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Abstract
Background: Metagenomics is an approach to the characterization of microbial genomes via the
direct isolation of genomic sequences from the environment without prior cultivation. The amount
of metagenomic sequence data is growing fast while computational methods for metagenome
analysis are still in their infancy. In contrast to genomic sequences of single species, which can
usually be assembled and analyzed by many available methods, a large proportion of metagenome
data remains as unassembled anonymous sequencing reads. One of the aims of all metagenomic
sequencing projects is the identification of novel genes. Short length, for example, Sanger
sequencing yields on average 700 bp fragments, and unknown phylogenetic origin of most fragments
require approaches to gene prediction that are different from the currently available methods for
genomes of single species. In particular, the large size of metagenomic samples requires fast and
accurate methods with small numbers of false positive predictions.

Results: We introduce a novel gene prediction algorithm for metagenomic fragments based on a
two-stage machine learning approach. In the first stage, we use linear discriminants for monocodon
usage, dicodon usage and translation initiation sites to extract features from DNA sequences. In
the second stage, an artificial neural network combines these features with open reading frame
length and fragment GC-content to compute the probability that this open reading frame encodes
a protein. This probability is used for the classification and scoring of gene candidates. With large
scale training, our method provides fast single fragment predictions with good sensitivity and
specificity on artificially fragmented genomic DNA. Additionally, this method is able to predict
translation initiation sites accurately and distinguishes complete from incomplete genes with high
reliability.

Conclusion: Large scale machine learning methods are well-suited for gene prediction in
metagenomic DNA fragments. In particular, the combination of linear discriminants and neural
networks is promising and should be considered for integration into metagenomic analysis
pipelines. The data sets can be downloaded from the URL provided (see Availability and
requirements section).
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Background
Communities of natural microorganisms often encom-
pass a bewildering range of physiological, metabolic, and
genomic diversity. The microbial diversity in most envi-
ronments exceeds the biodiversity of plants and animals
by orders of magnitude. Phylogenetic surveys of complex
ecosystems such as soils and sediments have demon-
strated that the multitude of discrete prokaryotic species
represented in a single sample goes far beyond the
number and phenotypes of known cultured microorgan-
isms [1,2]. Direct cultivation or indirect molecular
approaches have been used to explore and to exploit this
enormous microbial diversity. Cultivation and isolation
of microorganisms are the traditional methods. It has
been estimated that less than 1 % of environmental
microorganisms are culturable using standard cultivation
methods. Thus, only a tiny portion of the gene pool of
natural microbial communities has been analyzed so far
[2-4].

To circumvent some of the limitations of cultivation
approaches, indirect molecular methods, such as metage-
nomics have been developed. Metagenomics is based on
the direct isolation, cloning, and subsequent analysis of
microbial DNA from environmental samples without
prior cultivation [5-7]. Function- and sequence-based
analysis of metagenomic DNA fragments have resulted in
the identification of a variety of novel genes and gene
products [6,8,9]. In addition, partial sequencing of
metagenomes, such as those from the acid mine biofilm
(75 Mbp) [10], Minnesota farm soil (100 Mbp) [11], and
Sargasso Sea (1,600 Mbp) [12], have provided a better
understanding of the structure and genomic potential of
microbial communities.

A major goal of metagenomic sequencing projects is the
identification of protein coding genes. Most genes in
metagenomic fragments are currently identified by
homology to known genes by employing other methods,
e.g. BLAST [13]. The disadvantage of such an approach is
obvious: it is impossible to find novel genes that way. Par-
ticularly in cases where metagenomic studies aim to dis-
cover new proteins, homology search is an inadequate
tool for gene prediction.

The computational ab initio prediction of genes from
microbial DNA has a long history, and a number of tools
have been developed and employed for gene prediction
and annotation of genomic sequences from single
prokaryotic species (e.g. GLIMMER [14] and Gene-
Mark.hmm [15]). A minor restriction in the application of
some conventional approaches to metagenomes is that
they are based on the identification of open reading
frames (ORFs), which begin with a start codon and end
with an in-frame stop codon. Sequenced metagenomes

comprise a collection of numerous short sequencing reads
of varying length depending on the employed sequencing
technique. A typical metagenomic fragment derived by
Sanger sequencing [16] is approximately 700 bp long and
contains two or fewer genes. The majority of these genes
are incomplete, meaning one or both gene ends extend
beyond fragment end(s). Therefore, most ORFs in metage-
nomic sequencing reads will be overlooked by ORF-based
gene finders. A more profound problem is that most gene
finders for prokaryotic genomes rely on statistical
sequence models that are estimated from the analyzed or
a closely related genome. Most metagenomic fragments
do not bear sufficient sequence information for building
statistical models able to distinguish coding from non-
coding ORFs. One might consider to derive models from
a complete metagenome but the resulting gene prediction
quality in fragments from underrepresented species in the
metagenome is questionable.

Up to now, there are three approaches for predicting genes
from metagenomic DNA fragments. One of these meth-
ods is based on BLAST search, where the search is not only
applied against databases of known proteins but also
against a library constructed from the metagenomic sam-
ple itself [17]. In principle, this computationally expen-
sive approach is able to find novel genes, provided that
homologues of these genes are contained in the sample.
However, it is not clear whether interesting genes will
always be conserved in a metagenomic sample. The first
method that was developed for ab initio gene prediction
in short and anonymous DNA sequences is a heuristic
approach of GeneMark.hmm that derives an adapted
monocodon usage model from the GC-content of an
input sequence [18].

Another method that was developed for ab initio gene
prediction in metagenomic DNA fragments is MetaGene
[19]. Similar to GeneMark.hmm, MetaGene employs GC-
content specific monocodon and dicodon models for pre-
dicting genes. The time-efficient two step gene prediction
algorithm first extracts ORFs and scores them on the basis
of statistical models estimated from fully sequenced and
annotated genomes. Subsequently, a dynamic program
calculates the final ORF combination from different
scores. Additionally, MetaGene utilizes ORF length, the
distance from the annotated start codon to the left-most
start codon, and distances to neighboring ORFs. Two sep-
arate models were estimated from bacterial and archaeal
genomes, respectively. The domain specific models are
simultaneously applied to each fragment and the higher
scoring model is selected for final gene prediction. Results
in randomly sampled fragments from annotated genomes
indicate that MetaGene provides a high sensitivity in find-
ing genes in fragmented DNA, while the specificity of the
predictions is slightly lower. In addition, the performance
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of GeneMark.hmm in 700 bp fragments and for complete
genomes was investigated (supplementary table S3 and
table 1 of [19]). Comparable performance results were
obtained for both methods for both types of input
sequences.

Here, we present a novel approach for gene prediction in
single fragments, which is based entirely on machine
learning techniques. In bioinformatics, state-of-the-art
machine learning methods are usually applied to prob-
lems where, at most, several thousands of examples exist
for training and evaluation. In our application, learning
has to be performed on large data sets with millions of
examples. This requires the use of a learning architecture
that is capable of large-scale training and testing. Here, we
propose a combination of neural networks and linear dis-
criminants. While linear discriminants are used for the
extraction of features from high-dimensional data which
characterize codon usage and potential gene starts, a small
neural network is used for non-linear combination of
these features with additional information on length and
GC-content of gene candidates. Neural networks in com-
bination with linear discriminants or positional weight
matrices have also been applied to other gene prediction
problems, for instance in promoter recognition [20].

To provide comparability in our experimental evaluation,
we use a setup that is similar to the one used for the initial
evaluation of MetaGene. We test our program on frag-
ments from thirteen species. However, we provide some
important extensions: We use a higher number of frag-
ments which are randomly sampled from the test
genomes to avoid any bias that may result from a particu-
lar fragmentation technique. The higher number of frag-
ments is used to cope with the variance across different
(repeated) sampling experiments. In addition, we provide
a detailed analysis of the translation initiation site (TIS)
prediction performance and we also investigate the ability
to discriminate between complete and incomplete genes.

Methods
Most prokaryotic protein coding genes consist of a start
codon, followed by a variable number of consecutive in-
frame codons and are terminated by a stop codon. This
particular arrangement of codons is commonly referred to
as open reading frame (ORF). The sole identification of
ORFs is not sufficient for prokaryotic gene prediction
because the majority of ORFs in a genome are, in fact,
non-coding.

In DNA fragments, ORFs frequently exceed the fragment
ends. We therefore extend the ORF definition to incomplete
ORFs.

The fact that start codons are identical to some regular
codons results in a high number of related ORFs that
share a stop codon but have different start codons. We
term such a set of related ORFs an ORF-set and we name
the possible start codons of an ORF-set translation initia-
tion site (TIS) candidates. Figure 1 illustrates possible
cases of ORF occurrence in a DNA fragment: In case 1, the
complete ORF-set is located in the fragment. Additional
TIS candidates for this ORF-set can not occur because of
an upstream in-frame stop codon. Predicted genes from
this ORF-set will always be complete. In case 2, only TIS
candidates are located inside the fragment. The range for
upstream TIS is again limited by an in-frame stop codon.
This candidate, if classified as coding, would result in the
prediction of an incomplete gene. In case 3, the stop is
located in the fragment. Some TIS candidates are con-
tained in the fragment but there might exist TIS candidates
outside the fragment. An ORF-set of this type may result
either in a complete or in an incomplete gene. Case 4 is
complementary to case 2. Only a stop codon is located
inside the fragment. Case 5 and 6 are fragment-spanning
ORF-sets, where 5 also includes TIS candidates inside the
fragment. Predictions from case 5 will be incomplete but
may have a start codon. Case 5 and 6 can both result in the
prediction of incomplete genes without start and stop
codons.

Our gene prediction algorithm is designed for the discrim-
ination of coding from non-coding ORFs. After the iden-
tification of all ORFs in a fragment, we extract features
from those ORFs using linear discriminants. Subse-
quently, we use a neural network that has been particu-
larly trained for the classification of ORFs as coding or
non-coding. Classification is based on a gene probability
that the neural network assigns to every ORF. Because
gene-containing ORF-sets usually comprise of more than
one candidate, several ORFs of such an ORF-set may be
assigned a high probability by the neural network. The
final gene prediction is achieved by a »greedy« method
that selects the most probable ORFs that overlap by, at
most, 60 bases.

Machine Learning Techniques
To predict whether a particular ORF actually corresponds
to a protein coding region or to a non-coding region, we
use a neural network for binary ORF classification. In the
following sections, we will first describe the features uti-
lized as inputs for the neural network. Subsequently, we
will depict the neural network architecture and the meth-
ods we used for large scale training and validation from
labeled ORFs in artificial fragments.

Features
For realization of the neural network, we use seven fea-
tures based on sequence characteristics of ORFs. As net-
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work inputs, these sequence features are subject to a
separate preprocessing step. Below, we explain the meth-
ods for computation of these features in detail.

Codon and Dicodon Usage
The perhaps most important features for the discrimina-
tion between coding and non-coding ORFs can be derived
from codon usage, in particular from 43 monocodon and
46 dicodon frequencies. These frequencies represent the
occurrences of successive trinucleotides (non-overlap-
ping) and hexanucleotides (half-overlapping), respec-
tively. For the characterization of monocodon and
dicodon usage, we compute two features based on linear
discriminant scores.

Linear discriminants were obtained from training with
annotated sequence data. We used coding and non-cod-
ing regions from annotated genomes as positive and neg-
ative examples, respectively (see section »Training Data
for Feature Preprocessing«). Examples are represented by
vectors of frequencies of 43 and 46 possible monocodons
and dicodons, respectively. In the following, we describe
discriminant training for the monocodon case. The same
training procedure was applied to the dicodon case.

For the i-th example, we denote a monocodon frequency

vector as , which is the i-th column of the data

matrix XM, containing all training vectors. To remove

length information from these data, all training vectors
are normalized to unit Euclidean norm. The correspond-

ing label  ∈ {-1, 1}, which is the i-th element of the

label vector yM, indicates whether the example represents

a coding (  = 1) or non-coding (  = -1) region. For

training of the discriminant weight vector wM, we use a

regularized least squares approach, i.e. we minimize the
following regularized error:

where » · « denotes the dot product. The minimizer of E
is obtained by [21]:

with d × d identity matrix I and with upper T and -1 indi-
cating matrix transposition and inversion, respectively.
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The figure illustrates possible localizations of open reading frames (ORFs) in a fragment (shown only for the forward strand)Figure 1
The figure illustrates possible localizations of open reading frames (ORFs) in a fragment (shown only for the 
forward strand). ORFs are shown as grey bars, »«denotes stop codons, »|« indicates the position of translation initiation site 
candidates. ORFs that are related by a common stop codon are grouped and we refer to them as ORF-sets. The box symbol-
izes the fragment range. Everything that might be located outside the box is invisible to gene prediction algorithms. Further 
explanations are given in section »Methods«.
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The computational cost scale linearly with the number of
examples, which makes the approach well suited for large
scale learning. Doing the same for the dicodon frequency
discriminant vector wD, we obtain two discriminant
scores that serve as the first two input features of the neu-
ral network:

x1 = wM · xM, x2 = wD · xD. (3)

To adjust the regularization parameter λ, we measure the
discriminative power of the respective classifier by means
of the area under precision recall curve (»auPRC«) as
explained in section »Measures of Performance«. Thereby,
we choose a λ ∈ {10m|m = -8, -7, ..., 6} to maximize the
auPRC on an independent validation set (see section
»Training Data for Feature Preprocessing«).

Translation Initiation Site
A discriminant is derived from up- and downstream
regions of translation initiation site (TIS) examples. Here
we use a 60 basepair (bp) window centered on a potential
start codon at window position 31 (see section »Training
Data«). We encode the trinucleotide occurrences in that
window to yield binary indicator vectors. In each of its
3712 dimensions (64 trinucleotides × 58 positions), a
vector indicates whether a certain trinucleotide occurs at a
particular window position. Training of the discriminant
proceeds in the same way as for the previous two discrimi-
nants based on codon usage. Again, we select the regular-
ization parameter λ ∈ {10m|m = -8, -7, ..., 6} by
maximization of the auPRC on an independent validation
set.

Because not all genes have a potential TIS region we do
not use the TIS score s = wT · xT directly, but instead we
take the posterior probabilities of being a TIS or not. For
computation of the posterior probabilities, we use Gaus-
sian probability density functions of the score:

where μ stands for mean and σ for standard deviation.

The features x3 and x4 were obtained from a mixture of two
Gaussians

p(s) = π+p(s|μ+, σ+) + π-p(s|μ-, σ-) (5)

with parameters estimated from scores of positive and
negative training examples, respectively (π + and π - are the
a priori probabilities of the two classes):

If no TIS candidate is present, both probabilities are set to
zero for that ORF. Note that this case is different from the
case of missing values, which can be solved by assigning a
priori probabilities for true and false TIS. Here we encoun-
ter the possible case where we know that none of the two
categories is adequate.

Length features
Another feature for discrimination between coding and
non-coding ORFs is the sequence length of the ORF. Here,
it is important to distinguish between complete and
incomplete ORFs. For incomplete ORFs, the observable
»incomplete length« is merely a lower bound for the
unobservable »complete length« of that ORF and there-
fore should be treated in a different way. Consequently,
we use one »incomplete« and one »complete length« fea-
ture. For a particular ORF, only the feature that corre-
sponds to the type of ORF has non-zero value. The value
is simply the observed length divided by the maximal
length lmax. In our evaluation, we set lmax to 700 bp. In this
way we obtain two more features x5, x6 ≥ 0 for complete
and incomplete length.

GC-content
As a last feature x7 ∈ [0, 1], we use, for each ORF, the GC-
content estimated from the whole fragment in which this
ORF occurs.

Neural Network

We use standard multilayer perceptrons with one layer of
k hidden nodes and with a single logistic output function.
Within a binary classification setup with labels yi = 1

(»true«) or yi = 0 (»false«) the output of the neural network

can be viewed as an approximation of the posterior prob-
ability of the »true« class [22]. In our case, the »true« class
represents coding ORFs and therefore the network output
can be interpreted in terms of a gene probability. For an
input feature vector x, the k hidden layer activations zi

based on input weight vectors  and bias parameters 

are

Putting the zi into a vector z, the output of the network, i.e.
its prediction function based on weight vector wO and bias
bO, is
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Given a training set x1, ..., xN and a network with weight
and bias parameters collected in the vector θ, we now
write the corresponding network output as f(x1; θ), ...,
f(xN; θ). With diagonal matrix A containing the regulariza-
tion parameters, the training objective is to minimize the
regularized error:

The diagonal matrix A = diag(α1, ..., α1, α2, ..., α2, α3, ...,

α3, α4) of the regularization term involves four hyperpa-

rameters α1, α2, α3, α4 > 0 for separate scaling of the

parameters , , wO, bO. Note that the regularization

term penalizes the squared magnitude of the weights. For
the adaptation of hyperparameters, we utilize the evi-
dence framework [23] based on a Gaussian approxima-
tion of the posterior distribution of network weights. The
evidence-based adaptation of hyperparameters can be
incorporated into the network training procedure and
does not require additional validation data. For the mini-
mization of (9) with respect to weight and bias parame-
ters, we use a scaled conjugate gradient scheme, as
implemented in the NETLAB toolbox [24]. While weight
and bias parameters were initialized randomly according
to a standard normal distribution, the hyperparameters

were initially set to α1 = α2 = α3 = α4 = 0.01. The complete

training scheme performs 50 iterations where each itera-
tion comprises 50 gradient steps and two successive
hyperparameter adaptation steps.

Final Candidate Selection

Application of the neural network to a certain fragment
results in a list of potential gene candidates with a pre-
dicted gene probability above 0.5. Most of these predic-
tions are mutually exclusive in terms of overlap. Many
predictions even belong to the same ORF-set, differing
only in the position of the start codon. In order to obtain
a list  of final genes for a particular fragment, predic-

tions with maximal probability are iteratively selected
from the list of candidates , which is successively
reduced according to a maximum overlap constraint.
Starting with an empty list  and an initial list  con-

taining all fragment-specific ORFs i with gene probability

Pi = f (xi; θ) > 0.5, we apply the following »greedy« selec-

tion scheme:

While  is nonempty do

• determine  with respect to all ORFs i in

• remove ORF imax from  and add it to 

• remove all ORFs from  that overlap with ORF imax by

more than omax bp

In our evaluation, we set omax to 60 bp, which corresponds
to the minimal gene length we consider for prediction.

Training Data
Our machine learning approach for gene prediction in
metagenomic DNA fragments is based on learning the
characteristics of coding and non-coding regions from
131 fully sequenced prokaryotic genomes [see Additional
file 1] and their GenBank [25] annotation for protein cod-
ing genes. The training genomes correspond to the ones
that were used for building the statistical models of Meta-
Gene except that we excluded Pseudomonas aeruginosa
from the training set because a subset of reliably anno-
tated genes that is valuable for the determination of TIS
correctness is available for this species. All training and
test data sets described in this article are based on the ini-
tial extraction of ORFs with a minimal length of 60 bp.
Two types of ORFs are distinguishable: Complete ORFs
begin with a start codon (ATG, CTG, GTG or TTG), and are
followed by a flexible number of subsequent codons and
conclude with a stop codon (TAG, TGA or TAA). Incom-
plete ORFs stretch from one fragment end to a stop or start
codon or to the other fragment end without being inter-
rupted by another in-frame stop codon (compare Figure
1).

In the following paragraphs, we first describe the prepara-
tion of training data sets for feature preprocessing and for
training of the neural network. Subsequently, we specify
the compilation of a test data set for performance evalua-
tion.

Training Data for Feature Preprocessing
Monocodon, dicodon and TIS feature extraction from
ORFs require a preprocessing step that is based on the sep-
arate training procedure described in section «Codon and
Dicodon Usage». Training examples for feature preproc-
essing were randomly sampled from complete genomes
to a coverage of 50 %. Two separate training sets were
compiled. For the mono- and dicodon frequencies train-
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ing set, DNA sequences of genes defined by their exact
start and stop codon position served as positive examples
(≈1.9 × 105). The longest candidate out of each non-cod-
ing ORF-set was selected for the composition of negative
examples (≈2.8 × 106).

Training of the TIS discriminant was carried out on sym-
metric 60 bp sequence windows around start codons. The
sequence windows of annotated start codons served as
positive examples (1.9 × 105) while the windows around
other possible start codons of the same ORF-sets were
used as negative examples (5.6 × 106).

The examples for both training data sets were randomly
split into 50 % for discriminant training and 50 % for val-
idation of the regularization parameter.

Training Data for the Neural Network
The neural network was trained with the extracted features
from ORFs in 700 bp fragments that were randomly
excised to a 1-fold genome coverage from each training
genome. We define an n-fold coverage as the amount of
sampled DNA that is in total length (bp) n times longer
than the original genome sequence. Annotated genes in
these fragments were used as positive examples for coding
regions (≈2.6 × 106) while one candidate out of each non-
coding ORF-set was randomly selected for the negative
examples (≈4.5 × 106). The data sets were randomly split
into 50% for neural network training and 50 % for valida-
tion of the network size (see section »Neural Network«).

Test Data and Experimental Evaluation
The performance of our gene prediction algorithm was
evaluated on artificial DNA fragments from three archaeal

and ten bacterial species (see Table 1) whose genera were
not used for training. Fragments of the lengths 100 to
2000 bp (in intervals of 100 bp) were randomly sampled
from each genome to a 5-fold genome coverage for each
length. We used the fragments of all lengths to investigate
gene prediction performance of our method, which was
trained on fragments with the length 700 bp.

A more detailed analysis was carried out on 700 bp frag-
ments (also sampled to a 5-fold coverage), including a
comparison to MetaGene. In order to determine statistical
significance, we used 10 replicates of each randomly sam-
pled fragment stack.

Gene prediction performance was evaluated by compar-
ing predictions of our method to known annotated genes
in fragments. The GenBank annotation for protein coding
genes was used to measure general gene prediction per-
formance. However, the GenBank gene start annotation
has previously been suspected to be inaccurate [26].
Therefore, we used »reliable gene annotation subsets« [27]
for the evaluation of translation initiation site (TIS) pre-
diction performance: all genes with an experimentally ver-
ified TIS from »EcoGene« for Escherichia coli [28],
experimentally verified genes of the Bacillus subtilis Gen-
Bank annotation (all non-y genes) and the »PseudoCAP«
(Pseudomonas community annotation project) annota-
tion of Pseudomonas aeruginosa [29].

Measures of Performance
The capability of detecting annotated genes (and genes
including their annotated TIS) was measured as sensitiv-
ity:

For gene prediction sensitivity, TPgene (true positives)
denotes correct matches and FNgene (false negatives) indi-
cate overlooked genes. We counted all predictions as
TPgene that match at least 60 bp in the same reading-frame
to an annotated gene.

In one experiment, we compared gene predictions to a
subset of genes that have a reliably annotated gene start in
the fragment. For this subset, we measured TIS prediction
sensitivity. Here, TPTIS are genes with correctly predicted
TIS and FNTIS are genes whose correct start codons were
not predicted.

The reliability of gene predictions was measured by specif-
icity:

Sens
TP

TP FN
=

+
(10)

Table 1: Genomes of microbial species that were used for the 
evaluation of our method. The upper three species are archaea 
while the lower ten species belong to the bacterial domain. The 
table shows GenBank accession numbers (GenBank Acc.), and 
genome sizes (Size).

Species GenBank Acc. Size (Mbp)

Archaeoglobus fulgidus NC_000917 2.2
Methanococcus jannaschii NC_000909 1.7
Natronomonas pharaonis NC_007426 2.6

Buchnera aphidicola NC_002528 0.6
Burkholderia pseudomallei NC_006350, NC_006351 7.2
Bacillus subtilis NC_000964 4.2
Corynebacterium jeikeium NC_007164 2.5
Chlorobium tepidum NC_002932 2.2
Escherichia coli NC_000913 4.6
Helicobacter pylori NC_000921 1.6
Pseudomonas aeruginosa NC_002516 6.3
Prochlorococcus marinus NC_007577 1.7
Wolbachia endosymbiont NC_006833 1.1
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Gene prediction specificity was calculated with predicted
genes that do not correspond to any gene in the annota-
tion as FPgene (false positives).

To provide a suitable composite measure of sensitivity
and specificity we use the harmonic mean, which corre-
sponds to a particular realization of the F-measure [30]:

To measure the discriminative power of the codon usage
and TIS discriminants for feature extraction (see »Fea-
tures«), we use the area under precision recall curve
(auPRC). The precision recall curve shows for each possi-
ble score threshold the relation of sensitivity (on the x-
axes) and specificity (on the y-axes). Sensitivity and specif-
icity are not sufficient for measuring TIS prediction per-
formance. When applied to TIS prediction, these measures
rather reflect general gene prediction performance than
accuracy of TIS prediction. 'TIS correctness' was therefore
measured by the percentage of correctly predicted TIS
within a subset of true positive gene predictions TPgene
that have an annotated start codon within the fragment
(TPgene that have annotated start codon wihin the frag-
ment (TPgene*):

Accuracy of complete/incomplete gene type prediction
was calculated on the basis of correctly predicted genes
with an existing true TIS:

where TPcomplete and TNcomplete account for the number of
genes within TPgene that have correctly been predicted as
complete and incomplete.

Results and Discussion
In the following sections, we first describe and discuss the
results of discriminant and neural network validation
which led to the choice of a hyperparameter λ and a suit-
able number of nodes for the neural net. Subsequently, we
show and discuss gene prediction performance results of
the neural network on several fragment lengths and in
700 bp fragments.

Discriminant Validation
Training of the linear discriminants for monocodon, dico-
don and TIS features requires the validation of the regular-
ization parameter λ . For each of the three discriminants,
we chose λ from the set of values {10m|m = -8, -7, ..., 6}
by maximizing the area under precision recall curve
(auPRC) on separate validation data. While for the TIS
discriminant, a well-defined maximum was achieved for
an intermediate λ = 10-2, for the monocodon and dicodon
case the maximum was achieved for the smallest value λ =
10-8. However, as shown in Additional file 2, for small λ
values the auPRC performance in these cases reaches a
plateau and therefore we did not try smaller values. The
resulting discriminant weights for the 64 monocodons are
shown in Additional file 1. The high negative weights for
the three stop codons TAA, TAG, TGA are due to the large
fraction of negative examples. Because negative examples
are, by a factor 10, more frequent than positive examples
in the training set, a negative shift of the discriminant
score is induced by codons that, like stop codons, are
present in any example in any of the two classes.

Network Validation
In principle, the evidence-based hyperparameter adapta-
tion (see section »Neural Network«) obviates the search
for an adequate size of the network, i.e. to find a suitable
number k of hidden nodes. The network size has just to be
large enough to provide maximum performance, while
larger nets would automatically be subject to stronger reg-
ularization in terms of larger regularization parameters.
Nevertheless, network size is crucial in terms of computa-
tional cost for training and testing.

In order to find a small network with sufficient perform-
ance, we started to train networks of increasing size. Try-
ing networks with k = 5, 10, ..., 25 nodes, we found the
performance to reach a nearly flat plateau within that k-
range, with only very slight increase above k = 15 [see
Additional file 2]. Performance was measured in terms of
the harmonic mean criterion (see section »Measures of
Performance«), computed on an independent validation
set (see section »Training Data«). For the final predictions
on the test data, we used the largest network with k = 25
nodes.

While training of neural networks is a time consuming
process, computing predictions with a trained network on
new data is very fast. In our case, training a network with
k = 25 hidden nodes from ≅ 3.6 × 106 examples took about
190 cpu hours (AMD Opteron, 2 GHz). The training
scheme described above was applied in parallel to 5 net-
works with different (random) initialization of parame-
ters to avoid weak local minima of the regularized error
(9). According to the lowest error, the best resulting net-
work was selected for the final predictions within the test

Spec
TPgene

TPgene FPgene
=

+
(11)

HarmonicMean
Sens Spec

Sens Spec
=

+

∗ ∗2
. (12)

TIS correctness
TP

TP
TIS

gene

=
∗

. (13)

GeneTypeAccuracy
TPcomplete TNcomplete

TPgene
=

+

(14)
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setup. In contrast, testing of the same number of exam-
ples, i.e. prediction on more than three million candi-
dates, only took ≅ 16.5 seconds on the same machine.

The parameters of the neural network with 25 nodes that
we used for further evaluation are given in Additional file
1.

Gene Prediction Performance in DNA fragments
To evaluate the performance of our machine learning
approach, we tested the method on artificially fragmented
genomes. In the following section, we present the results
in general gene prediction performance on various frag-
ment lengths. Subsequently, we analyze gene prediction
performance, TIS prediction correctness and complete/
incomplete gene type prediction accuracy in detail for
fragments of length 700 bp, which corresponds to the
fragment length on which the neural network was trained.

Performance in Fragments of Different Lengths
The predictions of our method in DNA fragments with
lengths ranging from 100 to 2000 bp from thirteen species
were compared to the GenBank [25] annotation for pro-
tein coding genes. Note that on average 15 % of 100 bp
fragments do not contain any annotated gene matching
the 60 bp minimal length criterion (complete or incom-
plete), for 700 bp fragments, this fraction of fragments
accounts 3 %, for 2000 bp fragments 0.8 %. The average
percentage of complete genes within all annotated genes
in our test fragments is 0 % for 100 bp fragments, 8 % for
700 bp fragments and 40 % for 2000 bp fragments [see
Additional file 2]. The mean of gene prediction sensitivity
and specificity for all fragment lengths is shown in Figure
2. On 700 bp fragments, our method has an average gene
prediction sensitivity of 89 % and an average specificity of
93 %. Sensitivity and specificity slightly increase with
growing fragment size. This can be explained by the fact
that ORFs carrying distinct mono-/dicodon and TIS sig-
nals occur more often in longer fragments. Gene predic-

Average gene prediction performance of the neural network in fragments of the lengths 100 to 2000 bpFigure 2
Average gene prediction performance of the neural network in fragments of the lengths 100 to 2000 bp. The 
performance values from thirteen test species were averaged by arithmetic mean.
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tion performance decreases with length and sharply drops
for fragments shorter than 200 bp.

Before application of our method on real metagenomes,
the neural network should be trained and thoroughly
evaluated on fragments of a length that corresponds to the
real fragments of interest. Metagenomic sequencing
projects differ in their aims and in the applied sequencing
and annotation strategies. Improved Sanger sequencing
from one or both vector insert ends is applied in many
metagenomic projects (examples are listed in review [31])
and yields sequencing reads roughly ranging from 500 to
1000 bp. Based on the current results, our method might
be particularly useful for improving gene annotation and
discovery on Sanger sequencing reads. However, pyrose-
quencing [32] has also been introduced to metagenomics
[33]. The pyrosequencing approach does not involve any
cloning step. With recent improvements, pyrosequencing
now yields a read length between 200 and 300 bp [34]. In
principle, it should be possible to predict genes in such
short fragments with our fragment-based techniques but
environmental pyrosequencing projects may rather be
focused on phylogenetic studies and habitat comparison
than on the discovery of new genes. In some metagenomic
sequencing projects, long metagenomic inserts (up to 40
kbp) are fully sequenced [35]. Although gene prediction
performance of the neural network does not decrease on
longer fragments [see Additional file 2], other methods
like MetaGene [19] or GeneMark.hmm [18], which also
consider the context of putative genes (e.g. operons), may
be more suitable for fragments of this size.

Performance in 700 bp Fragments
Predicted genes in fragments with a length of 700 bp from
three archaeal and ten bacterial species were compared to
the GenBank annotation for protein coding genes. The

mean and standard deviation for sensitivity, specificity
and the harmonic mean of 10 repetitions per species are
shown in Table 2. The neural network has high sensitivity
(ranging from 82 to 92 %) and specificity (ranging from
85 to 97 %) in fragments from all species. We could not
observe a major performance difference for sensitivity and
specificity between archaeal and bacterial fragments but
the variation between different species in general is large.

In comparison to MetaGene, the neural network has a
higher specificity in fragments from all test species (on
average 4.6 % higher). On the other hand, MetaGene has
a higher sensitivity in fragments from most species (on
average 3.8 % higher). The neural network only shows a
higher sensitivity in Bacillus subtilis and Helicobacter pylori.
The overall performance of both methods calculated by
harmonic mean is very similar. For some species, the neu-
ral network yields a better overall gene prediction per-
formance while MetaGene performs better on other
species. In particular, MetaGene performs better in all
tested archaea. All local pairwise differences in sensitivity,
specificity and harmonic mean between the neural net-
work and MetaGene are significant to a confidence level of
95 % according to Wilcoxon's signed rank test [36] (R-
package exactRankTests [37]).

A precise TIS prediction is very important in metagenom-
ics since the aim of many environmental sequencing
projects is the identification and subsequent experimental
investigation of novel genes. For example, the expression
of a metagenomic protein in a host organism may fail or
yield incorrect results if the predicted start codon is incor-
rect. Accurate TIS prediction is a difficult task, even for
conventional gene finders on complete genomes [38-42].
This is because ATG, CTG, GTG and TTG also occur inside
genes.

Table 2: Mean and standard deviation for gene prediction performance of our method (Neural Net) and MetaGene. Performance was 
measured on 700 bp fragments that were randomly excised from each test genome to 5-fold coverage (ten replications per species). 
The harmonic mean is a measure that combines sensitivity and specificity.

SENSITIVITY SPECIFICITY HARMONIC MEAN
Species Neural Net MetaGene Neural Net MetaGene Neural Net MetaGene

Archaeoglobus fulgidus 87.2 ± 0.21 93.7 ± 0.15 93.4 ± 0.16 92.7 ± 0.16 90.2 ± 0.17 93.2 ± 0.14
Methanococcus jannaschii 91.7 ± 0.17 95.8 ± 0.14 96.2 ± 0.13 92.7 ± 0.19 93.9 ± 0.10 94.3 ± 0.15
Natronomonas pharaonis 87.9 ± 0.22 95.1 ± 0.09 93.9 ± 0.10 92.7 ± 0.17 90.8 ± 0.16 93.9 ± 0.12
Buchnera aphidicola 90.6 ± 0.37 96.7 ± 0.24 95.3 ± 0.31 91.1 ± 0.29 92.9 ± 0.28 93.8 ± 0.21
Burkholderia pseudomallei 87.9 ± 0.11 94.1 ± 0.11 90.1 ± 0.09 85.1 ± 0.13 89.0± 0.08 89.4 ± 0.10
Bacillus subtilis 91.4 ± 0.16 89.8 ± 0.14 95.3 ± 0.09 89.3 ± 0.19 93.3 ± 0.10 89.5 ± 0.14
Corynebacterium jeikeium 89.7 ± 0.24 91.9 ± 0.12 93.8 ± 0.19 89.2 ± 0.21 91.7 ± 0.19 90.5 ± 0.13
Chlorobium tepidum 82.1 ± 0.25 85.7 ± 0.27 91.2 ± 0.17 88.4 ± 0.26 86.4 ± 0.19 87.0 ± 0.22
Escherichia coli 91.7 ± 0.16 93.3 ± 0.07 95.3 ± 0.09 90.9 ± 0.10 93.5 ± 0.12 92.1 ± 0.07
Helicobacter pylori 92.1 ± 0.11 90.2 ± 0.14 96.6 ± 0.15 89.6 ± 0.23 94.3 ± 0.11 89.9 ± 0.15
Pseudomonas aeruginosa 90.4 ± 0.14 96.2 ± 0.07 92.5 ± 0.11 91.4 ± 0.09 91.4 ± 0.12 93.7 ± 0.07
Prochlorococcus marinus 87.2 ± 0.21 93.7 ± 0.25 95.9 ± 0.14 90.8 ± 0.20 91.4 ± 0.15 92.2 ± 0.19
Wolbachia endosymbiont 87.2 ± 0.27 90.6 ± 0.42 85.2 ± 0.44 71.2 ± 0.54 86.2 ± 0.29 79.7 ± 0.45
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One gene may for example contain several ATGs but only
one corresponds to a TIS. Our approach includes a TIS-
model that is based on a linear discriminant. We meas-
ured TIS prediction performance of our algorithm for all
correctly predicted genes that have annotated start codons
within a fragment. First, we investigated TIS performance
on our complete set of test species fragments according to
GenBank annotation. The results are shown in Table 3.
TIS correctness of our algorithm varies remarkably
between different test species. On some bacterial species,
our algorithm reaches a TIS correctness of 87 % (e.g. in
Helicobacter pylori). The lowest TIS performance can be
observed in fragments from the bacterium Chlorobium
tepidum (68 %). The average TIS correctness of our algo-
rithm is around 78 %. In comparison to this, the highest
performance of MetaGene can be observed for fragments
of Prochlorococcus marinus (89 %), the lowest for fragments
of Bacillus subtilis (66 %). Note that TIS correctness
depends on the number of correctly predicted genes with
an annotated TIS. Therefore, TIS correctness of our algo-
rithm is not directly comparable to the one obtained by
MetaGene, which detects a higher number of genes. How-

ever, the variation in TIS correctness of both methods is
large.

A reason for this variation might be that the GenBank
gene annotation contains many hypothetical and not
experimentally verified genes [26]. Therefore, we also
evaluated TIS prediction performance on »reliable anno-
tation subsets« of the bacteria Escherichia coli, Bacillus sub-
tilis and Pseudomonas aeruginosa (see section »Test Data
and Experimental Evaluation«). Evaluating gene predic-
tion performance in fragments according to these annota-
tion subsets, our algorithm achieves a highly consistent
TIS prediction performance between 81 and 87 % in frag-
ments from all three test species. The TIS prediction sensi-
tivity varies from 68 % to 80 % (see Table 4). In
comparison, MetaGene's TIS performance shows a higher
variation, ranging from 70 to 84 % while the TIS sensitiv-
ity ranges from 62 to 80 %.

The nature of fragmented DNA results in the occurrence of
complete and incomplete genes. A gene may be incor-
rectly predicted as complete or incomplete if it has several
TIS candidates of which at least one is located outside the

Table 4: Translation initiation site prediction performance of the new gene prediction algorithm (Neural Net) and MetaGene 
according to »reliable annotation subsets« (A subset of »verified genes« from »EcoGene« for Escherichia coli [28], all non-y genes of 
the Bacillus subtilis GenBank annotation and the »PseudoCAP« annotation of Pseudomonas aeruginosa [29]). TIS prediction sensitivity 
and correctness were measured on artificial 700 bp fragments that were randomly excised from each test genome to 5-fold coverage. 
Mean and standard deviation over 10 replicates per species are shown.

SENSITIVITY TIS TIS CORRECTNESS
Species Neural Net MetaGene Neural Net MetaGene

Bacillus subtilis 73.4 ± 1.79 62.1 ± 1.43 84.1 ± 0.51 70.2 ± 0.64
Escherichia coli 80.0 ± 0.68 75.1 ± 0.61 86.6 ± 0.57 77.5 ± 0.67
Pseudomonas aeruginosa 68.0 ± 0.22 79.7 ± 0.44 80.7 ± 0.20 83.7 ± 0.36

Table 3: Translation initiation site prediction correctness (TIS correctness) and complete/incomplete classifi-cation accuracy (Gene 
Type Accuracy) of the Neural Net and MetaGene according to GenBank annotation. Performance was measured on 700 bp fragments 
that were randomly excised from each test genome to 5-fold coverage (mean and standard deviation for 10 replicates per species are 
given).

TIS CORRECTNESS GENE TYPE ACCURACY
Species Neural Net MetaGene Neural Net MetaGene

Archaeoglobus fulgidus 69.8 ± 0.32 73.6 ± 0.32 98.1 ± 0.05 97.2 ± 0.07
Methanococcus jannaschii 69.4 ± 0.52 73.3 ± 0.52 99.0 ± 0.09 97.6 ± 0.12
Natronomonas pharaonis 75.2 ± 0.58 82.9 ± 0.28 96.9 ± 0.16 97.6 ± 0.09
Buchnera aphidicola 86.5 ± 0.40 88.6 ± 0.64 99.1 ± 0.09 98.3 ± 0.21
Burkholderia pseudomallei 70.1 ± 0.45 73.0 ± 0.28 97.6 ± 0.08 96.9 ± 0.09
Bacillus subtilis 79.7 ± 0.32 66.1 ± 0.42 98.6 ± 0.05 97.0 ± 0.08
Corynebacterium jeikeium 78.2 ± 0.49 73.4 ± 0.68 98.1 ± 0.08 96.6 ± 0.11
Chlorobium tepidum 68.1 ± 0.46 71.9 ± 0.45 98.1 ± 0.08 96.7 ± 0.13
Echerichia coli 84.5 ± 0.31 78.2 ± 0.15 98.7 ± 0.06 97.0 ± 0.08
Helicobacter pylori 87.3 ± 0.40 77.1 ± 0.33 99.2 ± 0.09 96.4 ± 0.16
Pseudomonas aeruginosa 78.4 ± 0.22 81.0 ± 0.36 97.7 ± 0.03 97.2 ± 0.07
Prochlorococcus marinus 86.6 ± 0.40 88.6 ± 0.47 99.0 ± 0.07 97.8 ± 0.10
Wolbachia endosymbiont 79.3 ± 0.77 79.9 ± 0.42 98.7 ± 0.13 96.9 ± 0.17
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fragment. Due to the short fragment length of 700 bp, the
vast majority of annotated genes (≈90 %) in our test frag-
ments is incomplete. The experimental strategy of many
metagenomic projects relies on sequencing the fragment
from one or both ends of the vector insert. Although the
insert is not always sequenced completely, sequencing of
the entire fragment is possible in case the biologist is
interested in further analysis of an incomplete gene.
Therefore, it is important to know whether a gene is con-
tained in a sequencing read completely or incompletely.

We evaluated the percentage of genes that were correctly
classified as complete or incomplete within the correctly
identified genes according to GenBank annotation. Our
method achieves an average accuracy of 98 % with little
variation (see Table 3). It can be noted that MetaGene
slightly more often misclassifies genes concerning their
completeness. Note here that the performance indices of
the neural network and MetaGene in Table 3 are not
directly comparable because they rely on different num-
bers of correctly identified genes.

Remarks on the Experimental Setup
The evaluation of computational methods for metagen-
omic gene prediction is troubled by the fact that reliably
annotated metagenomes are not available. Some metage-
nomes have been subject to annotation for several years
by now, but their gene annotation is far from complete.
Particularly, the exact location of gene starts on metagen-
omes has been verified experimentally only in rare cases.
Currently, the only way to reliably investigate gene predic-
tion accuracy is the evaluation on DNA fragments from
complete microbial genomes. For the evaluation of our
method, we used an experimental setup similar to the one
proposed by the authors of MetaGene in order to keep
both methods comparable. MetaGene relies on statistical
models built from 116 bacterial and 15 archaeal genomes.
These species were selected to represent every genus from
GenBank in the year 2006. By now, species belonging to
many additional genera have been fully sequenced and
annotated. Members of these genera should be included
in the training set of a future gene prediction tool version
in order to collect as much information about the charac-
teristics of coding and non-coding ORFs as possible.

It remains an open question, which criteria are most suit-
able for the selection of training species. In general, taxon-
omy does not reflect phylogeny properly. Some species of
different genera for example exhibit highly similar codon
usage patterns. Particularly for the identification of novel
genes in metagenomes whose biological diversity is yet
unknown, the transfer of the GenBank bias toward single
species should be avoided in the training data set. To
reduce this bias, training genomes could be selected
according to other criteria, e.g. GC-content, oligonucle-

otide frequencies or monocodon/dicodon frequencies in
protein coding regions.

The experimental setup chosen here also differs from real
metagenomes with respect to sequencing errors. The effect
of sequencing errors in terms of base-changes on gene pre-
diction performance of our method would depend on the
frequency of such kind of error. The effect of a usually
small number of base-errors (less than one error per 10
000 bp after routine fragment end removal [19]) can be
neglected. As for other alignment-free methods, like Meta-
Gene, our method is susceptible to frame shifts. Only cer-
tain alignment-based methods can be expected to be more
robust with regard to this kind of error [17].

Conclusion
Large scale machine learning is well suitable for gene pre-
diction in metagenomic DNA fragments. Due to perform-
ance results obtained with the current experimental setup,
we suggest that our machine learning approach, with its
high gene prediction specificity, TIS correctness and com-
plete/incomplete prediction capabilities, complements
MetaGene with its high gene finding sensitivity well. Thus,
a combination of both methods should be considered.

Software availability
Linear discriminants and the trained neural network are
available as MATLAB files for download at [43]. A com-
mand line tool for gene prediction in DNA fragments
(Linux, 64-bit architecture) is available from the authors
on request.
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parameters. The tables list all genomes that were used for training the 
neural network (1), present the discriminant weights that were learned 
for all monocodons (2), and give neural network parameters (3, 4).
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Supplementary figures. The figures show the area under precision recall 
curve for discriminant validation using different λ values (1), the neural 
network performance with increasing numbers of nodes (2), the percent-
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ent fragment lengths (3), and gene prediction performance on fragments 
ranging from 5000 to 60000 bp (4).
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