OAA(mit) from OAA(cyt) 0.50 : 0.50 0.50 : 0.50
PEP from OAA(cyt) : PEP from GA3P 0 : 1 0.04 : 0.96
OAA(cyt) from PYR(cyt) : OAA(cyt) from OAA(mit) 0.40 : 0.60 0.43 : 0.57
GLY from SER : GLY from C1 + CO2 0.96 : 0.04 0.96 : 0.04

Directly comparable flux ratios computed from the NMR data by the framework presented in this paper and by manual flux ratio analysis 
(METAFoR).
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experiment, four repetitions for uniformly labelled glu-
cose experiment) was negligible.

In silico calculability analysis of B. subtilis on malate
One of the strengths of the presented framework is that it
is able to automatically produce metabolic flux ratios also
when other external labelled substrates than commonly
used glucose are fed to organisms. To demonstrate this
ability, we applied our framework to predict what flux
information would be available, if we feed B. subtilis with
malate.

We applied the in silico calculability analysis (see Section
Calculability analysis) to examine which flux ratios are cal-
culable in the best case from GC-MS measurements of
amino acids, when B. subtilis is grown on [U-13C]-
labelled malate. Interestingly, our fragment flow analysis
revealed that – with the reaction reversibilites in the
applied model – the isotopomer distributions of GA3P,
PEP and pyruvate depend only on the isotopomer distri-
bution of the fragment containing the first three carbons
of oxaloacetate, but not on the relative fluxes producing
these metabolites. Thus, isotopomer balances for GA3P,
PEP and pyruvate reduce to mass balances and the ratios
of fluxes producing these metabolites cannot be esti-
mated. This somewhat surprising phenomenon is due the
fact that the rearrangements of carbon chains occurring in
PPP pathway will affect only to the carbon fragments that
will be recycled in the upper metabolism but not the car-
bon fragments that can flow back GA3P, PEP and pyruvate
from PPP (we modelled a reaction from GA3P to F6P as
unidirectional one).

Preliminary experiments with GC-MS data from B. subtilis
grown on [U-13C]-labelled malate agreed with the results
of fragment flow analysis: constraints to the isotopomer
distributions of fluxes entering to these metabolites were
identical within the limits of measurement accuracy. On
the other hand, our framework was able to estimate for
example the TCA-cycle activity also when B. subtilis is
grown on malate, just as predicted by the calculability
analysis.

Conclusion
In this article we introduce a systematic and analytic
framework for 13C metabolic flux ratio analysis. At the
heart of the framework lie the techniques for flow analysis
of a metabolic network and for manipulating isotopomer
measurements as linear subspaces. These techniques facil-
itate the efficient and analytic computation of the ratios
between the fluxes producing the same junction metabo-
lite. The framework can be seen as a generalization and
formalization of existing analytic methods for computing
metabolic flux ratios [23,30,31] where equations con-
straining flux ratios are manually derived. Like the recent
methods to improve the speed of the simulation of iso-
topomer distributions in the global isotopomer balancing
framework [10,32], our framework relies on graph algo-
rithms. However, both our goals and applied techniques
are quite different from these approaches. In [10] and [32]
connected components of isotopomer graphs are discov-
ered to divide the simulation of isotopomer distributions
to smaller subtasks. In our framework, flow analysis tech-
niques are applied to discovered metabolite fragments
with equivalent isotopomer distributions in every iso-
topomeric steady state.

Our experiments with NMR and MS data show that the
framework is able to provide relevant information about
metabolic fluxes, even when only constraints to the iso-
topomer distributions of protein-bound amino acids are
measured.

Thanks to recent advancements in measurement technol-
ogy improving the feasibility of mass isotopomer meas-
urements of intermediate metabolites [13,33], we expect
that the full power of the framework will be harnessed in
near future. Measurements from intermediates will make
it possible to use larger models of metabolic networks and
estimate flux ratios more accurately, without simplifying
assumptions about the topology of the metabolic network
or directionality of the fluxes. However, these measure-
ments will not be easy to conduct, because of the low
abundances of intermediates in the cell. Thus, systematic
methods for experimental planning and data quality con-
trol are required. The presented framework provides pow-

Table 2: Estimated flux ratios from GC-MS measurements of B. subtilis.

flux ratios our fw (UL) our fw (1CL) FiatFlux (UL) FiatFlux (1CL)

PYR from MAL : PYR from PEP 0.01 : 0.99 0.04 : 0.96
OAA from TCA-cycle : OAA from PYR 0.42 : 0.58 0.37 : 0.63 0.41 : 0.59
PEP from OAA : PEP from GA3P 0 : 1 0 : 1 0.04 :0.96 0 : 1
GLY from SER : GLY from C1 + CO2 1 : 0 1 : 0 1 : 0
SER from GLY : SER from GA3P 0.09 : 0.91 0.14 : 0.86

Directly comparable flux ratios computed from the GC-MS data described by the framework presented in this paper (our fw) and by FiatFlux 
software [30]. UL denotes uniform labelling of external glucose, 1CL external glucose labelled to the first carbon position.
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erful tools for these tasks. First, the framework facilitates
time saving in silico calculability analysis.

Second, the manipulation of isotopomer measurements
as linear subspaces offers a natural way for comparing
measurements from different metabolites that contain
overlapping information to detect inconsistencies in the
measurements: it is enough to compare propagated iso-
topomer information in the fragments that belong to the
same equivalence class. Third, as MS isotopomer measure-
ment techniques have to be developed separately for dif-
ferent intermediate metabolites or metabolite classes, it
will be very useful to select a small subset of intermediates
that gives enough information about the interesting met-
abolic fluxes with least experimental effort. In future
research, we want to tackle this problem by generalizing
our earlier experimental planning method [34], to all
measurement data and to realistic measurement error
models.

As the presented framework for 13C metabolic flux analy-
sis only resorts to linear optimization techniques, it is not
always able to provide as much information about the
metabolic fluxes as the global isotopomer balancing
frameworks utilizing more powerful, nonlinear optimiza-
tion techniques [8,35], that do not necessarily converge to
the global optimum. On the other hand, some flux ratios
might be computable from the scarce data or incomplete
model of metabolic network that does not allow global
isotopomer balancing. The differences in the practical per-
formance of different approaches require further research.
We see these alternative approaches as complementary
ones. A very nice goal would be an integration of our work
with global isotopomer balancing: our analytic flux ratios
could speed up and direct the optimization process of glo-
bal isotopomer balancing, that would then fill in the flux
ratios possibly missed by our framework.

Methods
In this section we describe a systematic and analytic com-
putational framework for 13C metabolic flux analysis. At
the end of the section we also shortly describe the experi-
mental method that were applied to produce the iso-
topomer measurement data that was analyzed in Section
Results and Discussion.

The overall goal of our computational framework is to
automatically infer from the available isotopomer meas-
urement data produced by MS, MS-MS or NMR tech-
niques, an equation system constraining the fluxes. The
crucial question is to derive as many non-redundant equa-
tions as possible, ideally constraining the flux distribution
to a point solution, or in general, as low-dimensional con-
vex set as possible.

In short, the framework consists of the following steps:

1. The model of the metabolic network of an organism is
constructed by selecting a set of biochemical reactions
operating in the organism and by designating them to cor-
rect cellular compartments;

2. Structural analysis of the isotopomer system is con-
ducted, consisting of the following steps:

(a) Flow analysis of the metabolic network is conducted
in order to discover equivalent fragments, fragments of car-
bon backbones of metabolites that will have the same the-
oretical isotopomer distribution, regardless of the fluxes.

(b) Independence analysis of fragments is conducted to
find statistically independent carbon subsets from metab-
olites, that is, subsets that have been at some point sepa-
rated along every pathway able to producing them and
that have flux invariant isotopomer distributions. This
guarantees that the isotopomer distribution of their union
assumes the form of a product distribution.

(c) In silico calculability analysis is performed to test if the
available measurement techniques and substrate label-
lings make it in principle possible to obtain the required
flux information.

3. Wet-lab isotopomer tracer experiments are conducted
and constraints to isotopomer distributions are measured;

4. The fluxes of the network are estimated. The process
consists of the following steps:

(a) Isotopomer measurement data is propagated in the
metabolic network model from the measured metabolites
to unmeasured ones according to the equivalences discov-
ered in step 2.

(b) An equation system tying the isotopomer data and the
fluxes together is constructed and solved, either to obtain
a flux distribution for the metabolic network as a whole,
or for a single junction metabolite to obtain the ratios of
fluxes producing it.

(c) The statistical analysis of obtained fluxes or flux ratios
is carried out.

In the following we first formalize the 13C flux analysis
problem and then detail the computational steps above.

Preliminaries

In 13C metabolic flux analysis the carbon atoms of metab-
olites are of special interest. We denote with M the set of
carbon locations M = {c1, ..., ck} of a k-carbon metabolite.
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By |M| = k we denote the number of carbons in M. Frag-

ments of metabolites are subsets F = {f1, ..., fh} ⊆ M of the

carbons of the metabolite. A fragment F of M is denoted
as M|F. A metabolic network G = ( , ) is composed of a

set  = {M1, ..., Mm} of metabolites and a set  = {ρ1, ...,

ρn} of reactions that perform the interconversions of

metabolites.

With isotopomers we mean molecules with similar element
structure but different combinations of 13C labels. Iso-
topomers of the molecule M = {c1, ..., ck} are represented
by binary sequences b = {b1, ..., bk} ∈ {0, 1}k where bi = 0
denotes a 12C and bi = 1 denotes a 13C in location ci. Mol-
ecules that belong to the b-isotopomer of M are denoted by
M(b). Isotopomers of metabolite fragments M|F are
defined in an analogous manner: a molecule belongs to
the F(b)-isotopomer of M, denoted M|F(b1, ..., bh), if it has
a 13C atom in all locations fj that have bj = 1, and 12C in
other locations of F. Isotopomers with equal numbers of
labels belong to the same mass isotopomer. We denote mass
isotopomers of M by M(+p), where p ∈ {0, ..., |M|} denotes
the number of labels in isotopomers belonging to M(+p).

The isotopomer distribution DM of metabolite M gives the
relative abundances 0 ≤ PM(b) ≤ 1 of each isotopomer
M(b) in the pool of M such that

The isotopomer distribution DM|F of fragment M|F and

the mass isotopomer distribution  of mass isotopomers

M(+p) are defined analogously: DM|F of metabolite M

gives the relative abundances 0 ≤ PM|F(b) ≤ 1 of each iso-

topomer M|F(b) and  gives the relative

abundances 0 ≤ PM(+p) ≤ 1 of each mass isotopomer

M(+p).

Reactions are pairs ρj = (αj, λj) where αj = (α1j, ..., αmj) ∈ m

is a vector of stoichiometric coefficients-denoting how many
molecules of each kind are consumed and produced in a
single reaction event-and λj is a carbon mapping describ-
ing the transition of carbon atoms in ρj (see Figure 1).
Metabolites Mi with αij < 0 are called substrates and with αij
> 0 are called products of ρj. If a metabolite is a product of
at least two reactions, it is called a junction. If αij < 0, a reac-
tion event of ρj consumes |αij| molecules of Mi, and if αij >
0, it produces |αij| molecules of Mi. Bidirectional reactions
are modelled as a pair of reactions.

A pathway p in network G from metabolite fragments {F1,

..., Fk} to fragment F' is a sequence  of reac-

tions such that a composite carbon mapping

, defined by p maps the

carbons of {F1, ..., Fp} to the carbons of F'.

For the rest of the article, it is important to distinguish
between the subpools of a metabolite pool produced by dif-
ferent reactions. Therefore, we denote by Mij, the subpool
of the pool of Mi produced (αij > 0) or consumed (αij < 0)
by reaction ρj. The concept of the subpools of a metabolite
pool is illustrated in Figure 2.

By Mi0 we denote the subpool of Mi that is related to the
external in flow or external out flow of Mi. We call the
sources of external in flows external substrates. Subpools of
fragments are defined analogously. In 13C metabolic flux
analysis, the quantities of interest are the rates or the
fluxes vj ≥ 0 of the reactions ρj, giving the number of reac-
tion events of ρj per time unit. We denote by v the vector
[v1, ..., vn] of fluxes, or a flux distribution.

Generalized isotopomer balances
The framework for 13C metabolic flux analysis presented
in this article rests on the assumption that the metabolic
network is in metabolic and isotopomeric steady state. In
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An example of a metabolic reactionFigure 1
An example of a metabolic reaction. In the reaction ρj, 
a fructose 1,6-bisphosphate (C6H14O12P2) molecule is pro-
duced from glycerone phosphate (C3H7O6P) and glyceralde-
hyde 3-phosphate (C3H7O6P) molecules. Carbon maps are 
shown with dashed lines. Glyceraldehyde 3-phosphate is 
equivalent to the gray fragment of fructose 1,6-bisphosphate 
while glycerone phosphate is equivalent to the white frag-
ment.
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the metabolic steady state, metabolite balance, or mass bal-
ance

holds for each metabolite Mi. Here, βi is the measured
external in flow (βi < 0) or external out flow (βi > 0) of
metabolite Mi. From balance equations (1) defined for
every metabolite Mi we will obtain a metabolite balanc-
ing, or stoichiometric equation system.

In isotopomer steady state, for each isotopomer b of each
metabolite Mi in the metabolic network the following iso-
topomer balance holds:

For metabolic flux analysis (1) and (2) bear a fundamen-
tal difference: the former cannot be used to estimate fluxes
of alternative pathways producing Mi while the latter can.
However, using (2) is not in general admissible in prac-
tice: typically abundances PM(b) of isotopomers are not
fully determined from the measurements, and we need to
settle for some constraints to the distribution DM. A cru-
cial building block of our framework is the representation

of isotopomer measurements as systems of linear equa-
tions (c.f. [21])

where sbh is the weight of isotopomer b in the h'th con-
straint, dh is a value derived from isotopomer measure-
ments, and r is the total number of constraints. We call (3)
isotopomer constraints. For a k carbon metabolite, 2k linearly
independent isotopomer constraints – one for each iso-
topomer – are necessary and sufficient to constrain the
isotopomer distribution DM to a point solution. A set of
isotopomer constraints has a natural matrix representa-
tion SDM = d, where S = (sbh)b,h is a 2k by r matrix, where 1
≤ r ≤ 2k is the number of isotopomer constraints (the triv-
ial constraint ΣbPM(b) = 1 by definition always holds).

The use of (3) follows from the simple observation that
isotopomer balance (2) implies that each linear combina-
tion of isotopomers is balanced. Thus, we can write a new
balance equation that constrains the fluxes producing Mi
as soon as we know the value of the same linear combina-
tion of isotopomer abundances for each subpool of Mi.
We have

where each  is a linear combination of

the form (3), with coefficients sb that do not depend on j,

i.e. they are the same for each subpool Mij. We call (4) a

generalized isotopomer balance.

Representing MS and NMR isotopomer measurements as linear 
constraints
In the following, we will show by examples how MS and
NMR data can be represented as isotopomer constraints.
Let us first consider mass isotopomer distributions
obtained from MS. Here we omit discussion on practical-
ities such as corrections for natural abundances of 13C iso-
topes (c.f., [6,36]) and concentrate on the conceptual
level. For example, the +2 mass isotopomer of a three car-
bon metabolite M satisfies

PM(+2) = PM(011) + PM(110) + PM(101)

which conforms to (3) by taking s011,2 = s110,2 = s101,2 = 1,
and sb,2 = 0 otherwise. Similarly, the coefficients sbk can be
derived for all mass isotopomers +k, k = 0, ..., 3.

Isotopomer data originating from Tandem MS, or MS-MS,
falls into the same representation. Consider, for example,
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An example of subpools of a metabolite poolFigure 2
An example of subpools of a metabolite pool. Phos-
phoenolpyruvate (PEP) is produced by two different reac-
tions (ρi and ρj), either from Oxaloacetate (OAA) or from 
glyceraldehyde 3-phosphate (GA3P). Thus, PEP has two in 
flow subpools, PEP from OAA and PEP from GA3P (grey boxes) 
that are mixed in the common PEP pool (at the bottom).
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a fragment M|F of a three-carbon metabolite, containing
the first and second carbon of M. The following equation
holds for the mass isotopomer M|F(+1):

PM|F(+1) = PM|F(01) + PM|F(10).

The equation can be written in terms of the precursor M,
but the exact form of the equation depends on the mode
of tandem MS. If the full scan mode is used, we obtain

PM|F(+1) = PM(010) + PM(011) + PM(100) + PM(101),

as all precursor molecules M that have exactly one carbon
among the first and second location contribute to the frag-
ment mass isotopomer M|F(+1). On the other hand, in
the daughter-ion scanning mode a single mass iso-
topomer, for example M(+2), is selected as the precursor.
Then we obtain

PM|F(+1) = PM(011) + PM(101),

as the precursor must always have two 13C atoms in total.
We refer the reader to [6,36] for further details. Also NMR
13C isotopomer measurements, where relative intensities
of different combinations of 13C and 12C atoms that are
coupled to an observed 13C atom are measured, can be
expressed as linear combinations of isotopomer abun-
dances. For example, for a three-carbon metabolite M, the

following constraints to  can be inferred for the labe-

ling pattern 010:

where d(010) is the measured intensity. Rewriting the
above as

and denoting sb = d(010), for b ∈ {110, 011, 111}, s010 =
d(010) - 1 and sb = 0 for b ∈ {000, 100, 001, 101}, the
above can be seen to conform to (3). Similar derivation
can be used for other isotopomer signals present in the
NMR spectrum to obtain the corresponding isotopomer
constraints.

Projection of isotopomer measurements to fragments
In our computational framework, it will be necessary to
project the measurement data obtained for a metabolite
M to its fragments M|F and vice versa. In this projection,
we want to avoid any unnecessary loss of measurement
information, that is, we want to obtain as many linearly

independent constraints to the isotopomer distribution of
F as possible. For example, if we have measured that a
two-carbon metabolite M has the isotopomer distribution

PM(00) = 0.2, PM(01) = 0.3, PM(10) = 0.4, PM(11) = 0.1

and we need to know the isotopomer distribution of the
fragment M|F consisting of the first carbon of M, we
should obtain

For the general model of isotopomer measurements (4)
the projection of measurement information from a
metabolite to its fragments can be done by the techniques
of linear algebra introduced in [21]. We recapitulate the
techniques in the following.

Recall the general form of isotopomer measurement SDM

= d, where S denotes a matrix with 2k columns, one col-
umn for each isotopomer b of k-carbon metabolite M, and
each row h of S corresponds to a measured isotopomer

constraint (3). The rows of S span a subspace  in a

2k dimensional vector space  spanned by all possible

isotopomer distributions DM.

Also the metabolite fragments are naturally represented as
vector subspaces. Let UF denote a matrix with also a col-
umn for each isotopomer M(b) and a row for each iso-
topomer F(b') of M|F, that is,

The rows of UF span another subspace . Any iso-

topomer distribution DM|F lies in this subspace, and hence

also any isotopomer constraint SFDM|F = d for fragment

M|F necessarily lies in the same subspace.

In conclusion, the available information about DM is

given as its linear projection onto , and anything we can
express about DM|F in terms of isotopomer constraints is

contained within . Thus, any isotopomer constraint

for DM|F that we can derive from the measurements can be

expressed in terms of the vector space intersection .

Thus, to obtain isotopomer constraints for fragment M|F
from a measurement SDM = d, we need to compute the

DMi

PM
PM b bb b

d
( )

( ), { , }
( )

010

11 31 3 0 1
010

∈∑
=

d P b d PM M

b

( ) ( ) ( ( )) ( )
{ , , }

010 1 010 010
110 011 111

⋅ = − ⋅
∈

∑

P P P P

P P P P
F M M M

F M M M

( ) ( ) ( ) ( ) . ,

( ) ( ) ( ) ( )

0 0 00 01 0 5

1 1 10 11

= ∗ = + =
= ∗ = + = 00 5. .

 ⊆ M

M

U b b
b b j F

F
j j k( , )′ =

= ′ ∈1

0

if for all carbon positions 

otherwise..

⎧
⎨
⎩

(5)

 F M⊆



 F

 ∩ F
Page 9 of 19
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:266 http://www.biomedcentral.com/1471-2105/9/266
vector space intersection  and project the

measurement to . This can be done by standard linear

algebra (c.f. [21]). This process gives us as output iso-
topomer constraints of the required form

YFDM|F = dF.

Finally, transforming a fragment constraint YFDM|F = dF
into an isotopomer constraint SDM = d is easy: we post-
multiply the fragment constraint with the matrix UM|F : S
= YFUM|F and d = dFUM|F.

Structural analysis of isotopomer systems
The incomplete nature of 13C measurement data requires
us to find ways to use the available data the best way pos-
sible. The central concept is to find invariants of iso-
topomer distributions that remain through the pathways,
and allow us to trade or propagate measurement informa-
tion from one metabolite to another. This allows us to
write or augment generalized isotopomer balances for
metabolites for which the isotopomer distributions are
not completely determined by measurements. Thus, the
fluxes are potentially more tightly pinpointed as well.

In particular, we use two techniques: First, flow analysis is
used to uncover sets of metabolite fragments that have the
same isotopomer distribution regardless of the fluxes. Sec-
ond, independence analysis of fragments is used to uncover
situations where two fragments of the same metabolite
induce the product distribution for the isotopomer distri-
bution of their union.

Flow analysis of metabolic networks
The goal of the flow analysis [27] is to partition the frag-
ments of the metabolites in the network to equivalence
classes such that fragments in the same equivalence class
have identical isotopomer distributions in every steady
state. This can be guaranteed if a fragment is produced
from another a such a manner that the carbons within the
fragment never depart from each other regardless of the
pathway that is being used.

Formally, we say that fragment F' dominates fragment F if
the following conditions are met

1. F and F' have the equal number of carbons;

2. all carbons of F originate always from the carbons of F';

3. carbon of F' stay connected to each other via all path-
ways from F' to F;

4. composite carbon mappings are the same in all path-
ways from F' to F.

Intuitively, a dominated fragment (F) is always produced
from its dominator (F') without manipulating the carbon
chain of the fragment. Thus, isotopomer distribution of
the dominated fragment does not contain any informa-
tion about the metabolic fluxes. For a fragment F that has
no dominators, the transitive closure of the domination
relation corresponds to the class of equivalent fragments
in the network.

The simplest example of fragment equivalence is the one
between a substrate Mk and product Mi in a single reaction
ρ. If the atoms in Mi|F originate from Mk|F', then the frag-
ments Mk|F' in the subpool Mij produced by reaction ρj,
are equivalent with the fragment Mi|F (Figure 1). Further-
more, if metabolite Mi has only one producing reaction ρj,
isotopomer distributions of subpool Mij and Mi coincide.
Thus, if fragment Mi|F is produced from a single fragment
Mk|F' of some substrate Mk of ρj, F and F'are equivalent. By
transitivity, all fragments in the linear pathway are equiv-
alent.

More complicated case of fragment equivalence is found
when a fragment of a junction metabolite is dominated by
an upstream fragment (Figure 3). In [27] we show that the
the classes of equivalent fragments corresponding the
conditions (1–4) can be efficiently computed. Very brie
fly, first the metabolic network is transformed to a frag-
ment flow graph that connects substrate metabolite frag-
ments to their product fragments for each reaction in the
network. Then, the dominator tree [37,38] of the frag-
ments in the fragment flow graph is constructed. It turns
out that the subtrees of this dominator tree correspond to
the required fragment equivalence classes (see Figure 4).

Fragment equivalence classes have many uses [27]. Most
importantly, measured isotopomer constraints to frag-
ment F can be directly propagated to another fragment F'
in the same equivalence class, by applying the joint car-
bon mappings between F and F'. This helps in the con-
struction of generalized balance equations (4) where the
same isotopomer information is required for each sub-
pool of junction metabolites.

Independence analysis of fragments
A complementary property to fragment equivalence 13C is
the statistical independence of fragment isotopomer dis-
tributions. Intuitively, if two fragments of the same
metabolite are statistically independent, new isotopomer
constraints to the union of them can be obtained by tak-
ing a product of the isotopomer distributions of the inde-
pendent fragments.

More formally, the basic question is on what conditions
the distribution DM|E∪F of union of two fragments will
necessarily have the form of a product distribution

  M F F| = ∩

i F,
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DM|E∪F = DM|E � DM|F (6)

where � denotes the tensor product consisting all terms of
the form PE∪F(b) = PE(b')·PF(b"), where b' (resp. b") ranges
over all isotopomers of E (resp. F), and b is the isotopomer
of M|E ∪ F formed by joining E and F.

The utility of fragment independence is in that it gives us
constraints to the isotopomer distributions that are com-
plementary to the isotopomer constraints (3) obtained
from the measurements.

In general, two criteria need to be satisfied for statistical
independence of two fragments M|E and M|F. First, the
fragments need to be structurally independent, meaning
that along all pathways producing the metabolite, at some
point all carbons of the fragments have resided in differ-
ent metabolite molecules. This property can be defined in

recursive manner. Fragments M|E and M|F are structurally
independent if for all carbon pairs (a, b), a ∈ E and b ∈ F,
for all reactions ρ producing M, it holds that

• a and b originate from different reactants of ρ, or

• a and b originate from the same reactant M', and the

reactant fragments M'|Fa and M'|Fb, where Fa = (a), Fb

= (b), are structurally independent.

The second necessary condition is that the two fragments
need to be dominated by some other metabolite frag-
ments in the network. This will make the fragment distri-
butions flux invariant. Together, the two criteria guarantee
(6) to hold.

A simple case of statistical independence of fragments is a
(subpool) product metabolite Mi of a single reaction ρj,
where the fragments Mi|E and Mi|F are disjoint and origi-
nate from different reactants. The fragments are structur-
ally independent (by originating from different reactants)
and are dominated (by reactant fragments of ρj). Hence
(6) holds. The underlying assumption here is that
enzymes pick their reactants independently and randomly
from the available pools. This case of statistical independ-
ence of fragments is depicted Figure 1, where white and
grey fragments of D-fructose 1,6-biphosphate are statisti-
cally independent (in the subpool of reaction ρj).

Another simple example is a junction metabolite Mi that

has two or more producers with associated subpools Mij.

If Mij|E and Mij|F are structurally independent in all sub-

pools, Mi|E and Mi|F are structurally independent as well.

If Mi|E and Mi|F are dominated by some fragments in the

network, all subpools have the same distribution which
takes the form of (6). Without dominance the distribution

 will in general be a flux-dependent mixture of

product distributions .

This case of statistical independence is depicted in Figure
5.

A generalized form of (6), useful for propagation of iso-
topomer constraints, is derived as follows. Assume inde-
pendent fragments M|E and M|F of metabolite M and
isotopomer constraints SE∪FDM|E∪F = dE∪F, SEDM|E = dE and
SFDM|F = dF, where S = SE � SF. Now, the the h'th constraint
for fragment E and g'th constraint for fragment F, written
as Σasah,EPM|E(a) = dh,E and Σcscg,FPM|F(c) = dg,F.

λρ
−1

λρ
−1

DM E Fi| ∪

D v D DM E F j M Ej M Fi ij ij| | |∪ = ⊗∑

An example of fragment equivalence classes in a branched pathwayFigure 3
An example of fragment equivalence classes in a 
branched pathway. An example of equivalence classes of 
fragments in the metabolic network that contains dominated 
junction fragments M|E and M|F. Grey and white fragments 
constitute two equivalence classes. Dashed lines depict car-
bon mappings.
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Multiplying the constraints, and denoting sb = sah,E·scg,F
where b is the isotopomer consistent with fragment iso-
topomers a and c, we get the following equation

for the l'th constraint for E ∪ F. The equations of the above
kind can be concisely written in terms of tensors:

d = SDM|E∪F = (SE � SF) DM|E � DM|F = dE � dF.
(7)

From above, if two of the three vectors d, dE, dF are known,
the remaining unknown one can be solved.

We note in passing that computing constraints to the
metabolite given constraints to the fragments is straight-
forward application of (7).

Applying fragment independence analysis to flux ratio computation
In our framework, statistical independence of fragments
has two uses. We apply it

1. to compute isotopomer constraints for the union of
independent fragments, given isotopomer constraints to
its independent fragments, and

2. to compute isotopomer constraints for an independent
fragment given isotopomer constraints to the other frag-
ments and the metabolite as a whole.

In both cases making use of (6) gives us a larger set of con-
straints than the vector space and flow analysis approach
alone.

Next we describe how (7) generalizes the basic measure-
ment propagation step of the traditional metabolic flux
ratio analysis [31]. In the basic case, the flux ratios are
solved for two competing pathways p and q, which p
cleaves a certain carbon-carbon bond b of junction M
while the q preserves b intact from the external substrate.
(See Figure 6 for an example). This serves also as an exam-
ple of applying (7) to compute isotopomer constraints for
the union of independent fragments.

When a uniformly labelled substrate is used, the labelling
degree of every carbon in the network is the same (and
known a priori) when the system reaches isotopomeric

steady state. Thus, the isotopomer distribution  of a

two-carbon fragment F (metabolite MF in Figure 6) con-

taining bond b can be computed by (7) for pathway p

cleaving b, while for pathway q,  can be propagated
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An example of a fragment flow graph and a dominator treeFigure 4
An example of a fragment flow graph and a dominator tree. A metabolic network (left), the corresponding fragment 
flow graph (up right) and the subtrees of the dominator tree (down right).
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from the external substrate (metabolite ME in Figure 6)

using the fragment equivalence classes of the previous sec-
tion. If we are able to measure (constraints to) the iso-
topomer distribution of the mixed pool F, we can then
automatically derive a generalized isotopomer balance
corresponding the manually derived ratio. To use (7) to
compute isotopomer constraints for an independent frag-
ment from the known isotopomer constraints to the other
independent fragment and to the whole metabolite is
complicated by the incompleteness of the measurement
data: an arbitrary measurement SDM|E∪F = d might not be

directly representable via a tensor product S = SE � SF.

Instead, we need to first compute isotopomer subspaces

An example of statistical independence of fragmentsFigure 5
An example of statistical independence of fragments. 
White and grey one-carbon-fragments of Mi are statistically 
independent: both fragments are dominated by one-carbon-
fragments of M, and the fragments are disjoint in every path-
way that produce Mi from M.
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An example of using fragment independence to obtain new isotopomer constraints under uniform substrate labellingFigure 6
An example of using fragment independence to 
obtain new isotopomer constraints under uniform 
substrate labelling. Constraints to the isotopomer distri-
butions of striped metabolites are assumed to be known, 
either by direct measurement of measurement propagation. 
In pathway q = (ρ2, ρ4), the isotopomer distribution of MF 

molecules will be the same as in ME. In pathway p = (ρ1, ρ3), 
the isotopomer distribution of MF can be derived by applying 
fragment independence: the isotopomer distributions of sin-
gle carbon metabolites produced by ρ1 are known a priori to 
be equal to the labelling degree of uniformly labelled sub-
strate. As the two carbons of MF3 are produced from two dif-
ferent metabolites, these carbons are statistically 
independent to each other in the subpool and the iso-
topomer distribution D( ) of MF molecules produced by 

p can be computed by applying Equation 7.
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for known isotopomer constraints where (7) can be
applied.

The detailed description of this technique is rather techni-
cal and omitted from this article. Here we give an example
of the technique (See Figure 7). We assume that we know

the mass isotopomer distributions  of metabolite Mi

(metabolite M1 in Figure 7) and  of fragment Mi|E.

We furthermore assume that Mi|E and Mi|F are independ-

ent. From this information the mass isotopomer distribu-

tion of  can be solved. To be exact,  can be

solved from the system containing an equation

for each mass isotopomer p of Mi. To see that (8) con-

forms to (7), we denote the measured mass isotopomer

distribution  = S·D(Mi) of Mi by dM (i.e. rows of coef-

ficient matrix S correspond to different mass isotopomers
of Mi) and the measured mass isotopomer distributions of

E and F by dE and dF. Let |E| = 2, |F| = 1 and |Mi| = 3, thus

Mi = E ∪ F. We have

with the tensor product

As the two matrices are not the same (7) is not directly
applicable. However, by summing up the second and the
third rows and the fourth and the fifth rows of SE � SF we

obtain S. Intuitively, this means that Equation (7) can be

applied to compute , when we take into account that

the isotopomer constraints corresponding both second
and third rows of SE � SF contribute to mass isotopomer

Mi(+1), while the isotopomer constraints corresponding

fourth and fifth rows of SE � SF contribute to mass iso-

topomer Mi(+2). (From the definition of the tensor prod-

uct we see that, for example, the second row of SE � SF

corresponds to isotopomer constraints PE(00)·PF(1) =

PE(+0)·PF(+1) and the third row corresponds to the con-

straints PE(01)·PF(0) + PE(10)·PF(0) = PE(+1)·PF(+0),

thus validating our intuitive observation.) When the
similiar information for all rows of SE � SF is collected to

a linear equation system, we will obtain the following

constraints to the mass isotopomer distribution 

(which in the case of one-carbon-fragment M|F coincides
with the isotopomer distribution DM|F):
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An example of using fragment independence to obtain new isotopomer constraints for a reactantFigure 7
An example of using fragment independence to 
obtain new isotopomer constraints for a reactant. 
The mass isotopomer distributions of striped metabolites are 
assumed to be measured. Fragments M1|E and M2 belong to 
the same fragment equivalence class. Thus, Dm(M1|E) can be 
derived from Dm(M2) by the measurement propagation inside 
equivalence classes. Furthermore, fragments M5|E' and M5|F' 
dominate fragments M1|E and M1|F, and the bond between 
M1|E and M1|F is broken in all pathways producing M1 from 
M5. Thus, M1|E and M1|F are statistically independent, and 
Dm(M1|F) can be deduced from Dm(M1) and Dm(M1|E) by uti-
lizing Equation 7. Computed Dm(M1|F) can then be propa-
gated to M4, as M1 and M4 belong to the same fragment 
equivalence class. Finally, Dm(M4) helps to solve the ratios of 
fluxes entering to M3.

C – C - C

C – C C – C C C 
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which is equal to (8).

Calculability analysis
Isotopomer tracer experiments using less common carbon
sources can be very costly because of the prices of purpose-
fully labelled substrates. Thus, it is very useful to be able
to first conduct in silico calculability analysis to find out,
whether it is even in principle possible to obtain the
required flux information from the tracer experiment. By
analyzing the fragment equivalence classes, it is relatively
easy to perform this kind of "structural identifiability
analysis" (cf. [39,40] for global isotopomer balancing),
that is, to discover the set of junction metabolites for
which the flux ratios can be calculated (in the best case)
from the given measurement data: it is enough to check
what type of isotopomer constraints

can be propagated to each subpool Mij of junction metab-
olites Mi from the measured metabolites (we need to
know only coefficients sbij, not the isotopomer abun-
dances dij). Then, by applying the techniques of comput-
ing vector subspace intersection described above, we can
compute the maximal number of linearly independent
constraints obtainable for the flux ratios of each junction.
Thus, it is possible to check before costly and time-con-
suming wet lab experiments, whether the experiments
even have potential to answer the biological questions at
hand. The results of the calculability analysis tell which
flux ratios are in principle determinable, given the label-
ling of external substrates, topology of the metabolic net-
work and the available measurement data. It then
depends on the actual flux distribution and the accuracy
of the measurements, whether these ratios can be reliably
determined from the experimental data.

Estimating the flux distribution of the metabolic network
In the main step of our framework for 13C metabolic flux
analysis, the fluxes of the metabolic network are estimated
by forming and solving generalized isotopomer balance
equations (4). The generalized isotopomer balance equa-
tions are based on the isotopomer measurement data that
is first propagated in the network to unmeasured metabo-
lites by utilizing the results of the structural analysis pre-
sented above.

Measurement propagation
The aim of the propagation of measurement data is to
infer from the isotopomer constraints of measured metab-
olites as many isotopomer constraints as possible to
unmeasured metabolites. As a rule of thumb, more con-
straints the unmeasured metabolites will get more gener-

alized isotopomer balance equations (4) bounding the
fluxes can be written.

Fragment equivalence classes can be utilized in the meas-
urement propagation: from isotopomer constraints
known for fragment Mi|F isotopomer constraints for other
fragments Ml|Fk in the equivalence class of F can be easily
computed. The process is the following:

1. Before measurements are propagated from fragment
M|F of measured metabolite M to other fragments in the
equivalence class of F, isotopomer constraints to F are
computed from the constraints measured to the whole
metabolite M by using the vector space projection tech-
niques (see Section Projection of isotopomer measurements to
fragments).

2. The fragment constraints are propagated to all frag-
ments F' that have been found equivalent to F via the flow
analysis technique.

This requires mapping of isotopomers of F to isotopomers
of F' by applying the carbon mappings of the reactions
along any pathway between F and F'.

3. After the propagation of measurement data inside the
fragment equivalence classes, new isotopomer constraints
for independent fragments of the same metabolite can be
derived, as described in Section Independence analysis of
fragments.

Steps 2 and 3 can be iterated until no new isotopomer
constraints to the fragments are discovered.

Construction of generalized isotopomer balances

After the propagation step, we have some isotopomer con-

straints  for each subpool j of every junction

metabolite Mi. (For non-junction metabolites, iso-

topomer balance equations do not contain any additional
flux information compared to the mass balances.) In the
best case we know complete isotopomer distribution

, in the worst case we have only trivial constraints

stating that the sum of relative abundances of all iso-
topomers equals one.

Next, a linear equation system containing flux constraints
obtained from mass balances (1) and generalized iso-
topomer balances (4) is constructed.

However, the isotopomer constraints of different sub-
pools do not yet conform to (4) as the matrices Sij are not
necessarily the same.

s P b dbij M

b

ijij∑ =( ) , (9)

S Dij M ijij
= d

DMij
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Thus we still need to compute a common subspace

 (  is spanned by the rows of Sij) of the iso-

topomer constraints known for each subpool Mij and

project subpool constraints  to .

This can be done with the same techniques that were pre-
viously applied to project measured isotopomer informa-
tion of a metabolite to its fragments. Let Yi be a matrix

with row space . After the projection we obtain iso-

topomer constraints  for each subpool Mij

(See Figure 8 for an example).

Now the isotopomer constraints of all the subpools lie in

the same subspace of  and we are ready to write the

system of generalized isotopomer balance equations (4)
for every junction Mi:

that is,

where gi = βizi0.

Estimating the fluxes
The ratios of (forward) fluxes producing Mi can be com-
puted by solving the corresponding Equation (11) aug-
mented with a constraint that fixes the out flow from Mi
to equal 1. Thus, we obtain flux ratios of junction metab-
olites without manual derivation of ratio equations, with-
out nonlinear optimization and without knowing intake
and outtake rates of external metabolites or biomass com-
position.

In addition, when the equations (11) of all junction
metabolites are combined with the mass balances (1) of
non-junctions, we obtain a linear equation system

constraining the fluxes v of the network that contains a
block (junctions) or a row (non-junctions) Ak for each
metabolite Mk. Measured external fluxes and other known
constraints, such as the composition of biomass can also
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An example of the computation of the common subspace of isotopomer constraints in different subpoolsFigure 8
An example of the computation of the common subspace of isotopomer constraints in different subpools. The 
mass isotopomer distribution of junction metabolite M1 is assumed to be measured. For the in flow subpools M11 and M12 we 
obtain isotopomer constraints from the above reactant metabolites by measurement propagation. These propagated con-
straints must be projected to mass isotopomer to the subspace defined by the mass isotopomer distribution of M1 before gen-
eralized isotopomer balances are constructed.
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be added to (12) as additional constraints. Additional
constraints, like ones derived from gene regulatory infor-
mation [41] or from thermodynamic analysis of metabo-
lism [42-44] can also easily be included to (12).

If (12) is of full rank, the whole flux distribution can be
solved with standard linear algebra [45]. Also, more com-
plex, nonlinear methods can be applied to model the
effect of experimental errors to the estimated flux distribu-
tion [20]. In a common case where the system is of less
than full rank, a single flux distribution can not be pin-
pointed without additional constraints. Instead, (12)
defines the space of feasible flux distributions, that are all
equally good solutions. In that case we can apply tech-
niques developed for the analysis of stoichiometric matri-
ces to determine as many fluxes as possible [46] from
(12). More generally, by linear programming we can
obtain maximum (resp. minimum) values for each flux vi:

where  and  are predetermined minimum and

maximum allowable values for vi

Furthermore, it is possible to search for in some sense
optimal flux distribution – for example a flux distribution
maximizing the production of biomass – from the feasible
space defined by (12) by linear programming techniques
of flux balance analysis [1,3,47,48]. In that case, iso-
topomer data constrain the feasible space more than the
stoichiometric information would alone do, thus possibly
allowing more accurate estimations of the real flux distri-
bution.

Statistical analysis
For an experimentalist, it is important to know how sensi-
tive the obtained estimation of fluxes is to measurement
errors. If enough repeated measurements are not available
to assess this sensitivity, it has to be estimated by compu-
tational techniques. In the global isotopomer balancing
framework for 13C metabolic flux analysis, many mathe-
matically or computationally involved methods have
been developed to analyze the sensitivity of estimated flux
distributions to errors in isotopomer measurements and
the sensitivity of the objective function to the changes in
the generated candidate flux distributions [49-53].

As our direct method for 13C metabolic flux analysis is
computationally efficient, we can afford to a simple, yet
powerful Monte Carlo procedure to obtain estimates on

the variability of individual fluxes due to measurement
errors:

1. For each measured metabolite Mi: By studying the vari-
ability in the repeated measurements, fix the distribution
Ωi from which the measurements of Mi are sampled.

2. Repeat k times:

(a) For each measured metabolite Mi: sample a measure-
ment from Ωi.

(b) Estimate fluxes vl from the sampled measurements.

3. Compute appropriate statistics from the set V = {v1, ...,
vk} to describe the sensitivity of fluxes to measurement
errors.

Possible statistics that can be applied in the last step of the
above algorithm include standard deviation, empirical
confidence intervals [53], kurtosis, standard error etc. of
each individual flux vj and measures of "compactness" of
V, such as (normalized) average distance of items of V
from the sample average.

Experimental NMR and GC-MS methods
In this section we shortly describe the experimental proce-
dures applied in NMR and GC-MS isotopomer measure-
ments that produced the data for Section.

In the first experiment S. cerevisiae was grown in an aero-
bic glucose-limited chemostat culture at dilution rate 0.1
h-1. After reaching a metabolic steady state, as determined
by constant physiological parameters 10% of the carbon
source in the medium was replaced with fully carbon
labelled glucose ([U-13C]) for approximately 1.5 resi-
dence times, so that about 78% of the biomass was uni-
formly labelled. 2D [13C, 1H] COSY spectra of harvested
and hydrolysed biomass were acquired for both aliphatic
and aromatic resonances at 40°C on a Varian Inova 600
MHz NMR spectrometer. The software FCAL v.2.3.0 [19]
was used to compute isotopomer constraints for 15
amino acids from the spectra. Detailed description of the
cultivation set up can be found in [54] whereas similar 13C
labeling set up, NMR experiments and spectral data anal-
ysis as were applied here have been described in [55].

In the second experiment B. subtilis was grown on shake
flasks containing 50 ml M9 minimal medium. In the
experiment, the medium was supplemented with 50 mg/
L tryptophan and 3 g/L glucose labelled to the first carbon
position ([1-13C]) (99%; Cambridge Isotope Laborato-
ries) or a mixture of 0.6 g/L fully carbon labelled glucose
([U-13C]) (99%; Cambridge Isotope Laboratories) and
2.4 g/L unlabeled glucose as the sole carbon source. Four-
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teen derivatized amino acids were analyzed for 13C labe-
ling patterns with a series 8000GC combined with an
MD800 mass spectrometer (Fisons instruments). More
information about the details of the measurement proce-
dure can be found from [20] where identical measure-
ment techniques were applied.
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