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Abstract
Background: Next-generation DNA sequencing technologies such as Illumina's Solexa platform
and Roche's 454 approach provide new avenues for investigating genome-scale questions.
However, they also present novel analytical challenges that must be met for their effective
application to biological questions.

Results: Here we report the availability of tileQC, a tile-based quality control system for Solexa
data written in the R language. TileQC provides a means of recognizing bias and error in Solexa
output by graphically representing data generated by flow cell tiles. The data represented in the
images is then made available in the R environment for further analysis and automation of error
detection.

Conclusion: TileQC offers a highly adaptable and powerful tool for the quality control of Solexa-
based DNA sequence data.

Background
New high-throughput sequencing technologies have
arisen over the last decade that produce very large num-
bers of small sequencing reads (hundreds of thousands to
millions), making possible the rapid and inexpensive
sequencing and resequencing of genomes [1]. Despite the
excitement generated by these new technologies, they also
present substantial challenges that include sequence
assembly of millions of short-read fragments (~30 bp for
Illumina's Solexa sequencing approach) for de novo
sequencing applications [2,3], and the rapid and accurate
mapping of short sequence reads to genomic locations for
resequencing [4]. Regardless of the application, one major
concern is the ability to effectively characterize the relia-
bilities of DNA sequence reads deriving from "next-gener-
ation" platforms that rely on novel sequencing
chemistries such as Solexa's reversible dye-labeled termi-
nator approach. Furthermore, these platforms have aban-

doned the electrophoresis-based approaches of
traditional Sanger sequencing; instead, DNA sequence
data is collected in real-time from novel sequencing sub-
strates. Development of quality-control tools for these
next-generation DNA sequencing technologies is critical
for their effective and accurate application to biological
questions.

Illumina's Solexa sequencing approach consists of a proc-
ess whereby DNA samples are nebulized to small pieces
(~150 bp), then ligated to adapters that bind to linker
molecules on the surface of a flow cell where amplified
DNA clusters are ultimately sequenced in real-time using
Solexa's reversible dye terminator approach [5]. Each flow
cell contains eight lanes onto which DNA molecules from
distinct samples can be independently sequenced. Each
lane is subdivided into hundreds of tiles (200 tiles in ear-
lier systems, 300 in the most recent system) – four images
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are collected from each tile (one for each of the four base
dyes) per sequencing cycle. These tile images constitute
the raw data from which DNA sequence information is
ultimately derived. Illumina provides a standard front-
end analysis pipeline for Solexa data where image analysis
is carried out by Firecrest and base calls are made by Bus-
tard. In making a base call, Bustard assigns a quality score
(Q-score) to each of the 4 potential nucleotides. These
Solexa quality scores range from -40 to 40. They are not
equal to Phred quality scores, but are asymptotically iden-
tical [10]. Assuming no ambiguity, the nucleotide with
the highest Q-score is called. In an ideal call, there is one
+40 and three -40 s. The aggregate quality score (QAG-
score) for a base call is the maximum Q-score minus the
sum of the remaining three Q-scores.

After Firecrest and Bustard, Eland provides alignments of
individual Solexa sequence reads to a user-defined refer-
ence genome. Eland subdivides all sequence reads into
eight categories: those where sequences align to unique
genomic regions with 0, 1 or 2 mismatches (U0, U1 and
U2, respectively), those where sequences align to repeti-
tive regions with 0, 1 or 2 mismatches (R0, R1 and R2,
respectively), those where there are three or more mis-
matches to the reference genome which is defined as the
"no match" (NM) category, and those containing two or
more bases that were unable to be called (QC).

Here we provide an openly available software program,
tileQC, for quality control of Solexa output. TileQC relies
on the R programming environment and a mySQL data-
base server configured for use by the tileQC program.
Minor changes in the initialization script allow almost
any SQL server to be used. Initial configuration is minimal
but flexible enough that a gamut of security options is
possible.

TileQC features both qualitative and quantitative error
detection. The qualitatively oriented functions display the
locations of reads on a tile as dots in a square. The read's
color and size are coded using Eland categorizations and/
or the QAG-score data derived from Bustard. The Eland-
coded images represent the data after all other processing
has occurred and reveal irregularities arising during any
stage of the processing pipeline. QAG-score coded images,
on the other hand, are produced from the Bustard output
and not only produce a greater range of values than the
Eland categorizations, but also have greater resolution,
allowing the Solexa output to be analyzed down to the
level of individual read cycles. This increased flexibility
may obscure errors that are obvious at the Eland level.
However, once an error is detected, the QAG-score coding
allows for a more accurate assessment of that detected
error's underlying cause and/or location.

The guiding philosophy behind tileQC's qualitative error
assessment features is that the researcher's visual pattern
recognition is the best way to detect novel errors. Once a
new type of error is identified the data extraction features
of the program may then be used as a starting point for the
programmatic detection and filtration of similar errors.

Implementation
The current version (tileQC 1.0, see Additional file 1) runs
on Windows, Linux, and Macintosh operating systems,
and requires the programming environment R (version
2.5 or higher) and a properly configured MySQL server
(detailed directions for configuration are available at [8]).
The package 'RMySQL' must also be installed within the R
environment. (The package 'RMySQL' also requires the
package 'DBI', however, installing 'RMySQL' will install
the 'DBI' package automatically).

The R software is available for download [6] as is the
'RMySQL' package (see the FAQ at [6] for details on down-
loading and installing an R package). The database server
MySQL is also available for free download [7]. The TileQC
system was implemented using the R language: source
code, installation instructions and tutorials are available
at the tileQC website [8].

In order to convert text-files into database form (and/or
import data directly from the text files) the utilities sed, tr,
grep, and wc must also be installed. These programs are
part of the standard installation on most flavors of Unix
(including recent versions of the Macintosh OS). For the
win32 platform all the necessary programs are included in
GNU utilities for win32 available at [9].

Results and Discussion
Throughout this section all Solexa data used in examples
was generated from several of our Caenorhabditis elegans
genomic DNA runs (unpublished data) on an Illumina
Genome Analyzer. All C. elegans data were subject to the
standard Solexa data analysis pipeline prior to application
of tileQC tools.

The first role of tileQC is to facilitate the conversion of text
based Solexa pipeline output to a more flexible SQL data-
base format (in our case the MySQL database server). If a
compatible database does not already exist, tileQC will
(upon request) create one. Creating a database requires
that both the SQL server and the tileQC program be prop-
erly configured (see [8] for details). Once the Eland and
QAG-score data is in database form the full power of both
SQL and R may be brought to bear upon the analysis of
that data. Encapsulating the database connection within
an R object enables the mundane details to be managed
invisibly and frees the researcher to focus on the analysis
of the data rather than the mechanics of accessing and
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manipulating that data. Although supplementary to the
package's primary purpose of tile-based quality control
(QC), this feature is useful in its own right, and simplifies
the mechanics of querying a database containing Solexa
data. The standard SQL query language is enhanced by the
inclusion of a simple form of expression substitution.
Here, for example, we see the extraction of five reads cov-
ering the location 332,080 in Chromosome I of the C. ele-
gans genome (note the use of #current.table# in the SQL
command):

> celegans$runSQL("select seq, type,
locus, muta, mutb from #current.table#

where locus >= 332048 and locus <=
332080 and segment = 'CHR_I' limit 5")

seq type locus muta mutb

1 AATTTTTTGAATTTGCTCGCCGCATTTCGACTTTCT
U2 332053 23A 28T

2 TGAATTTGCTCGCCGAATTTCGACTTTCTTACAATT
U2 332060 21T 30G

3 GAATTTGCTCGCCGAATTTCGACTTTCTGACAATTT
U1 332061 20T

4 GAATTTGCTCGCCGAATTTCGCCTTTCTGACACTTG
U2 332061 20T 22A

5 GAATTTGCTCGCCGAATTTCGACTTTCTTACAATTT
U2 332061 20T 29G

The primary purpose of the package is, of course, tile-
based quality control. Often there are patterns in the
errors generated during the Solexa sequencing process
that become visible when the physical locations of a tile's
reads are plotted in colors and sizes that depend upon the
category to which they have been assigned by Eland. For
this purpose, the tileQC package contains functions that
are optimized to create such qualitative displays. The vis-
ual representation appears on the left and a relative fre-
quency histogram of the number of reads in each Eland
category for that tile appears to the right. The researcher
may select which categories of read are to be displayed,
and even filter the unique reads based upon whether they
match the forward strand, the reverse strand, or either. The
homogeneity of the Solexa process ensures that, when the
machine is functioning properly, the relative frequencies
are similar from tile to tile and distributed uniformly
across each tile. Major discrepancies in these conditions
are immediately discerned by sight.

Many such discrepancies are small and their effects are
limited to one, or (possibly) a few, tiles. Figure 1 contains
examples of three such situations. Often these aberrations
have obvious causes such as bubbles in the reagents. How-
ever some, such as the rectangle in Figure 1a, remain mys-
terious. Detection of aberrant tiles is particularly
important for researchers doing single nucleotide poly-
morphism (SNP) detection as a single tile with an
increased error rate may yield a variety of false positives.

Tile-plots using QAG-score data allow for a more in depth
analysis of the data and a better identification of an error's
source, but one must be cautious – many types of errors
that are clear from the Eland perspective may be difficult
to discern from the QAG-score perspective. Sometimes,
this can be alleviated by knowing the proper way to trans-
form the QAG-score data into intensity data. Any desired
function may be applied to a read's set of QAG-scores and
the output of that function is normalized and transformed
into an intensity value for the dot corresponding to that
read. An example of this process can be seen in Figure 2
where we see three views of the same tile. The first, Figure
2a, uses Eland encoding, whereas Figures 2b and 2c use
two distinct QAG-score encodings. In Figure 2b we see the
results of applying the function mean across the first 32-
cycles of a read. The error detected through Eland catego-
rization is invisible in this image, but once again is easily
detectable in Figure 2c where the minimum of the 32
inter-read QAG-scores are being plotted. The source of the
error becomes apparent in Figure 2d – a cycleplot display-
ing the mean QAG-score for the first 32 cycles of the aber-
rant tile. We see from this graph, that the problem arises
during cycle 28, and Figure 3, showing the minimum
QAG-scores for a variety of cycles, confirms this interpreta-
tion. From this example, one might be tempted to assume
that any tile with a cycle whose mean QAG-score drops
below a certain value is to be discarded, but it is possible
for a non-aberrant tile to have mean QAG-scores this low
(as can be seen in Figure 4).

The visual pattern recognition of a researcher may also
discern more subtle and global biases that escape simple
numeric detection as in Figures 1, 2, 3, 4 where we see
problematic reads occurring more frequently on the
boundary of tiles, or in Figure 5 where a consistent
increase in error rate is associated with reads from the
upper left corner of a tile. Once such errors are known to
occur, more sophisticated statistical techniques may be
used to detect and remove the resulting biases, or at the
very least to filter out the offending data.

Despite the power of the human visual system, some pat-
terns of error that occur over an entire lane of Solexa data
may not be apparent from direct observation of the 200–
300 QC plots associated with that lane. However, some of
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Aberrant Solexa tilesFigure 1
Aberrant Solexa tiles. This figure displays three distinct types of errors that we have seen occur on Solexa tiles. The image 
was generated using plotQTile with the color-by category option. The tile data was drawn from tiles 129, 85, and 6 respectively 
– all produced from the same lane and run. The error depicted in 1b appears to be caused by a bubble in one of the reagents. 
This bubble increased the error rate, converting U0 reads into U1 reads. From further investigation we know this occurred 
during cycle 28. The error depicted in 1c is an area in which no reads at all occurred – possibly a problem with the DNA bind-
ing to the flow cell, or a smudge on the surface of the flow cell. The error depicted in 1a remains enigmatic.
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Analysis of a single tile using plotQTile and cycleplotFigure 2
Analysis of a single tile using plotQTile and cycleplot. Here we see three distinct views of tile 47 from Figure 1b. Similar 
to Figure 1, Figures 2a–2c were generated using the function plotQTile. Figure 2a uses the color-by category option to display 
the position of the reads color-coded according to their Eland category. In Figure 2b, the gray intensity values are generated by 
taking the mean across the first 32 cycles and then normalizing. Figure 2c is similar to 2b, but uses the minimum value across 
those 32 cycles instead of the mean. Figure 2c shows that some bubbles are visible from a QAG-score perspective, but the con-
trast between 2b and 2c shows that one must be careful to choose the proper aggregating function. Figure 2d was generated 
using the cycleplot function. It displays the mean QAG-score for cycles 1–32 on tile 47, and showcases the ability to detect the 
source of an error by decomposing the data according to cycle. Here we see the drop in average intensity that occurred during 
cycle 28.
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Filtering the data by cycleFigure 3
Filtering the data by cycle. This figure is a closer exploration of the bubble on tile 47 analyzed in Figure 2. The tileQC system 
allows the output of the plotQTile function to be filtered according to cycle. This graph was generated using plotQTile and the 
cycles option. Fig. 3a shows the minimum QAG-score across cycles 1–27 by using cycles = 1:27, Fig. 3b restricts to the 28th cycle 
by using the cycle = 28 option, and Fig. 3c restricts to cycles 28–32. From these 3 tiles it is clear that the problem behind the 
bubble occurred during cycle 28.
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An erratic tile with believable resultsFigure 4
An erratic tile with believable results. This image was generated using both plotTile, and cycleplot. It shows two tiles. One 
of the tiles (tile 1) has the usual number of reads for a tile from that run, and a typical breakdown of those reads into the Eland 
categories. Note the number of reads in the U0 and U1 categories in the histogram on the top right. Nevertheless, as can be 
seen in Figure 4a this tile has widely varying differences amongst the mean intensities (per cycle). The other tile is the familiar 
tile 47. The intensity levels are much better behaved, except for the problem in cycle 28. But despite this fact, there is an ele-
vation in the U1 levels on tile 47. This is particularly notable because the lowest intensity cycle on tile 47 is at roughly the same 
level as the lowest found on tile 1.
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these global biases are revealed when summarizing statis-
tics are extracted for each tile and plotted in a single graph.
In Figure 6 the blue dots correspond to the total number
of perfect matches in each tile. The tiles within each lane
are arranged as two vertical strips. In Figure 6, the left strip
contains tiles 1–100 (with 1 at the top). The right strip
contains tiles 101–200, but this time 101 is at the bottom
and 200 at the top. The droop in the graph is indicative of
an error rate that increased as the machine worked its way
from the top of the lane to bottom. Aberrant tiles may also
become visible from this perspective – in this same figure
a tile with a particularly low number of unique matches
was identified (the dot marked by yellow), and the graph
of that tile's Eland categorized reads was superimposed
upon a blank section of the summarization graph to illus-
trate how a bubbled tile may be detected in a summariza-
tion graph. We are presently working to improve the
summary statistics features of tileQC and anticipate more
advanced summary reports in future versions of this soft-
ware.

Conclusion
The tileQC system offers a versatile and powerful tool for
the quality control of Solexa-based DNA sequence data.
Future challenges include the development of an interface

that unifies the task of summarization with that of quan-
titative testing. This short-term goal (partially completed)
will lead to a plug-in style of summarization and analysis
that will allow researchers to flexibly encapsulate any
desired post-processing or data extraction within a share-
able R object. Mid-range goals include an interactive
graphical interface for more convenient data exploration
as well as a freely available library of analytic modules.

Availability and requirements
The tileQC system is freely available from [8]. It requires R
(version 2.5 or higher), the R package 'RMySQL' and
MySQL (version 5.0 or higher). In order to convert Solexa
output from text to database form it requires the Solexa
pipeline (up to version 0.3) output files of the form
'_prb.txt' and '_eland_result.txt' as well as the utilities wc,
grep, tr, and sed.

Abbreviations
The abbreviations are QAG-score: aggregate quality score;
SNP: single nucleotide polymorphism.
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Consistent errors across multiple tilesFigure 5
Consistent errors across multiple tiles. Here multiple tiles are shown. In each of the tiles, the upper left corner looks 
faded. That is due to an increase in error rate that causes reads to be categorized as NM. This is a global issue – spanning mul-
tiple tiles.
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Problems at the boundariesFigure 6
Problems at the boundaries. Here we see a typical tile (tile 44) superimposed upon a summarization plot. The tile graph 
was generated using plotTile, and the summarization using plotSummary with summary = 2. The overlap of the two graphs (and 
the arrow) were produced using R, but are not produced automatically by tileQC. The red dots on the top of the tile indicate 
reads for which Bustard was unable to make a base-call. The dots in the summarization graph denote the number of reads (per 
tile) in each of the Eland categories. Note the droop in the blue U0 dots.
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