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Abstract

Background: There are several situations in population biology research where simulating DNA
sequences is useful. Simulation of biological populations under different evolutionary genetic
models can be undertaken using backward or forward strategies. Backward simulations, also called
coalescent-based simulations, are computationally efficient. The reason is that they are based on
the history of lineages with surviving offspring in the current population. On the contrary, forward
simulations are less efficient because the entire population is simulated from past to present.
However, the coalescent framework imposes some limitations that forward simulation does not.
Hence, there is an increasing interest in forward population genetic simulation and efficient new
tools have been developed recently. Software tools that allow efficient simulation of large DNA
fragments under complex evolutionary models will be very helpful when trying to better
understand the trace left on the DNA by the different interacting evolutionary forces. Here | will
introduce GenomePop, a forward simulation program that fulfills the above requirements. The use
of the program is demonstrated by studying the impact of intracodon recombination on global and
site-specific dN/dS estimation.

Results: | have developed algorithms and written software to efficiently simulate, forward in time,
different Markovian nucleotide or codon models of DNA mutation. Such models can be combined
with recombination, at inter and intra codon levels, fitness-based selection and complex
demographic scenarios.

Conclusion: GenomePop has many interesting characteristics for simulating SNPs or DNA
sequences under complex evolutionary and demographic models. These features make it unique
with respect to other simulation tools. Namely, the possibility of forward simulation under General
Time Reversible (GTR) mutation or GTRXMG94 codon models with intra-codon recombination,
arbitrary, user-defined, migration patterns, diploid or haploid models, constant or variable
population sizes, etc. It also allows simulation of fitness-based selection under different
distributions of mutational effects. Under the 2-allele model it allows the simulation of
recombination hot-spots, the definition of different frequencies in different populations, etc.
GenomePop can also manage large DNA fragments. In addition, it has a scaling option to save
computation time when simulating large sequences and population sizes under complex
demographic and evolutionary situations. These and many other features are detailed in its web

page [I].
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Background

There are several situations in population biology research
where simulation of DNA sequences is useful. Simula-
tions have been used to for hypothesis testing [2-4], to
study the impact of differing demographic scenarios on
patterns of human diversity [5], or to simulate the evolu-
tion of complex diseases in human populations [6,7]. In
addition, population simulation of genetic datasets is also
used to estimate population parameters [8-10].

One of the most exciting research areas in the current con-
text of population genetics is the HapMap project. Knowl-
edge about patterns of linkage disequilibrium (LD) in
humans is very important from a genomic point of view.
The existence of linkage or haplotype blocks [11] or, at
least, networks of SNPs in high LD [12], will facilitate the
assembly of human genome haplotype maps [13-15] that
will enormously improve, among other things, the effi-
ciency of disease gene mapping. It seems that these blocks
are mainly defined by recombination hot spots [16,17],
but haplotype blocks can also be generated by genetic drift
in regions of uniform recombination if rates is low
enough [18]. We have now growing empirical knowledge
about haplotype block and tagSNP diversity, but less is
known about the effect of population demographic his-
tory. Though important work has been undertaken in the
application of population genetics to LD mapping [19-22]
and its relevance to human populations [23-25], we still
have an incomplete understanding of how the combined
effect of genetic drift, mutation, recombination and
migration, affect LD and tagSNP patterns, although it is
known that they do [26]. Moreover, recombination is an
important evolutionary process to understand how
genetic diversity is generated and maintained in popula-
tions. Jointly with positive selection, recombination
allows for very high rates of evolution [27]. However, the
impact of recombination is dependent on other forces,
such as selection and demography. Developing tools that
allow simultaneous simulation of natural selection,
recombination and complex demographic patterns will
be of great help in trying to better understand the trace left
on the DNA by the different interacting evolutionary
forces.

Simulation of biological populations under different evo-
lutionary genetic models can be done following backward
or forward strategies. Backward simulations, also called
coalescent-based simulations, are computationally very
efficient because they are based on the history of lineages
with surviving offspring in the current population and
ignore all individuals that are not ancestral to the present-
day population [20]. Hence, coalescent is a sample-based
theory relevant to the study of population samples and
DNA sequence data. From its beginnings, the basic coales-
cent has been extended in several useful ways. For exam-
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ple, to include structured population models [28-32],
changing population size [33-35], recombination [36,37]
and selection [38-43].

On the contrary, forward simulations are less efficient
because the entire population is simulated from past to
present. However, the coalescent framework imposes
some limitations that forward simulation does not. The
first of these is the same feature that causes its efficiency,
namely, the coalescent does not keep track of the com-
plete ancestral information i.e. only takes into account
ancestries that survived to form the present-day sample.
Thus, if the interest is focused on the evolutionary process
itself, rather than on its outcome, forward simulations
should be preferred [44]. Second, coalescent simulations
are complicated by simple genetic forces such as selection,
and although different evolutionary scenarios have been
incorporated (see above) it is still difficult to implement
models incorporating complex evolutionary situations
with selection, variable population size, recombination,
complex mating schemes, and so on. In fact, we can only
simulate limited forms of recombination and selection
under the coalescent. It is known that recombination has
a major impact for detecting positive natural selection
[45,46]. Shriner et al studied the impact of recombination
under a neutral model. Anisimova et al studied the recom-
bination effect under a coalescent codon-based model i.e.
the unit of change was the codon instead of the nucle-
otide. In the latter case, recombination was not simulated
at the intracodon level. Therefore, we still ignore the
importance of intracodon recombination under a given
codon-based model. Moreover, coalescent methods can-
not yet simulate realistic samples of complex human dis-
eases [6]. Indeed, when simulating non-neutral scenarios
and/or complex models under the coalescent, much of its
computational efficiency is lost (however, see recent work
by Marjoram [47] and Liang [48]). Furthermore, the coa-
lescent model is based on specific limiting values and rela-
tionships between some important parameters [49].
Hence, there is increasing interest in forward population
genetic simulation and new efficient tools have been
recently developed [50-52]. Therefore, a program that
allows the simulation forward in time, of different Mark-
ovian nucleotide or codon models of DNA mutation com-
bined with recombination, at inter and intra codon levels,
fitness-based selection and complex demographic scenar-
ios, will be of great interest. Here I will introduce the pro-
gram GenomePop that fulfills the mentioned
requirements.

Implementation

GenomePop uses a simple and efficient algorithm to per-
form forward simulation of populations and/or genomes.
The basic idea considers an individual as the differences
(mutations) between this individual and a reference or
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consensus genotype. Thus, each individual is no longer
represented by its complete sequence or genotype but by
the mutations it carries with respect to the consensus. A
more detailed explanation of the algorithm is provided at
the program web page. Taking advantage of the efficiency
of this approach, GenomePop can simulate, forward in
time, DNA sequences under specific Markov models. The
program allows the simulation of recombination under
both nucleotide and codon models of evolution, provid-
ing a way to simulate recombination at inter and intraco-
don levels under codon models. It also permits arbitrary
migration models, simulation of SNPs, recombination
hot-spots, fitness-based selection and many other features
that are detailed in the program web-page. GenomePop
has different output formats as GenePop for SNPs and
Phylip or Nexus for DNA sequences.

Markov models of DNA mutation

Markov processes are used in molecular evolution to
describe the change between nucleotides, aminoacids or
codons over evolutionary time. Usually, time is measured
as the number of substitutions because molecular
sequence data does not allow the separate estimation of
the rate and the time, but only of their product [53]. In the
context of forward simulation we are not interested in the
transition after an arbitrary time ¢ (branch length) but just
in the transition from a nucleotide or codon to another,
given that a mutation occurs. An advantage of this
approach is that we need to compute the transition matrix
just once at the beginning of the evolutionary process.
Therefore, consider a given instantaneous substitution
rate matrix Q, which allows for a complete definition of
any Markovian substitution model [53], the matrix M = -
qQ + I is the conditional transition matrix to go from i to
j provided that a substitution occurs, where g = diagonal
(1/g;) and I is the identity matrix [54]. Then, given an
instantaneous substitution matrix Q, estimated for exam-
ple using PAUP [55] or Hyphy [56] programs, we can
obtain the corresponding transition matrix M that can be
used to produce the necessary mutation process in a for-
ward in time evolutionary model.

Biological models

There are two basic biological models implemented in
GenomePop, namely "viral" and "non-viral". The only

Table I: GenomePop DNA models

http://www.biomedcentral.com/1471-2105/9/223

difference that distinguishes them is just that in the viral
model the initial sequences are different in each popula-
tion, as the different viruses infect different individuals.
Thus, the user can define a viral model indicating the per-
centage of sequence identity (0-100) between the
sequences of the distinct populations. By default the
sequence identity is zero i.e. the sequences at each popu-
lation are randomly settled. In the non-viral model the
initial sequence is the same for every population (identity
of 100%).

DNA models, recombination and selection

There are different DNA models implemented in Genom-
ePop (Table 1). In any of them, the user can decide to
allow recurrent mutation, i.e. multiple site hits or not.
Models can be haploid or diploid. Population size can be
constant or variable. In the four-allele models, the
sequences can be generated by the program or provided
by the user. In the case of the 2-allele model (SNPs) just
one or several chromosomes can be considered. In this
same model, recombination can be constant or a hot spot
recombination model can be defined. In the latter, the
recombination rate r is per haploid region and generation.
If no hot spots are defined, the expected number of
recombination events between any two sites i and j will be
2rd;;/(L-1) where d;; is the implied region length and L is
the chromosome length. The number of recombination
events between the two chromosome extremes 0 and L -1
will be 2rd;;/(L-1) = 2r. In GenomePop, the effect of natu-
ral selection can be modelled in two different ways: 1) by
its effects on the dN/dS ratio i.e. by defining a codon
model, and 2) via the fitness effect of mutation on specific
loci. The user can run either of two models. The codon
model option runs a MG94 codon model [57] with a
given dN/dS combined with any defined nucleotide
model. This model of codon evolution will be imple-
mented by the instantaneous rate matrix to go from codon
i toj. Thatis, Q; = 8,,,kz, where 6, accounts for biased
nucleotide, m to n substitutions; k = 1 or ® for synony-
mous or nonsynonymous mutation rates respectively and
7, is the equilibrium frequency of the target nucleotide.
This corresponds to the MG94 model [57] with the restric-
tion of o = 1. Nucleotide equilibrium frequencies are used
instead of codon frequencies. To simulate a given dN/dS
we simply set @ = dN/dS. Alternatively, the user can set the

DNA Model GenomePop Notation Output format Recombination Selective sites
2 allele JjC2 Genepop Hot spots Yes
Jukes Cantor JC4 Phylip/Nexus Constant Yes
GTR GTR Phylip/Nexus Constant Yes
MG9%4 x (JC/GTR) Codon true Phylip/Nexus Constant Yes
GTR: General Time Reversible Model [63]. MG94: Muse and Gaut [57] codon model.
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codon model option to false (default option) and define
specific sites under directional selection with a given selec-
tive coefficient which will apply when a mutation occurs
at such site. The user can also force all sites to undergo
selection. The selection coefficient, s, can be constant or
sampled from a gamma distribution with user-defined
shape parameter § and scale parameter f3/s. The f param-
eter allows for modelling of the fitness effects distribution,
e.g. a low value of B (0.1) will sample many mutations
with low effect and few with high. A  parameter of 1 cor-
responds to the exponential distribution. If we set  to 0
then a constant effect model is applied. Moreover,
GenomePop permits the combination of both kinds of
models of selection, codon and fitness-based, though the
biological meaning of such a mixture is not clear.

Migration models

Two basic migration schemes, island model and one-
dimensional stepping stone, are pre-defined in Genome-
Pop. However, the user can define any migration model of
interest (Figure 1). To do this, set the flow model to 'user'
in the standard input file and then just introduce a scheme
similar to that of Figure 1 in a file called Migration-
Model.txt. In this file, the lines beginning with '#' are com-
ments. To indicate how individuals will migrate from a
given population just begin the line with the word "pop".
The order of appearance of each population in the file will
correspond with its index i.e. the first population that
appear is the population number one, etc. The number
below "pop" refers to the migration level, i.e. the number
of different migration rates defined from this population.
The next line should begin with a migration rate (between
0 and 1) followed, in the same line, by the target popula-

# Population sending emigrants

Pop
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tion(s). We should have as many of these kinds of lines as
the migration level indicates, i.e. if the migration level is 2
we should have two lines beginning with a migration rate.
More detailed explanation and specific examples are given
in the program web page.

Scaling

Clearly, the more complex the model defined, the slower
the simulation. To avoid high computation times,
GenomePop incorporates a scaling option based on the
fact that, under neutral models, we can scale the popula-
tion size N and the time ¢, provided the consequent cor-
rection to the mutation (p), migration (m) and
recombination (r) rates holds the corresponding com-
pound products Ny, Nr, Nm, etc., constant.

Results

Input file

The input file should be called GenomePopInput.txt. In
this file, lines beginning with '#' are comments and will be
ignored. In Figure 2 we can see an example of an input file.
Note that the input is flexible, i.e. the minimum input for
GenomePop to work appropriately corresponds to the
first line and the values below it. This line must begin with
the identifier 'chromsize' and the line below with the cor-
responding desired values. Note that, in lines with identi-
fiers, only the first word matters for the program.

Thus, the input in Figure 2 generates 100 datasets under a
GTR model with substitution rates typical for HIV [58].
Both recurrent and retromutation are allowed. The system
will evolve 1 chromosome of 1 Kb under the given model
over 20,000 generations. As can be seen in Figure 2, a scal-

# the number of different migration rates from this population

2

# migration rate 0.01 from this population to population 2

0.01 2

# migration rate 0.001 from this population to populations 3 and 4

0.001 3 4

# The second population sending emigrants to population 1

Pop
1
0.01 1

Figure |
Example of a user-defined migration model.
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ing of 10 was used, which implies that both, population
size and the number of generations, was divided by 10
and mutation was multiplied by the same factor. A more
exhaustive explanation of the input facilities of Genome-
Pop is provided at the program web page.

Example and validation of the Markov mutation method
For each obtained dataset from the input in Figure 2, the
best-fit model of nucleotide substitution under the Akaike
information criteria (AIC) was estimated with Modeltest
v3.6 [59], using maximum likelihood (ML) estimates
from PAUP* [55]. The percentage of correct model esti-
mation (GTR) was 97% although some datasets, about
29%, were also assigned invariable sites or rate heteroge-
neity among sites. The substitution pattern and equilib-
rium frequencies were correctly estimated.

Examples and validation of other general features

As GenomePop has many different features and models it
is difficult to validate every possibility or circumstance.
However, strong effort has been made to validate the pro-
gram as thoroughly as possible. For example, both
unscaled and scaled simulations were performed under a
Jukes-Cantor model with diversity 6 = 4Ny = 0.004 over
104 generations and then 6 was estimated using the finite-
sites correction of Watterson 6 [60]. The accuracy was
quite good, obtaining estimates of 0.0043 + 0.00015 and
0.0037 + 0.00016 for the unscaled and scaled cases

chromsize numcr popsize Npops
1000 1 1000 1
scale

10

recurrentmut retromutation

true true

runs diploid constantMetapopSize

100 true true

sample size

50

model

GTR

rates
305.00913531.0

# the first three equilibrium freqs: AC G

freqs
0.350.150.25

Figure 2

Input file to generate 100 datasets under a GTR model.
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respectively. Recombination was also tested by evolving
datasets for 6N generations under a Jukes-Cantor 4-allele
model with different values for the parameter p = 4N7L,
where N is population size, r is recombination rate per site
and L is the DNA sequence length (the corresponding
parameter in GenomePop is 'Rec' = r x L). Namely, we ran
cases with p equal to 0, 50 and 100. Recombination was
then accurately estimated using the program Kpairwise
[58]. GenomePop allows also studying 2-allele SNPs at
different frequencies in different populations. In Figure 3
we define a 2-allele model (JC2) with different initial
composition at each population (viral model) and 10
independent SNPs (recombination 'Rec' = 10 x 0.5 = 5).
The populations have different sizes (100 and 120) and
migration occurs under the island model. Note that when
defining different population sizes, the original popula-
tion size provided in the 'chromsize' line under the 'pop-
sizeKmax' identifier is overwritten.

We ran this example over 200 generations and then ana-
lyze the output with the GenePop 4.0 program [61]. As
expected the SNPs were detected as independent. We then
changed the value of recombination to 0 ('Rec' = 0) and
then GenePop 4.0 tell us that the 10 SNPs are linked, as
expected. Note the many possibilities that the program
provides in the context of studying SNPs under complex
evolutionary situations. We can define any number of
populations under any user-defined migration model. We

Rec
0.0

gen
20000

HaploidGenomeMutRate
0.1
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# Two populations with 10 independent SNPs fixed for different alleles each.
# NOTE that the initially given population size are overwritten to be distinct and of size 100 and 120

http://www.biomedcentral.com/1471-2105/9/223

Biological Model

viral

chromsize numcroms popsizeKmax Numpops
10 1 1000 2

maxgen HaploidGenomemutRate Rec
200 0.000001 5

# the next line is unnecessary, with 2 pops island = 1dim-stepping stone (default model)

flowmodel
ISLAND

migration
0.01

recurrentmut
true true

runs diploid
1 true

constantMetapopSize

false

# the following line overwrites the popsizeKmax value for each population
# if, for example we change the pop2 size to be 12000 we will see the invasion of allele 2 in the pop 1

different pop sizes
100 120

sample size

20

model

je2

# next line fixes pop 1 with all 1's and pop2 with all 2's

SNP freqs
1.00.0

Figure 3

Input file to generate 10 independent SNPs at different frequencies in different populations.

can set any number of SNPs with the desired linkage rela-
tionships. The SNPs can be set at distinct initial frequen-
cies in the different populations, for example, 'SNPfreqs'
at 1.0 and 0.0 defines the first population with allele 1
fixed and the second with allele 2 fixed.

Impact of recombination on estimation of positive
selection

We performed a simple experiment to test the impact of
recombination on dN/dS estimation. We ran 50 replicates,
with and without population recombination per gene,
4Nr = 40 and 0, respectively. The runs were performed
under a MG94 x JC model both with dN/dS = 1 and dN/
dS = 2.5 evolving 333 codons for 10N generations with an
effective population size of N = 103 to get samples of 20
sequences. The dN/dS ratio was estimated with the FEL
(Fixed effects Likelihood) model of Hyphy [62] which
computes global and site by site dN/dS ratio. A p value of
0.1 was used to infer sites under positive selection. As can
be seen in Table 2 a dN/dS of 2.5 provokes the detection
of some sites under positive selection (1 or 2, not shown)

in only 30% of the replicates (NSS = 0.3 in Table 2). Fur-
thermore in the strictly neutral case (dN/dS = 1), one pos-
itive selected site was assigned in 10% of the replicates as
expected given the p value used. If we correct by this 10%
of false positive tests then positive selected sites were
detected only in 20% of the replicates under a dN/dS value
of 2.5 and no recombination. This is in agreement with
the conservative nature of the FEL method [62]. Also note-
worthy is that recombination had no impact on global
dN/dS estimation but had important effects on the
number of sites detected under positive selection as is evi-
dent upon inspecting Table 2. It seems also that the effect
of intracodon recombination is negligible. Interestingly, it
appears that the effect of recombination is somewhat
higher under non-neutral dN/dS than in the neutral case.
The impact of recombination on positive selection detec-
tion has already been studied [45,46]. However, as far as
we know, the comparison of the impact of recombination
under neutral or positve dN/dS jointly with the effect of
intracodon recombination has never been studied before.
The significance of this effect should be studied with more

Page 6 of 8

(page number not for citation purposes)



BMC Bioinformatics 2008, 9:223

Table 2: Impact of recombination on dN/dS estimation under a
Jukes Cantor model.

4Nr Expected @ Estimated @ NPSS
0 | 1.02 + 0.03 0.1 £0.05
40 | 1.06 + 0.04 9.9 £0.56
40 ncb | 1.0l £0.03 8.8 + 0.49
0 25 2,62+ 0.12 0.3 £0.07
40 25 2,57+ 0.11 13.1 £0.77
40 ncb 2.5 2.58+0.13 12.7 £ 0.65

N: Population size. r = Recombination rate per gene. » = dN/dS.
NPSS: Average number of positive selection sites. ncb: no codon
break allowed.

replicates and cases, which is out of the scope of the
present work.

Conclusion

GenomePop has interesting characteristics for simulating
SNPs or DNA sequences under complex models of evolu-
tion and demography. These features make it unique with
respect to other simulation tools. Namely, the possibility
of forward simulation under GTR mutation or GTR x
MG94 codon models with intra-codon recombination,
simulation of any user-defined migration pattern, diploid
or haploid models, constant or variable population sizes,
fitness-based selection, etc. Under the 2-allele model it
allows the simulation of recombination hot-spots, the
definition of different frequencies in different popula-
tions, etc. GenomePop can also manage large DNA frag-
ments and has a scaling option to save computation time
when simulating large sequences or population sizes
under complex demographic and evolutionary situations.
It has many other features that are detailed in the web

page [1].

Awvailability and requirements
Project name: GenomePop v. 1.0

Project home page: http://webs.uvigo.es/acraaj/Genome
Pop.htm
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Programming language: C++
License: GNU GPL.
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