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Abstract
Background: Currently, there is a gap between purely theoretical studies of the topology of large
bioregulatory networks and the practical traditions and interests of experimentalists. While the
theoretical approaches emphasize the global characterization of regulatory systems, the practical
approaches focus on the role of distinct molecules and genes in regulation. To bridge the gap
between these opposite approaches, one needs to combine 'general' with 'particular' properties
and translate abstract topological features of large systems into testable functional characteristics
of individual components. Here, we propose a new topological parameter – the pairwise
disconnectivity index of a network's element – that is capable of such bridging.

Results: The pairwise disconnectivity index quantifies how crucial an individual element is for
sustaining the communication ability between connected pairs of vertices in a network that is
displayed as a directed graph. Such an element might be a vertex (i.e., molecules, genes), an edge
(i.e., reactions, interactions), as well as a group of vertices and/or edges. The index can be viewed
as a measure of topological redundancy of regulatory paths which connect different parts of a given
network and as a measure of sensitivity (robustness) of this network to the presence (absence) of
each individual element. Accordingly, we introduce the notion of a path-degree of a vertex in terms
of its corresponding incoming, outgoing and mediated paths, respectively. The pairwise
disconnectivity index has been applied to the analysis of several regulatory networks from various
organisms. The importance of an individual vertex or edge for the coherence of the network is
determined by the particular position of the given element in the whole network.

Conclusion: Our approach enables to evaluate the effect of removing each element (i.e., vertex,
edge, or their combinations) from a network. The greatest potential value of this approach is its
ability to systematically analyze the role of every element, as well as groups of elements, in a
regulatory network.
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Background
Recent advances in graph theory have provided a new
view on the topological design of different real-world net-
works [1-6]. Such systems exhibit small-world properties:
They are surprisingly compact (i.e., their diameter is rather
small) and display increased clustering features [7]. More-
over, they show a scale-free topology and follow a power-
law type of the degree distribution: most components
exhibit only one or two connections, but a few are
involved in dozens and function as hubs, thereby provid-
ing networks with high robustness against random fail-
ures [1-3]. Various biological networks, such as metabolic
or protein-protein interaction networks, show a scale-free
topology [1,2,5] that emerges as a hallmark of modern
systems biology.

However, by itself, the fact that a network has scale-free
features is of limited practical use to biologists because
power laws occur widely in nature and can have many dif-
ferent origins [8]. Currently, there is a gap between purely
theoretical studies of the topology of large regulatory net-
works, on the one hand, and the practical traditions and
interests of experimentalists, on the other hand. While the
theoretical approaches emphasize the global characteriza-
tion of regulatory systems as whole entities, experimental
(even high-throughput) approaches usually focus on the
role of distinct molecules and genes in regulation. There is
a rather limited interface between them. Both approaches
have not been integrated to study complex regulatory sys-
tems. To reconcile these apparently opposite views, one
needs to combine 'general' with 'particular' aspects, as it is
attempted by modern systems biology approaches, and
translate rather abstract topological features of large sys-
tems into testable functional characteristics of individual
components. So far, few such graph-theoretical character-
istics have been explored for the analysis of biological net-
works [9-11], which are expected to have their particular
properties.

There is a great need for approaches capable to quantita-
tively evaluate the importance of individual components
in complex biological systems. Centrality analysis pro-
vides a valuable method for the structural, i.e. topological,
analysis of biological networks. It allows to identify key
elements within networks and to rank network elements
such that experiments can be tailored to interesting candi-
dates [10,11]. Local approaches such as the degree of a
vertex (i.e., the number of its adjacent edges) help to find
important molecules/genes which directly control many
other molecules/genes, but fail to identify key regulators
which are capable of affecting other molecules/genes in
an indirect fashion. Other parameters, such as closeness
and betweenness centrality, consider both local and dis-
tant connections within a network [9-12]. Closeness cen-
trality evaluates how close a vertex (molecule/gene) is to

all other vertices. Betweenness centrality measures how
frequently a vertex appears on all shortest paths between
two other vertices in a whole network [12-14]. Liu and
colleagues [15] tested relationships between the phyloge-
netic profile of an enzyme and its topological importance
in metabolic networks. They found that betweenness cen-
trality is a good predictor of how many bacterial species
have a particular enzyme. In contrast, the relationship
with closeness centrality is much weaker or non-existent.
This reflects the fact that the closeness centralities of a ver-
tex and its immediate neighbors are rather similar and dif-
fer much less than their betweenness centralities. The
representative power of betweenness centrality as a bio-
logically relevant parameter was further confirmed in the
topological analysis of mammalian networks of transcrip-
tion factor genes: Among several topological characteris-
tics tested, the betweenness centrality of individual
transcription factor genes was found to be the most repre-
sentative and relevant in regard to the biological signifi-
cance of distinct elements [16]. In protein networks,
betweenness centrality is rather helpful for identifying key
connector proteins, i.e., bottlenecks, with particular func-
tional and dynamic properties [17]. Betweenness central-
ity has been used to search for community structures in
biological networks [12] and their hierarchical decompo-
sition into subnetworks [18]. Thus, betweenness central-
ity has emerged as a promising measure of the biological
significance of network elements.

Unfortunately, the approach based on the betweenness
centrality suffers from some significant limitations due to
the inherent nature of this parameter, which are finally
becoming manifested in a restricted qualification for the
analysis of regulatory networks. In the following we iden-
tify these limitations and propose with the pairwise dis-
connectivity index a new methodology that overcomes
them. Subsequently, we apply the method to the analysis
of various biological networks.

Results
Betweenness centrality and its limitations in analyzing 
regulatory networks
In regard to the needs of an analysis of regulatory net-
works there are two major disadvantages of betweenness
centrality. Firstly, shortest paths are supposed to be the
most important ones, which is a big oversimplification
and misleading. The importance of a path is determined
not so much by its length, i.e., the number of reactions,
but rather by the integral efficiency of all these reactions.
This efficiency depends on many instances, such as the
concentrations of the participants, rate constants, etc.
Longer paths can be faster and more efficient than shorter
ones. For instance, in regulatory networks, the initiation
of transcription and translation is typically governed by
sets of specific factors. This increases the length of the cor-
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responding paths, but drastically improves the efficiency
and specificity of these processes. In a similar way, scaf-
fold and adaptor proteins, which themselves are not
enzymes, recruit downstream effectors in signaling path-
ways and enhance both the efficiency and specificity of
signal propagation. Moreover, in most regulatory net-
works, like gene networks, an inherent problem is that the
real length of edges is not defined at all. Each single edge
commonly summarizes a set of events and describes the
causal relations between genes. But this kind of abstrac-
tion does not say anything about the complexity and
length of the corresponding processes. Thus, dealing with
inconsistent semantics of the edges renders the definition
of a shortest path in these networks highly problematic.

Secondly, betweenness centrality can be applied only to
vertices that are between other ones. Peripheral vertices,
i.e., vertices having either zero incoming or outgoing

degree, are not considered. That immediately excludes
many extracellular ligands, receptors, target molecules
and genes from the analysis of a signaling network (Figure
1). Such components, however, directly respond to input-
output functionality of the network and therefore are of
key significance. Moreover, their individual topological
significance in the network may vary in a wide range, as it
can be seen when comparing the connectedness of the
start-points S1 and S2, or end-points T1 and T2 in Figure
1. However, in terms of betweenness centrality, all of
them are attributed with zero values which fail to reflect
the individual connectedness of such input/output ele-
ments within the whole network.

We therefore developed the concept of the pairwise dis-
connectivity index as a new topological metric, which
evaluates alternative though longer paths as well and can
be used to characterize the topological significance of all

Some vertices at the periphery of a regulatory network (the places where signals start or get their targets) can be rather signif-icantFigure 1
Some vertices at the periphery of a regulatory network (the places where signals start or get their targets) can 
be rather significant.A: The topological impact of start-point S1 is bigger than that of start-point S2. Both, white and gray 
vertices are on some path beginning in S1, while S2 is limited on the gray ones. B: The topological significance of end-point T1 
is bigger than that of end-point T2 because of being reachable from all gray and white vertices. However, in terms of between-
ness centrality, all of them are attributed with zero values which fail to reflect the individual connectedness of such input/out-
put elements within the whole network.

(A) (B)

S1S2

T2T1
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individual elements in biological regulatory networks.
The approach has some similarity to numerical parame-
ters like vertex-connectivity or edge-connectivity used in
graph theory to measure a graph's connectedness [19].
However, our method does not focus on how the removal
of distinct elements breaks a given connected graph into
disconnected pieces, like the algorithm of Girvan and
Newman [12], though a network's disintegration can be
considered as well. Instead, our aim was to find a param-
eter describing more moderate effects in a still connected
network.

Topological significance of individual elements in a 
regulatory network
In a directed graph G(V,E) representing a regulatory net-
work, the vertices v ∈ V denote biological entities, e.g.,
proteins, genes, or small molecules. Causal relationships
between these entities are made up of directed edges e ∈
E. We denote the topological significance of an individual
element (vertex, edge or their combination) as how essen-
tial for all connections in the network this element is. To
quantify this significance we suggest to measure how the
elimination of such an element affects the number of con-
nected ordered pairs of vertices. An ordered pair of vertices
{i, j} ¦ i ≠ j and i, j ∈ V, is connected iff there is at least one
path from vertex i to vertex j in G. Note, that the ordered
pair {i, j} is different from {j, i} in a directed network. The
more ordered pairs become disconnected upon the
removal of vertex v, the higher is the topological signifi-
cance of this vertex. We define the pairwise disconnectivity
index of vertex v, Dis(v), as the fraction of those initially
connected pairs of vertices in a network which become
disconnected if vertex v is removed from the network

Here, N0 is the total number of ordered pairs of vertices in
a network that are connected by at least one directed path
of any length. It is supposed that N0 > 0, i.e., there exists at
least one edge in the network that links two different ver-
tices. N-v is the number of ordered pairs that are still con-
nected after removing vertex v from the network, via
alternative paths through other vertices (see vertex 2 in
Figure 2B,C). However, the relation of N-v and N0 con-
veyed by Dis(v) immediately uncovers the fraction of con-
nected ordered pairs whose communication essentially
depends on vertex v. In the extreme case the removal of
vertex v destroys all communication in a network result-
ing in Dis(v) = 1. In contrast, Dis(v) = 0 refers to a non-cru-
cial vertex which is obviously not connected to any other
vertex in a network.

The example presented in Figure 2 also illustrates the dif-
ference between the pairwise disconnectivity index and

betweenness centrality. Vertex 2 is characterized with
equally high (case A) or low (case B) values of both cen-
tralities, whereas they largely differ in case C (high
betweenness centrality, but low pairwise disconnectivity
index). The toy network in Figure 3 further illustrates that
betweenness centrality and pairwise disconnectivity index
reflect different properties of a vertex in a network. While
the vertices 4 and 7 are mediating most of the shortest
paths, thereby exhibiting a very high betweenness central-
ity value, these vertices show a rather low pairwise discon-
nectivity index since they provide alternative paths. In
contrast, vertex 1 displays modest betweenness centrality
but has a high topological significance according to its dis-
connectivity value (Figure 3). Thus, a vertex with high
betweenness is not obligatorily topologically significant
according to its disconnectivity value. It is only a clue for
the fraction of short communication paths between reach-
able vertices which are provided due to the existence of a
particular vertex.

Furthermore, the difference between the pairwise discon-
nectivity index and betweenness centrality becomes
apparent when taking a closer look into the kind of reach-
able ordered pairs whose connection depends on vertex v.
The complete set of those pairs, N0 - N-v, may include
those which are connected by 1) paths that end at vertex
v, 2) paths that start at vertex v, and 3) paths that go
through vertex v. Other pairs cannot be affected, since they
are connected via paths that do not contain any of the
edges around vertex v. Accordingly, the pairwise discon-
nectivity index of vertex v can be represented as follows

The term σst(v) in Eq. 2 expresses the number of ordered
pairs {s,t} ¦ s ≠ t ≠ v and s, t, v ∈ V that are exclusively
linked through vertex v. Both, σsv and σvt involve v and rep-
resent the path-degree of vertex v in terms of all incoming
and outgoing paths, respectively. Altogether, σst(v) is not
a trivial combination of σsv and σvt as Figure 2 shows: Ver-
tex 2 is indeed crucial for connecting vertex 1 to vertex 3
in graph 2A. But in graphs 2B and 2C the same connection
1 → 3 does not depend on vertex 2 anymore, because of
the parallel paths. However, vertex 2 still is essential for all
paths that start or end in this vertex. The number of such
ordered pairs associated with vertex 2, σs2 and σ2t, does
not change in the graphs 2A, 2B and 2C, thereby indicat-
ing the absence of a simple relationship between the val-
ues of σsv, σvt and σst(v).

Often one wants to know how many connected pairs {i,j}
depend on a particular vertex v while disregarding those
kinds of pairs that involve the considered vertex, i.e. where

Dis v
N N v

N
N v
N

( ) = − − = − −0
0

1
0

(1)
Dis v

N N v
N

sv st v vt
N

( )
( )= − − = + +0

0 0

σ σ σ
(2)
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v ≠ i and v ≠ j. For example, when analyzing the role of a
receptor for the indirect communication of extracellular
ligands with transcription factors, communication paths
that start or end at the receptor need not to be considered.
The term σst(v) in equation 2 exactly comprises this sort of
essentiality and we define

as the mediative disconnectivity index of a vertex v. It imme-
diately detects the fraction of connected ordered pairs of
vertices different from v for whose reachability vertex v is
necessary. While the pairwise disconnectivity index of ver-

tex 2 in Figure 2A involves the pairs {1,2}, {1,3} and
{2,3} it's mediative disconnectivity index reveals that ver-
tex 2 is uniquely bridging the connection for {1,3}.

The mediative disconnectivity index of a vertex may
exhibit some similarity to the beweenness centrality of the
vertex. A path that uniquely connects two vertices i and j
and is destroyed after removing another vertex v is always
the shortest path between i and j. However, betweenness
centrality considers all shortest paths and MDis(v) uncov-
ers the cases where vertex v is the only link for a connected
pair i and j. The principal difference between these param-
eters is due to their different sensitivity to the presence of
parallel paths: betweenness centrality is insensitive to the

MDis v st v
N

( )
( )= σ
0

(3)

The significance of a vertex is determined by its local and global environments in a network and can be better represented by a set of topological parametersFigure 2
The significance of a vertex is determined by its local and global environments in a network and can be better 
represented by a set of topological parameters. In cases A, B and C, the degree of vertex 2 is the same. However, its 
betweenness centrality in A, B and C is high, low and high, respectively, and the parwise disconnectivity index in A, B and C is 
high, low and low, respectively. Thus, focusing on betweenness centrality may yield to misleading conclusions.
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presence of longer bypasses, whereas MDis(v) is very sen-
sitive to that.

Vertex removal is a strong interference in a network
because it simultaneously removes all incoming and out-
going edges of that vertex. One can also perturb a network
by selectively knocking out a particular edge. This is a rel-
atively gentle intervention which can simulate various
normal and pathological situations in a regulatory net-
work when all components are still present, but due to a
mutation in one of them some of its reactions are specifi-
cally disabled while others are still working. That is partic-
ularly important when considering the fact that edges are
a kind of abstraction and simplification, as discussed
above. Thus, we declare an edge as topologically signifi-
cant in the same way as a vertex: The higher the number
of ordered pairs that become disconnected the higher the
topological significance of an eliminated edge. To quan-
tify this, we introduce the pairwise disconnectivity index of
an edge, Dis(e), which is defined as

Again, N0 is the number of ordered pairs of vertices con-
nected by means of at least one directed path in the net-
work. N-e is the number of such pairs after removing edge
e from the network. The pairwise disconnectivity index of
an edge ranges between 0 ≤ Dis(e) ≤ 1. In Figure 2A we pre-
viously argued the dependence of the communication of
the ordered pair {1,3} on vertex 2. With the disconnectiv-
ity index of an edge it becomes clear that it is not necessary
to remove vertex 2 itself in order to destroy the pair {1,3}.
Moreover, a disorder of either the incoming or outgoing
edge of vertex 2 is enough to compass the same effect.

Topological significance of a group of elements in a 
regulatory network
Not all major functional breakdowns of a network can be
explained due to the failure of one single element, but
rather to the dysfunction of a subset of vertices or edges.
The malfunctioning of this subset may disrupt a signifi-
cant number of communication lines because parallel
paths may be destroyed simultaneously. For example, in
Fig. 2C the ordered pair {1,3} stays connected unless the
vertices 2 and 4 or 2 and 5 are taken out together. As the
generalization of Eq. 1 we define the pairwise disconnectiv-
ity index of a group of vertices, W ⊆ V, as

with N-W representing the number of connected ordered
pairs after removing the set of vertices W. Note that
Dis(W) cannot be inferred directly from the disconnectiv-
ity indices of individual vertices in W. This is due to the
presence of parallel paths in a network. For example, ver-
tex 4 (or vertex 7) in Figure 3 features a rather low pairwise
disconnectivity index. But as part of the group 'vertex 4
AND vertex 7' it causes the network to split into two dis-
tinct parts.

Finally, in analogy to Eq. 4 the general case of the removal
of an individual edge is given by the pairwise disconnectivity
index of a group of edges, F ⊆ E, as defined in Eq. 6.

Here also, Dis(F) cannot be inferred directly from the dis-
connectivity indices of individual edges in F.

Dis e
N N e

N
( ) = − −0

0
(4)

Dis W
N N W

N
N W
N

( ) = − − = − −0
0

1
0

(5)

Dis F
N N F

N
N F
N

( ) = − − = − −0
0

1
0

(6)

Example for a network which demonstrates that between-ness centrality and pairwise disconnectivity index reflect dif-ferent properties of a vertexFigure 3
Example for a network which demonstrates that 
betweenness centrality and pairwise disconnectivity 
index reflect different properties of a vertex. While 
the vertices 4 and 7 are mediating many shortest paths, the 
removal of one of them does not cause a high damage to the 
existing connections because they provide alternative paths. 
In contrast, vertex 1 displays a modest betweenness central-
ity only but has the highest topological significance. The val-
ues of the betweenness centrality and the pairwise 
disconnectivity index of each vertex are indicated as B(v)/
Dis(v), respectively.
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Applying the pairwise disconnectivity index to the analysis 
of biological regulatory networks
In a topological analysis of several biological networks
(one signal transduction network, two transcription regu-
lation networks, and a neuronal connectivity network),
we comparatively evaluated the pairwise disconnectivity
index of the individual vertices with their betweenness
centrality.

Transcription networks are displayed here as directed
graphs, in which the nodes represent transcription factor
genes and edges represent regulatory relationships
between them, i.e., the transcriptional regulation of
another transcription factor gene. We used the two best
characterized transcription regulation networks from
organisms of different kingdoms: a bacterium (Escherichia
coli) [20] and a unicellular eukaryote (the yeast Saccharo-
myces cerevisiae) [21].

The E. coli transcriptional regulatory network consists of
423 vertices and 578 edges [20]. Small values of both B(v)
and Dis(v) are attributed to most vertices in these net-
works, as it can be seen from the mean values of B(v) and
Dis(v) (Figure 4). There is a strong positive correlation
between the pairwise disconnectivity indices, Dis(v), and
the corresponding values of betweenness centrality, B(v),
for many genes, among them arcA, ompR_envZ, hns, rpoH,
fliAZY, and flhDC. Their Dis(v) tends to be directly propor-
tional to B(v) (Figure 4). However, we have found many
exceptions to this trend. These are genes that exhibit low
betweenness but relatively high disconnectivity: crp, himA,
fnr, rpoE_rseABC, yhdG_fis, cspA, and nipd_rpoS. Gene crp
shows the highest pairwise disconnectivity index. In the
network analyzed, most of these genes display both
nonzero incoming degree (kin > 0) and nonzero outgoing
degree (kout > 0) and therefore have an internal position in
the network. The protein product of gene crp is a well-

Betweenness centrality, B(v), and the pairwise disconnectivity index, Dis(v), of all vertices in the E. coli transcriptional networkFigure 4
Betweenness centrality, B(v), and the pairwise disconnectivity index, Dis(v), of all vertices in the E. coli tran-
scriptional network. The mean values of B(v) and Dis(v) are indicated with the vertical and horizontal dotted lines, respec-
tively. Note that small values of B(v) and Dis(v) are attributed to most vertices in the network. The number of vertices in the 
network significantly exceeds the number of points in the plot: that is, many vertices having the same properties are repre-
sented by one point.
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characterized transcription activator triggered by cAMP
and is responsible for regulating the expression of more
than 100 genes in E. coli [22]. Moreover, genes crp (CRP),
fnr (FNR) and fis (FIS) belong to the few global transcrip-
tional regulators which are sufficient for directly modulat-
ing the expression of 51% of all genes in E. coli [23].
Betweenness centrality fails to identify them as topologi-
cally significant ones.

Similar 'predictive weakness' of betweenness centrality is
observed in the transcriptional network of S. cerevisiae
(Figure 5). This network consists of 688 vertices and 1079
edges. Again, there is a strong positive correlation between
the pairwise disconnectivity index of individual genes and
the corresponding value of beweenness centrality. Such
genes show a diagonal positioning on the plot. Small val-
ues of both B(v) and Dis(v) are attributed to most vertices
in these networks, which thereby exhibit low topological
significance. However, many genes with B(v) = 0, like

REB1, UME6, MIG1, STE12, have high values of Dis(v)
(Figure 5). In the network analyzed, all these genes exhibit
no incoming degree (kin = 0) and are therefore positioned
at the periphery of the network. The relatively large value
of the pairwise disconnectivity index for these genes is in
accordance with the roles they play in yeast. The product
of gene REB1 (RNA polymerase I enhancer binding pro-
tein) is a DNA-binding protein that recognizes sites in
both the enhancer and the promoter of rRNA transcrip-
tion, as well as upstream of many genes transcribed by
RNA polymerase II [24]. REB1 is essential for cell growth:
its deletion mutant is inviable [25]. The other three genes
of this group (UME6, MIG1, STE12) have important func-
tions too, and deleting them solicits altered phenotypes,
but is not lethal [26-31] [see Additional file 1]. Among
those that have equally high values of the pairwise discon-
nectivity index and betweeness centrality, MCM1 is vital
for the yeast cell [25,32]. Thus, at least one essential gene
(REB1) was detected by the pairwise disconnectivity

Distribution of betweenness centrality, B(v), and the pairwise disconnectivity index, Dis(v), in the S. cerevisiae transcriptional networkFigure 5
Distribution of betweenness centrality, B(v), and the pairwise disconnectivity index, Dis(v), in the S. cerevisiae 
transcriptional network. Small values of both B(v) and Dis(v) are attributed to most vertices, as it can be derived from the 
mean values of B(v) and Dis(v) (denoted with vertical and horizontal dotted lines, respectively).
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index, but this gene would have been missed by between-
ness centrality because of its peripheral position in the
network considered.

We next analyzed the neuronal connectivity network of a
simple multicellular organism, i.e. the nematode
Caenorhabditis elegans [33]. Here, nodes represent neu-
rons, and edges denote synaptic connections between the
neurons. Each synaptic connection propagates a nerve
impulse in one direction. This regulatory network
includes 252 vertices and 509 directed edges. We found
the same trend as in the transcription regulatory networks
mentioned above: there are many vertices that display a
low betweenness centrality combined with a high pair-
wise disconnectivity index (Figure 6): In contrast to the
pairwise disconnectivity index, the betweenness centrality
seems to underestimate the topological significance of
some nodes, although we cannot comment here on their
biological relevance since this is not documented.

The last example of regulatory networks refers to higher
eukaryotes and is represented by the mammalian Toll-like
receptor 4 (TLR4) signaling network. It controls a protec-
tive response of a host cell to a bacterial intervention and
is important in activating the innate immunity [34,35].
The network consists of all signaling molecules that are
reachable from the TLR4 receptor or from which the TLR4
receptor is reachable according to the contents of the
TRANSPATH® database on signal transduction [36]. It
comprises of 742 vertices (molecules) and 1952 edges
(reactions) and represents a genome-wide view at a level
above the individual mammalian species. The contribu-
tion of individual vertices to sustaining the integrity of
these paths varies significantly with the mean pairwise
disconnectivity index of 0.0044 (Figure 7). That is, an
average vertex is a crucial part of only 0.44% of the exist-
ing directed paths in the TLR4 network, thereby indicating
the robust topological organization of the network. There
are many molecules, like Myt1 (myelin transcription fac-

Comparision of betweenness centrality, B(v), and the pairwise disconnectivity index, Dis(v), of individual vertices in the neuro-nal connectivity network of C. elegansFigure 6
Comparision of betweenness centrality, B(v), and the pairwise disconnectivity index, Dis(v), of individual verti-
ces in the neuronal connectivity network of C. elegans. Vertical and horizontal dotted lines stand for the mean values of 
B(v) and Dis(v), respectively.
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tor 1), Cdk1 (cyclin-dependent kinase 1), ERK2 (mitogen-
activated protein kinase 2), p53 (tumor suppressor p53)
and others, whose disconnectivity potential significantly
exceeds this average level (Figure 7). Interestingly, all of
them exhibit a lethal knockout effect in mice [see Addi-
tional file 1]. The pairwise disconnectivity index of verti-
ces positively correlates with the corresponding values of
betweenness centrality. In contrast to the transcriptional
regulatory networks from E. coli and S. cerevisiae and the
neuron connectivity network from C. elegans (Figures 4, 5,
6), the mammalian TLR4 network does have vertices
which exhibit both low B(v) and high Dis(v) values. More-
over, the relationship of the pairwise disconnectivity
index and betweenness centrality in the network is much
more scattered. The bigger B(v) and Dis(v), the broader
the scattering. Thus, there are many molecules which do
not differ in their B(v) value, but significantly differ in
their Dis(v) values and vice versa. Molecules Abl and PDK1
display the highest levels of B(v), but they are moderate in
terms of Dis(v). That is, Abl and PDK1 are highly engaged

in shortest-path communication in the network, but there
are longer paths able to sustain the communication if
either Abl or PDK1 is absent. In contrast to that, molecules
Myt1, Cdk1 and ERK2 show the highest values of Dis(v),
but they are moderate in terms of B(v) which means that
although these proteins are not the most significant medi-
ators of shortest-path communication in the TLR4 net-
work they nevertheless provide the biggest impact on the
topology of the network. Altogether, all these examples
demonstrate that Dis(v) and B(v) represent different
aspects of network organization.

In order to determine the most significant vertices that are
conveying the communication between others, we calcu-
lated the mediative disconnectivity indices of all vertices,
MDis(v), in the above mentioned networks and plotted
them versus the corresponding values of betweenness cen-
trality. The transcriptional networks from E. coli and S. cer-
evisiae and the neuron connectivity network from C.
elegans show almost an ideal linear interdependence of

Plot of betweenness centrality, B(v), and the pairwise disconnectivity index, Dis(v), for each vertex in the mammalian Toll-like receptor 4 signaling networkFigure 7
Plot of betweenness centrality, B(v), and the pairwise disconnectivity index, Dis(v), for each vertex in the mam-
malian Toll-like receptor 4 signaling network. Mean values of B(v) and Dis(v) are drawn by vertical and horizon-
tal dotted lines at a time. Note that one point in the plot may represent many vertices having the same B(v) and Dis(v) 
properties.
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MDis(v) and B(v) characterized by the correlation coeffi-
cients 0.99, 0.99 and 1.0, respectively [see Additional files
2, 3 and 4]. The corresponding mean values of MDis(v)
are very small: 0.0008, 0.0006, and 0.004, respectively.
Therefore, a small fraction of vertices are crucial as medi-
ators of communication in these networks. Taken
together, these networks, according to the present state of
knowledge, appear to avoid significant parallelism of their
paths and are relatively simply organized. In sharp con-
trast to that, the relationship of MDis(v) and B(v) in the
mammalian TLR4 network is very scattered (Figure 8) and
comparable with that of Dis(v) and B(v) (Figure 7). This
network exhibits a higher complexity as compared to the
previous ones. In that case, again, MDis(v) and B(v) char-
acterize different aspects of network organization.

Discussion
Robustness is a fundamental feature of complex evolvable
systems and a ubiquitously observed property of biological
systems [37,38]. Robustness means the maintenance of

specific functionalities of the system, i.e., its homeostasis,
against perturbations and it often requires the system to
change its mode of operation in a flexible way [37,38]. That
can be provided at the levels of the system structure, i.e., its
topology, and/or the kinetics of multiple flows between its
different parts. The structural reorganization via adding or
removing of vertices and edges in the network plays the pri-
mary role and is decisive. Once established, these connec-
tions may be subject to fine-tuning by modulation of the
corresponding reaction kinetics. We focused here on the
topological aspects of regulation.

An extremely high topological robustness can be observed
in a complete graph in which each vertex has direct links to
all other vertices. In a complete graph with V vertices, all of
them have the same, maximum possible degree V-1. There-
fore, removing a vertex or an edge provides a minimal
impact on the relationships in the remaining part of the
network. Such an extreme robustness excludes any flexibil-
ity and does not satisfy the multiple functional tasks of bio-

Relationship of betweenness centrality, B(v), and the mediative disconnectivity index, MDis(v), of individual vertices in the mam-malian TLR4 networkFigure 8
Relationship of betweenness centrality, B(v), and the mediative disconnectivity index, MDis(v), of individual 
vertices in the mammalian TLR4 network. The mean values of B(v) and MDis(v) are indicated with the vertical and hori-
zontal dotted lines, respectively. Note that small values of B(v) and MDis(v) are attributed to most vertices in these networks.
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logical regulation. That might be the reason for the fact that
all studied biological networks are rather sparse [1-6]: that
is, the density of their edges is very low.

Highly optimized tolerance (HOT) was recently introduced
as a conceptual framework to link complexity to robustness
as a trade-off of kind "robust yet fragile" [39-41]. By apply-
ing similar logic to the case of regulatory networks, we pro-
pose that the topology of regulatory networks must be
evolutionarily adapted to optimally combine the necessary
tolerance to noisy fluctuations (both internal and external)
with the necessary sensitivity to some particular inputs. In
other words, the design of regulatory networks must com-
bine robust constructions, which sustain the homeostasis
of a cell and an organism, with many different flexible con-
structions which may allow reorganization in response to
particular inputs. Intracellular regulation is basically per-
formed via varying the sets of molecules. Identification of
the basic topology of a regulatory network and its associ-
ated trade-offs is essential for understanding the role of
each particular element in regulation, as well as their faults
and possible countermeasures – diseases and therapies,
respectively.

The topological robustness closely relates to the number of
alternative (i.e., parallel) paths in a regulatory system. Here,
we introduced the pairwise disconnectivity index of a net-
work's element to characterize how crucial it is in sustain-
ing the communication within a network. This approach
can be applied to the topological analysis of a regulatory
network without making any preliminary simplifications
like giving preferences to shortest paths, as it is made by the
betweenness centrality approach. Shortest paths represent a
small fraction of all paths in a network and even the notion
of shortest paths in regulatory networks is questionable
because of the 'fuzzy' semantics of edges in the correspond-
ing graphs. This fuzziness is due to the typically undefined
complexity of causal relationships between network ele-
ments. A causal link from gene a to gene b, that is displayed
in a network by a single edge {a, b} and therefore appears
to have length one, actually represents many steps at the
level of transcription, RNA processing and splicing, trans-
portation, translation, posttranslational modification,
complex formation and so on. Thus, two edges can differ
greatly in their elementary details. As a result, the path
length is not a reliable variable for the analysis of such net-
works. The value of betweenness centrality of a given ele-
ment, calculated on the basis of shortest paths passing this
element, highly depends on the level of abstraction
applied. Despite the very clear and attractive formalism of
betweenness centrality [12,13], the practical usefulness of
this measure in regard to cellular regulatory networks meets
some problems due to the peculiarities of these networks.

To overcome the above mentioned shortcomings of
betweenness centrality in regard to regulatory networks, all
paths in the networks must be considered which is not fea-
sible. Here, we introduced another strategy based on the
fact that upon the removal of a given element some previ-
ously connected ordered pairs of vertices may become dis-
connected, thereby reducing the communication; this can
be used to quantify the requirement of the element for the
proper functioning of the whole network. Our approach
emphasizes just the presence or the absence of causal links
between vertices and does not rely on any assumptions
concerning the meaning of these links. The pairwise dis-
connectivity index can be seen as a measure of topological
non-redundancy of regulatory paths in a given network
and, thus, as a measure of sensitivity of this network to the
removal of each individual element.

The approach is rather similar to how biologists experimen-
tally test the role of a given molecule or gene in a system of
interest: the gene is knocked out or the molecule is inacti-
vated by applying a proper inhibitor and so on. Accord-
ingly, the evaluation of the effect of removing a vertex in a
static context like a graph is the counterpart to knockout
experiments performed in a lab. However, such virtual
knockouts might simulate, to some extent, the correspond-
ing wet experiments. They can be performed systematically
for screening all vertices and edges in a network – which is
not similarly efficiently feasible by experimental
approaches. That opens up an attractive possibility to do
targeted experimental verification for those elements for
which a network analyses suggested topological signifi-
cance. Finally, individual or groups of elements can be cho-
sen as well for a static analysis enabling to focus on the
particular context of the corresponding experiment. Alto-
gether that might significantly contribute to a deeper
understanding of network-wide interdependencies, causal
relationships, and basic functional capabilities in cellular
regulatory networks.

The approach has been applied to the analysis of several
regulatory networks including the mammalian signal trans-
duction TLR4 network, transcription regulatory networks
from the bacteria E. coli and yeast S. cerevisiae, and the neu-
ronal synaptic circuitry network from the nematode C. ele-
gans. Different molecules, genes and neurons in these
networks display a broad spectrum of pairwise disconnec-
tivity index values, thus exhibiting a remarkable variability
of the corresponding disconnectivity potentials. The impact
of an individual vertex or edge is determined by its particu-
lar position in the whole network. This may be overlooked
when using betweenness centrality, thereby underestimat-
ing the topological significance of some network elements.

In the Dis(v)-ranking of TLR4 network components (Figure
7), at least 3 out of the 4 top-ranking proteins (Cdk1, ERK2
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and p53) are known as key signaling and transcription reg-
ulators in mammalian cells. All ten top-ranking genes
(Myt1, Cdk1, Caspase3, ERK2, p53, beta1-integrin, Lyn,
Caspase9, betaARK-1 and Grb2) are shown to be vital for liv-
ing and developing of a mammalian organism: knockout
of any of these genes causes a mutant phenotype 'inviable'
[see Additional file 1]. This may serve as a benchmark that
evidences the power of our method in identifying the bio-
logically relevant key elements in regulatory networks.

By analyzing the interplay of Dis(v) and B(v), as well as
MDis(v) and B(v), we have found notable difference in the
organization of the mammalian TLR4 network as com-
pared with the transcription networks from E. coli and yeast
S. cerevisiae, and the neuronal synaptic network from C. ele-
gans (Figures 4, 5, 6, 7, 8). The architecture of the TLR4 net-
work exhibits a higher complexity. This might be due to
various reasons: 1) the higher evolutional position of
mammalian organisms, 2) the complexity of their intercel-
lular organization, 3) differences in the organization of
transcription and signal transduction networks which are
adapted to different functional tasks, and 4) different com-
pleteness of our knowledge about these systems. To clarify
the significance and the role of these reasons, new studies
and additional analyses are necessary.

Conclusion
A new topological metric, the pairwise disconnectivity
index, has been proposed. The biological importance of the
suggested approach relies on its capacity to quantitatively
evaluate the topological significance of each element (i.e.,
vertex, edge, their groups and combinations) in the context
of all other elements in a given regulatory network: that is
how a given network can be regulated by means of its reor-
ganization, i.e., removing an element and restoring the ele-
ment. The approach enriches the set of tools available for
the analysis of biological regulatory systems.

By applying the notion of the pairwise disconnectivity
index to the analysis of several regulatory networks, we
show that betweenness centrality and pairwise disconnec-
tivitiy index represent different aspects of topological
organization of regulatory networks. In general, there is a
positive correlation between these approaches while eval-
uating the topological significance of individual elements
in such networks. Nevertheless, in many cases the predic-
tive power of betweenness centrality is really poor and is
not biologically relevant. The pairwise disconnectivity
index provides a much broader representation of topolog-
ical peculiarities of individual elements in regulatory net-
works.

Methods
Network databases
Literature-based databases of experimentally verified
direct relationships for Escherichia coli [20] and Saccharo-
myces cerevisiae [21] have been used where E. coli is avail-
able at [42] and S. cerevisiae at [43]. The neuronal synaptic
circuitry network of C. elegans was obtained from the con-
nectivity data for Caenorhabditis elegans available at [33].
The mammalian TLR4 network was retrieved from the
contents of the TRANSPATH® Professional database
(release 7.3) on signal transduction [36] by searching for
all elements that might be involved in communication
with TLR4 receptor. That is, the network consists of all ver-
tices that are reachable from TLR4 or from which TLR4 is
reachable. In this network, molecules are represented at
the level of "ortholog abstraction", at which all species-
specific data that refer to mammalian molecules have
been summarized to corresponding generic entries. Regu-
latory relationships between molecules and genes are dis-
played as semantic reactions of kind X → Y where X and Y
represent signal donors and acceptors, respectively. Such a
semantic style is commonly used in the literature when
describing regulatory pathways. The network [see Addi-
tional files 5 and 6] can be downloaded from [44].

Selected nodes in the yeast transcriptional and the TLR4
signaling network were checked for their viability using
the BIOBASE Knowledge Library™ (BKL 1.2; BIOBASE
GmbH, Wolfenbuettel, Germany) and the Saccharomyces
Genome Database (Stanford Genomic Resources [45]).

Graph analysis
Betweenness centrality
The values of betweenness centrality of vertices were com-
puted by means of the network analysis software Pajek
[46] as:

Here, δst is the total number of shortest paths between the
nodes s and t, δst(v) is those of them that pass through ver-
tex v, and n is the number of vertices in the network. Note
that the above definition represents the normalized
betweenness centrality.

Pairwise disconnectivity index
The main idea of the pairwise disconnectivity index of a
vertex, edge, for a group of vertices or edges is to compare
the number of ordered pairs of vertices that are reachable
in a graph before and after removing a vertex, edge and so
on. Therefore, counting the number of ordered pairs is the
essential part of any approach to determine the pairwise
disconnectivity index. Various algorithms might be used
for this purpose as for example depth-first (breadth-first)
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search or Dijkstra's shortest paths algorithm. For the anal-
yses described here, we have developed a tool that uses a
modified depth-first search to efficiently calculate the
pairwise disconnectivity indices. To estimate the index for
a vertex or edge, the implemented algorithm does not
exceed Θ(V2). The program available at [47].

Statistical analysis
Besides the already mentioned software, parts of the sta-
tistical analysis have been accomplished with support of
the R project for statistical computing [48].
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