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Abstract
Background: The inference of a genetic network is a problem in which mutual interactions among
genes are deduced using time-series of gene expression patterns. While a number of models have
been proposed to describe genetic regulatory networks, this study focuses on a set of differential
equations since it has the ability to model dynamic behavior of gene expression. When we use a
set of differential equations to describe genetic networks, the inference problem can be defined as
a function approximation problem. On the basis of this problem definition, we propose in this study
a new method to infer reduced NGnet models of genetic networks.

Results: Through numerical experiments on artificial genetic network inference problems, we
demonstrated that our method has the ability to infer genetic networks correctly and it was faster
than the other inference methods. We then applied the proposed method to actual expression data
of the bacterial SOS DNA repair system, and succeeded in finding several reasonable regulations.
When our method inferred the genetic network from the actual data, it required about 4.7 min on
a single-CPU personal computer.

Conclusion: The proposed method has an ability to obtain reasonable networks with a short
computational time. As a high performance computer is not always available at every laboratory,
the short computational time of our method is a preferable feature. There does not seem to be a
perfect model for the inference of genetic networks yet. Therefore, in order to extract reliable
information from the observed gene expression data, we should infer genetic networks using
multiple inference methods based on different models. Our approach could be used as one of the
promising inference methods.

Background
With recent advances in technologies such as DNA micro-
arrays, it has become possible to measure gene expression

patterns on a genomic scale. One expected use of these
data is to predict functions of genes through the inference
of regulatory interactions of genes, i.e., a genetic network.
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There are increasing needs to reveal unknown functions of
genes. Therefore, many researchers have become inter-
ested in the inference of genetic networks, and the devel-
opment of this methodology has become a major topic in
the bioinformatics field.

Numerous models to describe genetic networks have been
proposed [1-10]. This study however focuses especially on
a set of differential equations since it has an ability to cap-
ture dynamic behavior of gene expression. In the genetic
network inference problem based on the set of differential
equations, a genetic network is described as

where Xn is the expression level of the n-th gene, N is the
number of genes in the network, and Gn is a function of an
arbitrary form. The purpose of the genetic network infer-
ence problem based on the set of differential equations is
to approximate the function Gn from the observed gene
expression data. The function Gn is generally approxi-
mated using a model of the fixed form; most typically a
linear model [7,11,12] or an S-system model [13]. The
computational time for inferring linear models of genetic
networks is very short. However, the linear model is not
suitable for analyzing time-series of gene expression data
because it requires that the system operates near a steady
state [7]. The S-system model, on the other hand, pos-
sesses some properties inherent in biochemical systems.
Moreover, several methods are available for analyzing the
model. Because of these advantages, a number of infer-
ence methods based on the S-system model have been
proposed [14-21]. However, some of them are time-con-
suming because they require solving a set of differential
equations many times.

To overcome the shortcomings of the fixed model
approaches, we defined the genetic network inference
problem as a function approximation problem [10]. For
solving the defined problem, any type of function approx-
imator is available. When we use a powerful function
approximator to solve this problem, we can obtain a good
approximation of the function Gn. Therefore, on the basis
of this problem definition, we have proposed inference
methods that use powerful function approximators, i.e., a
neural network model [10], a Normalized Gaussian net-
work (NGnet) model [9], and a reduced NGnet model
[22], respectively. As inference methods based on this
problem definition do not always require solving any dif-
ferential equations, our methods needed a low computa-
tional effort.

Inference methods based on the function approximation
problem, on the other hand, require estimating differen-

tial coefficients of the gene expression level before infer-
ring the genetic network. We must estimate them correctly
in order to obtain reasonable network models, and a
number of techniques are available for this purpose
[8,15,17,23]. However, as the measurement data are gen-
erally polluted by noise, it is difficult for us to estimate the
differential coefficients in advance. This study therefore
proposes a new method that performs the inference of the
genetic network and the estimation of the differential
coefficients simultaneously. Our method uses the reduced
NGnet model to describe genetic networks, since it
requires a quite low computational effort. Through
numerical experiments, we verify the effectiveness of the
proposed inference method.

Results and Discussion
Inference of an S-system network
In this experiment, we confirmed that, when a sufficient
amount of noise-free data are given, the proposed method
has an ability to infer the genetic network correctly.

Experimental setup
As a target network that we attempt to infer, we used a
small-scale S-system model consisting of 5 genes (N = 5).
The S-system model is often used to describe biochemical
networks [8,14,15,18-20,24-26]. The model is structured
as a set of non-linear differential equations of the form

where Xn is the expression level of the n-th gene, αn and βn
are multiplicative parameters called rate constants, and
gn,m and hn,m are exponential parameters called kinetic
orders. The S-system parameters of the target genetic net-
work are shown in Table 1[16,27]. This study assumes
that the m-th gene positively regulates the n-th gene when
Xm promotes the synthesis or suppresses the degradation
of Xn. Similarly, when Xm suppresses the synthesis or pro-
motes the degradation of Xn, we assume that the n-th gene
is negatively regulated by the m-th gene. When the m-th
gene positively regulates the n-th gene, gn,m is positive and/
or hn,m is negative in the S-system model. When the m-th
gene negatively regulates the n-th gene, gn,m is negative
and/or hn,m is positive. When the m-th gene has no influ-
ence on the n-th gene, the parameters gn,m and hn,m are
zero. Thus, we can illustrate the structure of the target net-
work, as shown in Figure 1.

As the observed gene expression patterns, fifteen sets of
noise-free time-series data, each covering all five genes,
were given. The sets began from randomly generated ini-
tial values in [0.0, 2.0] and were obtained by solving the

dXn
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differential equations (2) on the target model. In a practi-
cal application, these sets of time-series data could be
obtained by actual biological experiments. Eleven sam-
pling points for the time-series data were assigned to each
gene in each set. Thus, the observed time-series data for
each gene consisted of 15 × 11 = 165 sampling points. We
inferred the reduced NGnet models solely from these
time-series data, and then, extracted interactions between
genes from the obtained models. As one reduced NGnet
model corresponds to one gene, we must infer 5 models
to solve the artificial problem defined here. We carried out
10 trials by changing the seed for the pseudo random
number to obtain each model. According to the prelimi-
nary experiments (see Additional file 1), we used the fol-
lowing parameters; the weight parameter used in the prior
probability distribution γ was 20, the maximum indegree
I was 5, and the number of the units of the reduced NGnet
model M was 3. We can change the function approxima-
tion capability of the reduced NGnet model using the
number of units M. However, we cannot use the model
with an unduly large M, since the large M makes the esti-

mation problem of the model parameters difficult. An
unduly small M, on the other hand, should make the
model insufficient to represent complicated interactions
between genes.

Result
We extracted interactions between genes from the reduced
NGnet models obtained using the method based on the
sensitivity analysis [10] (see also the Method section). Fig-
ure 2 shows a typical genetic network inferred from the
obtained models. As the figure illustrates, most of the reg-
ulations were correctly inferred by the proposed method.
Our method inferred an average of 1.3 ± 1.7 unnecessary
regulations that were absent in the target network, i.e.,
false-positive regulations, and failed to infer an average of
1.9 ± 0.5 regulations that were present in the target net-
work, i.e., false-negative regulations. The sensitivity and
the specificity of the proposed method were therefore
0.854 ± 0.041 and 0.967 ± 0.045. respectively. These
measures are defined as

where TP, FN, TN and FP are the numbers of true-positive,
false-negative, true-negative and false-positive regula-
tions, respectively. The sensitivity increases from 0 to 1
with decreasing the number of false-negative regulations,
and the specificity increases from 0 to 1 with decreasing
the number of false-positive regulations. The sum of the
squared error between the time-course produced by the
obtained model and the given time-series data, i.e., the
value of the objective function (16) defined in the Methods
section, was 1.57 × 10-1 ± 1.23 × 10-1 on average.

Although our method has an ability to infer the positive
and negative regulations of the n-th gene from the m-th
gene simultaneously, it failed in inferring these regula-
tions of the 3rd gene from the 2nd gene in most of the tri-
als. Given that X2 works to suppress both the synthesis and
the degradation of X3 with the same kinetic order in the

( ) ,sensitivity =
+
TP

TP FN

( ) ,specificity =
+

TN
FP TN

The network structures of the target modelFigure 1
The network structures of the target model. Red lines: posi-
tive regulations. Blue lines: negative regulations.
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Table 1: The S-system parameters of the target model.

i αi gi,1 gi,2 gi,3 gi,4 gi,5 βi hi,1 hi,2 hi,3 hi,4 hi,5

1 5.0 0.0 0.0 1.0 0.0 -1.0 10.0 2.0 0.0 0.0 0.0 0.0
2 10.0 2.0 0.0 0.0 0.0 0.0 10.0 0.0 2.0 0.0 0.0 0.0
3 10.0 0.0 -1.0 0.0 0.0 0.0 10.0 0.0 -1.0 2.0 0.0 0.0
4 8.0 0.0 0.0 2.0 0.0 -1.0 10.0 0.0 0.0 0.0 2.0 0.0
5 10.0 0.0 0.0 0.0 2.0 0.0 10.0 0.0 0.0 0.0 0.0 2.0
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target model, we know that the 2nd gene has only a weak
impact on the 3rd gene. Therefore, it should be difficult
for our method to infer these regulations. In order to infer
these difficult regulations correctly, we should give more
sets of the gene expression data [15,28].

While the proposed method was unable to infer the target
network with perfect precision as mentioned above, its
computational time was sufficiently short. The computa-
tional time to obtain one reduced NGnet model averaged
about 60.8 sec on a single-CPU personal computer (Pen-
tium IV 2.8 GHz). The proposed method therefore
required about 60.8 sec × 5 � 5.1 min to solve this genetic
network inference problem. In order to infer the same net-
work, on the other hand, PEACE1 [16], the coevolution-
ary method [18], the method with a collocation
approximation [21] and the decoupling method [15]
reportedly took about 10 h on a PC cluster (Pentium III
933 MHz × 1040 CPUs), 89.0 min on a PC cluster (Pen-
tium III 933 MHz × 8 CPUs), 2.84 h on a single-CPU per-
sonal computer (Pentium IV 2.4 GHz) and 6.38 min on a
single-CPU personal computer, respectively. The compar-
ison results present that the proposed method was faster
than the other inference methods. As a high performance
computer, such as a PC cluster, is not always available at
every laboratory, the shorter computational time of the
proposed method should be a preferable feature. 

As mentioned before, the proposed method performs the
inference of the reduced NGnet model and the estimation

of the differential coefficients of the gene expression level
simultaneously. When we can estimate the differential
coefficients of the gene expression level correctly before
inferring the genetic network, however, the proposed
method can omit the simultaneous estimation of the dif-
ferential coefficients of the gene expression level. When
the simultaneous estimation of the differential coeffi-
cients is omitted, our method is almost equivalent to the
inference method proposed in the paper [22]. As the data
used in this section contained no noise, the inference abil-
ity of our method was not degraded even when the simul-
taneous estimation of the differential coefficients was
omitted. The sensitivity and the specificity of the pro-
posed method without the simultaneous estimation of
the differential coefficients of the gene expression level
were 0.854 ± 0.041 and 0.961 ± 0.044, respectively. More-
over, the omission of the simultaneous estimation of the
differential coefficients made the computational time
much shorter. The method without the simultaneous esti-
mation of the differential coefficients required about 2.0
× 5 � 10.0 sec to solve this problem. However, the simul-
taneous estimation of the differential coefficients
improved the sum of the squared error between the time-
courses produced by the obtained model and the given
time-series data. Thus, the averaged objective values (16)
of the method with and without the simultaneous estima-
tion of the differential coefficients were 1.57 × 10-1 ± 1.23
× 10-1 and 3.37 × 10-1 ± 1.93 × 10-1, respectively. These
results indicate that, although the simultaneous estima-
tion of the differential coefficients of the gene expression
level, proposed in this study, makes the computational
cost higher, it produces the models that are suitable for
the computational simulation.

Inference of a random genetic network
Next, we checked the performance of our method in a
real-world setting by conducting the experiment with
noisy time-series data.

Experimental setup
In this experiment, we used the following set of differen-
tial equations to describe target networks [7,10].

where λn and αn are the degradation rate and the synthesis

rate, respectively, of the n-th mRNA, and γn,m and βn,l are

the activation cooperativity and the repression cooperativ-
ity, respectively, of the m-th gene on the n-th gene. The sets

 and  specify the genes that activate and repress the
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A sample of the network structure inferred by the proposed methodFigure 2
A sample of the network structure inferred by the proposed 
method. Colored bold lines: true-positive regulations. Thin 
lines: false-positive regulations. Dotted lines: false-negative 
regulations.
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n-th gene, respectively. As the target networks, we ran-
domly constructed the systems of 10, 20 and 30 genes (N
= 10, 20 and 30). Since the inference ability of the pro-
posed method may depend on the structure of the target
network, we changed the network structure on every trial.
We generated the target networks of different structures by
changing the model parameters described above. In order

to-construct the sets  and , we randomly chose an

integer k from a power-law distribution with a cutoff 5.
Then, k genes were randomly selected from all of the
genes contained in the network. Finally, the indices corre-

sponding to the selected genes were added to the set 

or the set  with the probability 0.5. The model param-

eters (λn, αn, γn,m and βn,l) are randomly selected from a

uniform distribution.

Since the performances of inference methods generally
depend on the amount of given time-series data, we per-
formed the experiments with different numbers of sets of
time-series data. We obtained the sets of time-series data
by solving the set of differential equations (5). Each set
consisted of the expression levels at the eleven time
points. The measurement noise was simulated by adding
10% Gaussian noise to the computed time-series data. All
of the other experimental conditions were the same as
those used in the previous experiment.

Results
Figure 3(a), (b) and 3(c) show the sensitivity and the spe-
cificity of the proposed method on the experiments of the
target networks consisting of 10, 20 and 30 genes, respec-
tively. The figures show that the sensitivity of our method
is improved as the amount of given time-series data
increases. Therefore, to infer genetic networks correctly,
we should give the sufficient amount of observed time-
series data. As shown in the figures, when we try to achieve
a satisfactory level of the sensitivity in a larger-scale prob-
lem, we should give a larger amount of observed data. The
number of required time-series sets, however, seems not
to be proportional to the number of genes contained in
the network. This disproportion may be caused by the
sparseness of the target network. Therefore, the proposed
method should not always require an immense number
of time-series sets even when we try to infer large-scale
genetic networks.

The specificity, on the other hand, seems to be independ-
ent from the amount of given time-series data. When we
try to improve it, we must reduce the number of false-pos-
itive regulations contained in the inferred model. It is
however difficult to reduce these regulations because the
maximum indegree I used in the prior probability distri-

n n

n

n

The performances of the proposed method on the experi-ments of random genetic networks consisting of (a) 10 genes, (b) 20 genes, and (c) 30 genes, respectivelyFigure 3
The performances of the proposed method on the experi-
ments of random genetic networks consisting of (a) 10 genes, 
(b) 20 genes, and (c) 30 genes, respectively. Solid line: the 
sensitivity. Dotted line: the specificity.
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bution (15) forgives our method for finding several false-
positive regulations. Therefore, we should not expect the
improvement of the specificity even when we give a larger
amount of the observed data.

Inference of an actual genetic network
Finally, we tested the effectiveness of the proposed
method on a genetic network inference problem using
actual biological data.

Experimental setup
In this experiment, we used the proposed method to ana-
lyze the SOS DNA repair system in E. coli (Figure 4) [29].
About 30 genes are known to be involved in this system.
In a normal state, a master repressor, LexA, is bound to the
interaction sites in the promoter regions of these genes.
When DNA damages occur, one of the SOS proteins,
RecA, becomes activated and, then, mediates LexA auto-
cleavage. The drop in LexA level causes the de-repression
of the SOS genes. Once damage has been repaired, the
level of activated RecA drops, LexA accumulates and
represses the SOS genes, and the cells return to their orig-
inal state. We applied the proposed method to the expres-
sion data of this system, that were collected by Ronen and
his colleagues [30,31]. Then, Cho and his colleagues
chose 6 genes from these data and successfully inferred
the regulatory network of the selected genes [14]. There-
fore, this study also selected the same genes, i.e., uvrD,
lexA, umuD, recA, uvrA and polB. Although the data con-
tain 4 sets of time-series data, we used only 2 sets (the
third and fourth sets) that were measured under the same
experimental condition (see Additional file 1). Each set of
the time-series data consists of 50 measurements includ-
ing the initial concentrations which are all zeros. We,
however, removed the initial concentrations from both of
the sets, since our model cannot produce different time-
courses from the same initial conditions. As it is difficult

to calculate an output of the reduced NGnet model
against large input values, data corresponding to each
gene were normalized against their maximum value. Since
the target network contained a small number of the genes,
we set the maximum indegree I to 3. All of the other exper-
imental conditions were the same as those used in the pre-
vious experiments.

Results
We succeeded in finding models that simulate the gene
expression of the target system well. A sample of the gene
expression calculated from the obtained models is shown
in Figure 5. Although the network structures inferred by
the proposed method were slightly different from each
other in 10 trials, most of the regulations were commonly
inferred. Figure 6 shows the core network structure where
the regulations were inferred more than 7 times within 10
trials. While the inferred networks contained an average of
26.7 ± 3.3 regulations, the core network contained 21 reg-
ulations.

The core network contained some reasonable regulations.
As Figure 6 shows, although the proposed method failed
to infer the regulation from lexA to uvrA. the negative reg-
ulations from lexA to the other genes were successfully
inferred. As described before, RecA is known to regulate
LexA. Though this is a regulatory interaction between pro-
teins, it should be represented by the regulation of lexA
from recA in our network. A number of genes take part in
repairing DNA damages, and the accomplishment of DNA
repair makes RecA stop the system. The inferred regula-
tions of recA from all of the genes might explain this
mechanism.

The number of the regulations inferred by the proposed
method was larger than that of the S-tree based method
proposed by Cho and his colleagues [14]. Although some
of our inferred regulations that have not been experimen-
tally observed might be new findings, the rest should be
false-positive. In order to infer a more reliable network,
we must give more sets of the expression data obtained
from additional biological experiments or a priori knowl-
edge about the target system. The computational time of
the proposed method was, on the other hand, much
shorter. While the S-tree based method running on the
computer system (Athlon MP2800+) reportedly took
about 35 h to infer the network of this system, the pro-
posed method required about 47.1 sec × 6 � 4.7 min on
a single-CPU personal computer (Pentium IV 2.8 GHz).
In this study, we focused only on whether or not the m-th
gene regulates the n-th gene. However, the method based
on the sensitivity analysis used in this study also provides
us with the strength of the inferred regulation. This infor-
mation would help biologists find the important regula-
tions that are worth doing further investigation.

The SOS DNA repair system in E. coliFigure 4
The SOS DNA repair system in E. coli.

(DNA Damage)

RecA RecA*

LexA (Cleavage)
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Conclusion
The genetic network inference problem can be defined as
a function approximation problem. On the basis of this
problem definition, we proposed a new method to infer
reduced NGnet models of genetic networks in this study.
The experimental results on the artificial genetic network
inference problems showed that the proposed method

has an ability to infer genetic networks correctly. Because
of the simultaneous estimation of the model parameters
and the differential coefficients of the gene expression
level, the models inferred by our method fitted into the
observed data. Therefore, they are suitable for the compu-
tational simulation. Moreover, when trying to infer
genetic networks, our method was faster than the other
inference methods. As we cannot always use a high per-
formance computer, the short computational time of our
method should be a preferable feature. The proposed
method was then used to analyze the SOS DNA repair sys-
tem in E. coli, and succeeded in finding several reasonable
regulations. While the number of the regulations inferred
by our method was larger than that of the S-tree based
method [14], its computational time was much shorter.

There does not seem to be a perfect model for the infer-
ence of genetic networks yet. Therefore, in order to extract
reliable information from the observed gene expression
data, the genetic networks should be inferred using a
number of different models. The reduced NGnet model
should be one of the promising models for this purpose.

Methods
In this study, we propose a method to infer reduced
NGnet models of genetic networks. We should note here
that one model in this study corresponds to one gene.
Therefore, when we try to solve a genetic network infer-

Samples of the time-courses computed from the obtained models on the experiment of the SOS DNA repair system (solid line)Figure 5
Samples of the time-courses computed from the obtained models on the experiment of the SOS DNA repair system (solid 
line). The plus symbols are the observed gene expression data.
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ence problem consisting of N genes, we must obtain N
models, each corresponding to one of the genes. This sec-
tion will describe the algorithm to obtain the reduced
NGnet model corresponding to the n-th gene, first. Then,
we will explain the technique to extract the information
from the obtained models.

Inference of a reduced NGnet model
Problem definition
In the genetic network inference problem, we must find a
good approximation of the function Gn (n = 1, ..., N),
given in the equations (1). We define this problem as a
function approximation problem in this study [7,8,10].
When trying to obtain an approximation of the function
Gn on the basis of the function approximation problem,
we must give observations at T points

where  is the expression levels

of all of the genes at time tk, and  is the differential

coefficient of the expression levels (rate of transcription)
of the n-th gene at time tk. The purpose of this problem is

then to estimate the parameters of the function approxi-

mator that outputs  against a corre-

sponding input .

Though DNA microarray technologies allow us to meas-
ure the gene expression levels, we have yet to find a bio-
logical technique capable of measuring the differential
coefficient of the gene expression level. As an alternative,
the data we obtain by measuring the time-series of the
gene expression levels allow us to estimate the differential
coefficients using interpolation techniques, such as the
spline interpolation [32], the local linear regression [33],
the neural network [8], or the Whittaker's smoother [23].
This study estimates them using the method proposed in
the Estimation of differential coefficients section. When both
the gene expression levels and their differential coeffi-
cients are given, the genetic network inference problem
described here becomes solvable.

Reduced NGnet model
Any type of function approximator is available for approx-
imating the function Gn. This study however uses a
reduced Normalized Gaussian network (NGnet) model
[22], that was proposed by modifying an NGnet model
[34,35], since we can easily estimate the model parame-
ters using the EM algorithm. The original NGnet model,

which transforms an N-dimensional input vector x to an
output y, is defined as

where the dot (·) denotes an operator of the inner prod-

uct, and N(x|mi, Σi) is an N-dimensional Gaussian func-

tion; its center is an N-dimensional vector mi and its

covariance matrix is an (N × N)-dimensional matrix Σi.

The N-dimensional vector wi and the scalar bi are the lin-

ear regression parameters, αi (  and αi > 0) is

the weight parameter, and M is the number of units. The
NGnet model softly partitions the input space into M
regions using M Gaussian functions. The i-th unit linearly
approximates its output by wi·x + bi within the corre-

sponding region. The weighted sum of these outputs is the
final output of the NGnet model. In the genetic network
inference problem, the input vector x represents the
expression levels of all of the genes, i.e., X = (X1, ..., XN),

and the output, y represents the differential coefficient of

the expression level of the n-th gene, i.e., .

As the original NGnet, model has a large number of the
model parameters, we must give a large number of obser-
vations to obtain a good function approximation. This
nature is not preferable for the inference of genetic net-
works, since the measurement of the gene expression pat-
terns is expensive. In order to decrease the amount of data
we must observe, we limited a covariance matrix of the
NGnet model Σi to being diagonal [22]. This restricted
model was referred to as the reduced NGnet model. While
the number of the parameters of the original NGnet
model is O(N2), that of the reduced model is O(N).

This study approximates the function Gn using the

reduced NGnet model, as mentioned above. Therefore,
our object in this study is to find the parameters of the

reduced NGnet model that outputs  (k = 1, �, T)

against a corresponding input . Our algorithm to

estimate these parameters is described below.

Gradual reduction strategy
We cannot make the Gaussian function N(x|m, Σ) inde-
pendent from any components of the input vector x, since
its covariance. matrix Σ must be non-singular. As the
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reduced NGnet model contains several Gaussian func-
tions, its output y also depends on all of the components
of the input vector x. This fact indicates that, even when
the n-th gene is unaffected by the m-th gene in the target
network, the reduced NGnet model cannot capture the
disconnection.

In order to overcome this drawback of the reduced NGnet
model, we use the gradual reduction strategy [22]. When
trying to obtain an approximation of the function Gn, this
strategy decreases the input dimension of the model by
removing the genes that are assumed to unaffect the n-th
gene. As the model obtained by this strategy has no input
from the removed genes, its output is independent from
these genes. In order to determine the reasonable number
of the input dimension of the model, this study uses the
Bayesian Information Criterion (BIC) [36], a measure for
evaluating statistical models. The followings are the algo-
rithm of the gradual reduction strategy used in this study:

1. Let a set C be {1, ..., N}, where N is the number of the
genes in the target network. We call the genes whose indi-
ces are contained in set C the candidate genes. Let NC be
the number of the elements of set C.

2. Extract the expression data of the candidate genes from
the whole observed data. Then, obtain the reduced NGnet
model by applying the DAEM algorithm, described
below, to the constructed data. Note that, as the con-
structed data contain the expression levels of the candi-
date genes only, the input dimension of the model is NC.

3. Compute the BIC of the model obtained in step 2. The
BIC of the reduced NGnet model is defined as

BIC = M(3NC + 2)log(T) - 2L,

where

xt is the expression levels of the candidate genes at time t,

yt is the differential coefficient of the expression level of

the n-th gene at time t (i.e., ) and y(xt) is the output

of the obtained model against the input xt.

4. If the BIC calculated in step 3 is larger than of the pre-
vious iteration, output the model of the previous step and,
then, stop.

5. Using the method based on the sensitivity analysis (see
the Model interpretation section) [10], choose the genes
that are assumed to unaffect the n-th gene. Then, remove
the indices corresponding to the selected genes from set C.
When no gene is selected, remove the index of the gene
that has the weakest regulation to the n-th gene.

6. Return to step 2.

DAEM algorithm
We can use the EM algorithm to obtain the reduced
NGnet model that outputs yt (t = 1, ..., T) against a corre-
sponding input xt, since it can be interpreted as a stochas-
tic model [9,22,37]. In our genetic network inference
problem, the input xt and the output yt represent the given
expression levels of the candidate genes at time t and the
given differential coefficient of the expression level of the
n-th gene at time t, respectively.

The EM algorithm however often fails to estimate reason-
able model parameters because it is based on a local
search. In order to enhance the probability to obtain a rea-
sonable model, this study therefore uses the Deterministic
Annealing EM (DAEM) algorithm [38], a variant of the
EM algorithm. The DAEM algorithm used in this study

estimates the model parameters θ = {µi, Σi, wi, bi, αi, |i

= 1, ..., M} according to the following procedure [9,22].

1. Let θ(0), which is generated randomly, be the initial esti-
mate of the model parameters θ. Set the counter k and the
parameter corresponding to the temperature β to 0 and
βmin, respectively.

2. For each pair of the input and the output (xt, yt), com-
pute

where

P(x, y, i|θ) = P(i|θ) P(x|i, θ) P(y|x, i, θ),

P((i|θ) = αi,

P((x|i|, θ) = N (x|mi, Σi),

Then, form a function
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where Pβ (θ) is a prior probability distribution. We utilize
a priori knowledge about genetic networks using Pβ (θ), as
described below.

3. Find a new estimate θ(k + 1) that maximizes the function
Qβ.

4. k ← k + 1.

5. Repeat steps 2, 3 and 4 until convergence.

6. β ← β + βadd.

7. Stop if β > 1. Otherwise, return to step 2.

The parameters of the DAEM algorithm, βmin and βadd,
were both set to 0.1 in this study.

Note that this algorithm estimates the parameter 

along with the other model parameters. Although the
reduced NGnet model does not contain the parameter,

 we cannot derive the learning algorithm without esti-

mating it.

Use of a priori knowledge
Our method may infer multiple candidate networks due
to the high degree-of-freedom of the reduced NGnet
model and the pollution of the observed data by the
noise. In order to increase the probability to obtain a rea-
sonable network, we therefore utilize a priori knowledge
about the genetic network in this study [9]. Genetic net-
works are known to be sparsely connected [39]. In order
to utilize this knowledge, we use the following function as
Pβ (θ) given in the equation (14).

where Zβ is a normalization factor, wi,j is the j-th compo-
nent of the vector wi, β is the parameter of the DAEM algo-
rithm, T is the number of the observations, γ is a constant
parameter, and A is a set of indices corresponding to genes
that are assumed to unaffect the n-th gene. The set A is
constructed as follows.

1. Let the set A be {1, ..., N}.

2. Choose I genes in ascending order of the value of

 where I is a parameter named the maxi-

mum indegree. The maximum indegree determines the
maximum number of genes that directly affect the n-th
gene.

3. From the set A, remove the indices corresponding to the
genes selected in the previous step.

When the n-th gene is assumed to be unaffected by the m-
th gene, this probability distribution forces the corre-
sponding regression parameters, i.e., w1,m, ..., wM,m, down
to zero. As mentioned in the Gradual reduction strategy sec-
tion, even when these parameters are zero, the weak regu-
lation of the n-th gene from the m-th gene remains in the
model. However, the gradual reduction strategy should
remove these unnecessary regulations from the model.

Estimation of differential coefficients
The genetic network inference problem of this study
requires estimating the differential coefficients of the gene
expression levels from the observed time-series data, as
mentioned in the previous section. We can use some
interpolation technique to estimate them [8,15,17,23].
However, it is often difficult to estimate the differential
coefficients correctly because the noise contained in the
observed time-series data easily disrupts the information
about their slopes. Moreover, even when these data are
correctly estimated, the reduced NGnet model may not
have the ability to represent them with perfect precision.
As a result, when we try to simulate the gene expression
using the models inferred from these data, the computed
expression levels may not resemble the observed data.
These models are therefore not suitable for the computa-
tional simulation. 

In order to obtain the reduced NGnet models suitable for
the computational simulation, we must carefully estimate
the differential coefficients of the gene expression levels.
We define this estimation problem as a function minimi-
zation problem in this study. The following equation is
the objective function to estimate the differential coeffi-
cients of the n-th gene (see also Figure 7).

where  is the experimentally observed gene expres-

sion level of the n-th gene at time tk, and  is the
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numerically calculated one. In order to compute ,

we utilize the problem decomposition strategy [17,40]. In

this strategy,  is obtained by solving

where

 is the reduced NGnet mode, i.e., the right hand side of

the equation (6), that approximates the function Gn given

in the equations (1), and  is the m-th gene's expression

level acquired by making a direct estimation from the

observed time-series data. In order to estimate 's, this

study uses either the spline interpolation [32] for noise-
free data or the local linear regression [33] for noisy data.

As mentioned above, whenever trying to compute the
objective function (16), we must train the reduced NGnet
model. For this purpose, we use two methods, the gradual
reduction strategy described above and the EM algorithm.
This study uses the former one to enhance the probability
of obtaining a reasonable model and the latter to reduce
the computational cost. As the EM algorithm is identical
to the DAEM algorithm with βmin = 1, its computational
time is short. In our EM algorithm, in order to enhance the
probability of finding a reasonable model, the parameters
of the best model that has ever been found through the

search are used as the initial estimate. When the function
optimizer first tries to compute the objective function
(16), the gradual reduction strategy is always used to infer
the model. In the other cases, we use the EM algorithm
with the probability 1 - 0.1 T-1, otherwise we use the grad-
ual reduction strategy, where T is the number of the obser-
vations.

The dimension of the function minimization problem
defined here is identical to the number of the observa-
tions T. Therefore, when a large amount of the data are
given, we must solve very high-dimensional problems. A
high-dimensional problem generally requires a high com-
putational effort even when we use a sophisticated func-
tion optimizer. In order to reduce the computational cost,
this study therefore optimizes the objective function (16)
for every dimension using a one-dimensional search algo-
rithm, the Brent's method [32].

We should note that, although the purpose of the prob-
lem described here is to obtain the reasonable differential
coefficients of the gene expression levels, we can obtain
the reduced NGnet model suitable for the computational
simulation at the same time. Thus, this study infers a
model of a genetic network by optimizing the objective
function (16).

Model interpretation
When analyzing a genetic network, we must know
whether the n-th gene is affected by the m-th gene. We
extract this information from the reduced NGnet model
obtained using the method based on the sensitivity anal-
ysis [10].

This extraction method uses the positive and negative sen-

sitivity coefficients averaged over time,  and

, respectively. To cope with the difficulty of calcu-

lating these values precisely, the method approximates
them as

and

where

Xn t k

cal

Xn t k

cal

dXn
dt

G Y Yn N= ˆ ( , , ),1

Y
X m n

X
m

m

m

=
=






, ,

,

if 

otherwise,

Ĝn
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T is the number of sampling points of the measured time-

series data, and  is the estimated sensitivity coeffi-

cient at time t, that is calculated from the reduced NGnet
model obtained. As the model used in this study is differ-

entiable, we can calculate  analytically.

As the sensitivity coefficients represent the impact of the

m-th gene upon the n-th gene, the large values of 

and  indicate the positive and negative regulations,

respectively, of the n-th gene from the m-th gene. There-
fore, the method used in this study concludes that the n-
th gene is positively regulated by the m-th gene when

 exceeds a threshold Thresh(n) and

where a is a constant parameter. Similarly, when

 > Thresh(n) and

the method infers the negative regulation of the n-th gene

from the m-th gene. Conversely, when  ≤

Thresh(n), no regulation of the n-th gene from the m-th
gene is inferred. According to the reference [10], we set

a = 0.3 and b = 0.05. Note that, when the m-th gene pro-
motes both of the synthesis and the degradation of the n-

th gene for example, the values of  and 

might be large. In these cases, the extraction method must
infer both of the positive and the negative regulations of
the n-th gene from the m-th gene. As a is set to less than
0.5, the method has an ability to infer these regulations
simultaneously.
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