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Abstract
Background: Genes that are co-expressed tend to be involved in the same biological process.
However, co-expression is not a very reliable predictor of functional links between genes. The
evolutionary conservation of co-expression between species can be used to predict protein
function more reliably than co-expression in a single species. Here we examine whether co-
expression across multiple species is also a better prioritizer of disease genes than is co-expression
between human genes alone.

Results: We use co-expression data from yeast (S. cerevisiae), nematode worm (C. elegans), fruit
fly (D. melanogaster), mouse and human and find that the use of evolutionary conservation can
indeed improve the predictive value of co-expression. The effect that genes causing the same
disease have higher co-expression than do other genes from their associated disease loci, is
significantly enhanced when co-expression data are combined across evolutionarily distant species.
We also find that performance can vary significantly depending on the co-expression datasets used,
and just using more data does not necessarily lead to better prioritization. Instead, we find that
dataset quality is more important than quantity, and using a consistent microarray platform per
species leads to better performance than using more inclusive datasets pooled from various
platforms.

Conclusion: We find that evolutionarily conserved gene co-expression prioritizes disease
candidate genes better than human gene co-expression alone, and provide the integrated data as a
new resource for disease gene prioritization tools.

Background
In the past few years several bioinformatic tools and
approaches have been developed to assist medical genetic
researchers in positional candidate disease gene identifi-
cation (reviewed in [1]; see also [2-5]). Several tools use
functional genomics to prioritize candidate genes located
within disease-associated genomic loci by evaluating
functional relationships between known disease genes

and positional candidate genes [6-8]. These tools are
based on the premise that genes which are involved in the
same disease phenotype are likely to be functionally
related [1,9,10]. This has indeed been shown to be the
case as evidenced by the fact that these tools all perform
better than random expectation in the prediction or prior-
itization of candidate disease genes. Nevertheless, not all
types of functional genomic data perform equally well in
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terms of sensitivity and specificity [2,7,8]. Microarray
expression data have wider coverage than other high-
throughput genomic data such as protein-protein interac-
tions, as genome-scale expression analyses are readily and
routinely performed with them. Additionally, they are less
biased toward better studied genes than gene function
annotation or literature mining, although the latter
approaches fare better at prioritizing disease candidate
genes [2,7,8]. Therefore, given the large coverage of co-
expression data and their complementarity to functional
annotation and literature mining, it is of importance to
maximize the disease gene predictive value of this type of
data.

Several bioinformatic candidate disease gene prioritiza-
tion tools already incorporate microarray-based co-
expression data [2,6-8,11,12]. This approach is based on
the assumption that if two genes are functionally related
then their expression should vary concordantly across tis-
sues and under different circumstances, and proposes that
their expression profiles should therefore be correlated.
For candidate disease gene prioritization, the use of co-
expression analysis is preferable to the use of tissue-spe-
cific gene expression patterns, as it is a better predictor of
functional relatedness between genes [13].

However, co-expression data can be applied more com-
prehensively than is currently implemented by these
tools. One important and currently underexploited
approach is to incorporate co-expression data from other
species. One might expect that while human co-expres-
sion data are the most relevant for disease gene prioritiza-
tion, evolutionary conservation of co-expression can be
used to enhance the reliability of identified co-expression
relationships. The premise is that co-expression relation-
ships that are maintained across phylogenetically distant
organisms must be under selective pressure, and should
therefore be functional – a premise that has indeed been
confirmed in several previous studies [14-17]. Though
one tool already includes multi-species co-expression data
[11], the improvement in disease gene ranking perform-
ance due to the exploitation of evolutionary conservation
has not yet been investigated.

We therefore investigated the predictive value of con-
served co-expression for candidate disease gene prioritiza-
tion. To this end we analyzed how well co-expression
between known and candidate disease genes could prior-
itize positional candidate disease genes. We restricted our
analysis to known disease genes from genetic diseases
containing at least two known causative genes. We con-
structed artificial loci of 100 candidate genes around the
known disease-causing genes, and investigated the ten-
dency of these causative genes to have higher co-expres-
sion with other known causative genes compared to the

non-causative candidate genes from the same disease loci.
Using co-expression data from five eukaryotic species –
baker's yeast (Saccharomyces cerevisiae), nematode worm
(Caenorhabditis elegans), fruit fly (Drosophila melanogaster),
mouse (Mus musculus) and human – we investigated the
effect of evolutionary conservation on the ranking of the
disease gene pairs, finding that evolutionary conservation
of co-expression does indeed improve disease gene rank-
ing. Therefore, exploiting evolutionary conservation
could potentially improve the performance of co-expres-
sion data in existing disease candidate gene prioritization
tools [2,6-8], which might in turn improve the prioritiza-
tion of less well-studied genes.

Results
Evolutionary conservation of co-expression improves 
disease gene ranking performance
We investigated how well disease genes tend to rank rela-
tive to non-causative candidate disease genes when
ranked according to co-expression with other genes
known to cause the same disease. We combined co-
expression scores across species using orthology relation-
ships from the euKaryotic clusters of Orthologous Groups
(KOG) database [18]. The co-expression scores are thus
based on these KOGs rather than on individual genes (see
methods section for further details). We used expression
data from human, mouse, fruit fly (D. melanogaster),
worm (C. elegans) and baker's yeast (S. cerevisiae) assem-
bled from the Gene Expression Omnibus database [19]
and the Genomics Institute of the Novartis Foundation
[20] Gene Atlas expression data. For this study we used
artificial disease loci containing 100 genes per locus. Test-
ing with 50, 100 and 200 genes per locus does not make
much difference though smaller loci tend to perform
slightly better than larger loci (data not shown). Only dis-
ease gene pairs with co-expression scores unlikely to occur
randomly in the corresponding dataset (i.e. more than 2
standard deviations from the dataset randomization
mean) were included in the final rankings. This process
implicitly weighs the scores according to the number of
species involved, as the random score distributions are
narrower for datasets combining more species. The stand-
ard deviations of these randomized distributions range
from 0.051 for the five-species combined dataset to
between 0.057 (yeast) and 0.094 (mouse) for the individ-
ual single-species datasets. Therefore, a given correlation
score is more likely to be considered significant in a multi-
species dataset than in a single-species dataset.

Genes whose co-expression is conserved through evolu-
tion have been shown to have stronger functional ties
than genes whose co-expression is not [17]. Therefore,
conserved co-expression between species should improve
disease gene ranking over co-expression in one species
alone. Such a trend is indeed apparent (Figure 1). Both for
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human and for multi-species KOG-based co-expression
sets, disease gene pairs generally score in the upper half of
the co-expression rankings for the KOG-mappable genes
in the disease loci and are significantly better than ran-
dom expectation (medians 0.64 and 0.69 for human-only
and conserved co-expression sets respectively; p << 10-16

for both sets, Wilcoxon signed rank test). Therefore, the
causative disease gene in a candidate locus will generally
rank higher than the other locus candidate genes. Further-
more, the multi-species combined co-expression set per-
forms significantly better than the human-only co-
expression set (medians 0.64 and 0.69 respectively, p <
10-6, Wilcoxon rank sum test), indicating that the use of
evolutionary conservation can significantly improve co-
expression-based candidate disease gene ranking.

Given that co-expression-based disease gene ranking is
only sensible if there is a non-random co-expression rela-
tionship between the disease genes, we further narrowed
down the analysis to only those disease gene pairs that are
likely to be genuinely co-expressed, having scores that are
unlikely to occur randomly in their datasets. This substan-
tially improves the rankings (Figure 2), at the expense of

reduced coverage (695 versus 3286 disease gene rank-
ings). Both the human-only and the conserved co-expres-
sion datasets now rank the disease genes very high
(medians of 0.87 and 0.93 respectively), with the con-
served co-expression still significantly outperforming the
human-only co-expresssion (p < 10-11, Wilcoxon rank
sum test). A much higher proportion of disease genes is
now ranked in the top 10% of the candidate gene lists,
and the use of evolutionary conservation increases this
proportion by almost half, from 31% to 44% of the
ranked disease genes.

Disease gene ranking improved by co-expression 
conservation at different evolutionary distances
Evolutionary conservation across multiple species clearly
improves the disease gene ranking performance of gene
co-expression. However, what influence might different
evolutionary distances have on this improvement? Is the
evolutionary distance between human and mouse suffi-
cient to improve co-expression performance, and is yeast
biology so divergent that it would reduce rather than
improve performance? To examine the role of evolution-
ary distance on the disease gene ranking performance of

Evolutionary conservation of co-expression improves disease candidate gene prioritization performance over human-only co-expressionFigure 1
Evolutionary conservation of co-expression improves disease candidate gene prioritization performance over 
human-only co-expression. The disease gene rank histogram shows the relative proportions of disease genes scoring in dif-
ferent rank bins based on co-expression with known disease genes causing the same disease. Disease gene rank indicates its 
degree of co-expression with known disease genes, relative to those of the other locus candidate genes. Evolutionary conser-
vation results in a much higher proportion of disease genes ranking in the top 10% of the locus candidate genes and fewer in 
the mid-regions of the lists. A) Disease gene rank histogram. B) Cumulative proportion of disease genes detected as the co-
expression rank threshold is decreased from 1 to 0.
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gene co-expression, we conducted pairwise comparisons
in which we compared the ranking performance human
co-expression with co-expression conserved between
human and each of the other species. For all pairwise
comparisons except the human-yeast comparison, evolu-
tionary conservation significantly improves co-expres-
sion-based disease gene ranking compared to using only
data for human genes (Figure 3, Table 1). Surprisingly,
even human-mouse conservation improves disease gene
ranking despite the relatively short evolutionary distance
between these two species.

In contrast to the other species, co-expression conserva-
tion with yeast does not significantly improve disease
gene ranking (Table 1). For this species pair yeast-only co-
expression performs best, outperforming even the com-
bined human-yeast set at ranking human disease genes
(albeit not significantly; p = 0.26). This is primarily due to
specific disease types involving housekeeping processes
such as metabolism (congenital disorder of glycosylation,
glycogen storage disease) and DNA repair (xeroderma pig-
mentosum) which consistently score well particularly in
the yeast set. As yeast co-expression already performs very
well, the combination with human co-expression may not
yield much extra information. However, this performance
comes at the expense of much reduced coverage of disease

genes relative to the other sets, which all have a similar
coverage (550 disease gene rankings for the human-yeast
set, versus ~3000 for human-mouse, human-fly and
human-worm sets). It is thus evident that despite the large
evolutionary distance between these two species, yeast co-
expression is still effective at ranking human disease genes
for those genes that have orthologs in both species.

Disease gene ranking performance is dependent on co-
expression data used
We initially used the multi-species co-expression dataset
from Stuart and colleagues [21], but this resulted in lim-
ited disease gene ranking performance. We suspected that
the extensive pooling of expression data from different
platforms might have a negative impact on performance.
Therefore, we created our own custom multi-species co-
expression dataset, in which we restricted ourselves to a
single microarray platform per species. Consistent with
the findings of others [22,23], this single platform
approach resulted in significantly better performance,
even when using only the four species included in the Stu-
art et al. dataset (Figure 4). Though both datasets tend to
rank disease genes highly, the new (GEO/GNF) dataset
performs significantly better than the larger and more
inclusive dataset from Stuart and colleagues (p < 10-10,
Wilcoxon rank sum test) without loss of coverage (3286

Filtering out insignificant co-expression improves performanceFigure 2
Filtering out insignificant co-expression improves performance. When disease gene pairs with co-expression scores 
that do not differ significantly from those of randomized datasets are filtered out, the disease gene ranking performance 
improves substantially. However, the coverage drops from 3286 to 695 pairs. A) Disease gene rank histogram. B) Cumulative 
proportion of disease genes detected as the co-expression rank threshold is decreased from 1 to 0.
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and 3212 disease gene rankings for the GEO/GNF and the
Stuart et al. datasets respectively).

In addition to restricting expression data to a single plat-
form per species, normalizing the microarray expression
data according to total expression level also improves the
ranking of disease genes relative to non-disease genes

Co-expression-based disease gene rankings are improved by conservation at various evolutionary distancesFigure 3
Co-expression-based disease gene rankings are improved by conservation at various evolutionary distances. 
Pairwise cross-species co-expression improves disease gene ranking over single-species datasets for comparisons between 
human and mouse (A), fruit fly (B), and nematode worm (C) co-expression. However, co-expression in yeast alone performs 
as well as co-expression conserved between human and yeast (D), and significantly better than human-only co-expression (p = 
0.01).
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from the candidate loci. As we were mainly interested in
relative expression levels of genes across conditions and
not in total gene expression levels, we normalized all
expression values according to the total expression level of
the microarray sample (see methods section for further
details). This reduces systematic biases between samples
due to differences in total expression levels and highlights
the expression relationships between genes per sample,
resulting in up to 5% improvement in candidate disease
gene ranking (data not shown).

All disease gene ranking and conserved co-expression cor-
relation data presented here are freely available online
[24].

Discussion
In this study, we show that we can increase the predictive
value of co-expression for disease gene prioritization by
exploiting evolutionary conservation, despite the varia-
tions in the biology of the species compared. Given a gen-
uine co-expression relationship between the disease
genes, using conserved co-expression to prioritize candi-

Table 1: Pairwise species comparisons for co-expression-based disease gene ranking.

Individual species # Disease gene pairs Median rank Pairwise combined sets # Disease gene pairs Median rank P-value (Combined better 
than single species)

Human 3286 0.64 Human-Mouse 3114 0.67 6.7 × 10-4 *
Mouse 3188 0.63 1.3 × 10-5 *
Human 3286 0.64 Human-Fly 3176 0.66 0.007 *

Fly 3534 0.62 1.8 × 10-5 *
Human 3286 0.64 Human-Worm 2954 0.67 2.1 × 10-4 *
Worm 3264 0.63 9.1 × 10-6 *
Human 3286 0.64 Human-Yeast 550 0.67 0.12
Yeast 674 0.69 0.74

* statistically significant at p = 0.05 level

Single platform co-expression dataset outperforms multiple platform co-expression datasetFigure 4
Single platform co-expression dataset outperforms multiple platform co-expression dataset. The more cohesive 
GEO/GNF set containing a single microarray platform per species outperforms the more inclusive multi-platform Stuart et al. 
set (p < 10-10). Both sets have similar coverage, with 3212 and 3286 disease gene pairs for the Stuart et al. and GEO/GNF sets 
respectively. These results are based on co-expression data from human, fly, worm and yeast, with co-expression scores are 
averaged across species wherever possible. A) Disease gene rank histogram. B) Cumulative proportion of disease genes 
detected as the co-expression rank threshold is decreased from 1 to 0.
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date disease genes can reduce the number of genes to be
tested over sevenfold compared to using a random rank-
ing of the candidate disease genes, as the correct gene will
be found on average after testing 7% of the candidates
(the median disease gene rank is 0.93) instead of 50%
(Figure 2). Encouragingly, even human-mouse conserva-
tion can lead to a substantial improvement in disease gene
ranking performance, despite the relatively short evolu-
tionary distance between these two species (Figure 3).
This means that improvements in specificity can be
gained without large losses in sensitivity, as most human
genes have mouse orthologs.

An interesting finding is that large pooled datasets which
combine as many expression data as possible from vari-
ous experiments and platforms can actually result in
reduced co-expression performance relative to smaller but
more coherent expression datasets (Figure 4). Microarray
data are notoriously variable between independently gen-
erated datasets while they are somewhat more consistent
between experiments using the same platform [22,23]. In
order to minimize dilution of the co-expression signal
when combining data from many different sources a
weighting scheme is required, such as using the co-expres-
sion overlap between different sets to weigh the relevance
of the co-expression value [25]. Our results are consistent
with these previously reported findings, as our single-plat-
form-per-species dataset ranks disease genes significantly
better than the more inclusive pooling approach adopted
earlier by Stuart and colleagues [21]. An alternative expla-
nation would be that their expression sets are of lower
quality or are less representative of the relationships
between disease genes, but there is no reason to assume
that either of these is the case. This underscores the fact
that combining as many data as possible does not neces-
sarily lead to an improved performance of co-expression
data for disease gene prioritization, so it is therefore not a
trivial finding that combining data from different species
does.

Another reason why the larger sets do not perform as well
as the smaller sets could lie in the use of correlation coef-
ficients to determine genetic relatedness. Correlation coef-
ficients estimate expression coherence across all
conditions surveyed, but even functionally related genes
may not have coherent expression patterns across all tis-
sues and conditions. The larger the datasets, the greater
the potential for irrelevant conditions to mask the co-
expression relationship that a group of genes has under a
limited set of conditions. Therefore, a biclustering-based
approach [26,27] may yield more refined co-expression
relationships between genes, and is a potential avenue for
future improvement of co-expression-based disease candi-
date gene prioritization.

Conclusion
We analyze here the predictive power of gene co-expres-
sion for disease gene prioritization and identify factors
that affect it, such as evolutionary conservation. We show
that co-expression data from other species have predictive
power for human disease gene prioritization, and that
evolutionarily conserved gene co-expression can improve
disease gene prioritization over human-only gene co-
expression. In addition, we show that platform consist-
ency is important and that smaller but more cohesive
datasets can outperform larger pooled datasets. Though
we only examined disease gene ranking, these findings
have broader relevance for the use of microarray co-
expression data in functional genomics. We provide these
conserved co-expression data as a new resource that can
be used in disease gene prioritization programs, particu-
larly those that integrate several different data types.

Methods
Disease data
We used the Online Mendelian Inheritance in Man
(OMIM) [28] Morbid Map as a source of genetic diseases
and known disease genes. We restricted our analysis to
those diseases with two or more known disease genes.
There were 890 known disease genes (727 distinct genes)
for 177 diseases in our dataset. Artificial disease loci were
constructed around these known disease genes based on
localization information from the Ensembl database [29],
by taking the required number of neighboring genes cen-
tered on the disease gene. These genes were then trans-
lated to HGNC gene IDs [30] or KOG IDs [18] depending
on the analysis. This means that the locus genes used in
the analyses are a subset of the Ensembl genes in the locus,
depending on how many could be mapped to their rele-
vant IDs. We used artificial loci of 100 genes, which is rep-
resentative for the average candidate disease locus, as the
OMIM heterogeneous disease loci have a median of 88
genes per locus. In addition, we investigated the use of 50-
and 200-gene artificial loci, as well as actual associated
loci from OMIM Morbid Map, but do not consider them
further as their results did not differ substantially from
those of the 100-gene artificial loci.

Expression data processing
Initially we used the multi-species expression data used by
Stuart and colleagues in their functional analysis of con-
served co-expression [21]. This dataset contains expres-
sion data for human, fruit fly (Drosophila melanogaster),
nematode worm (Caenorhabditis elegans) and baker's yeast
(Saccharomyces cerevisiae) genes. These expression data
had already been normalized and were therefore not fur-
ther processed prior to their use in the co-expression cal-
culations.
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However, due to limited performance of this dataset in
ranking disease genes we created a new multi-species co-
expression dataset involving expression data from these
four species and mouse (Mus musculus). For human and
mouse expression data we used the gcRMA-normalized
Gene Atlas expression sets generated by the Genomics
Institute of the Novartis Foundation [20], as this is an
often-used and well-constructed expression dataset. The
expression values were log2-transformed to increase
robustness and emphasize the variation between the
lower expressed genes relative to the more highly
expressed ones. Lacking similar standard expression data-
sets for the other species, the expression data for fruit fly
(Drosophila melanogaster), nematode worm (Caenorhabdi-
tis elegans) and baker's yeast (Saccharomyces cerevisiae)
were collected from the Gene Expression Omnibus (GEO)
database [19] of the National Center for Biotechnology
Information (NCBI). In order to maximize consistency of
the expression data, only one expression platform was
used per species. As these expression data are normalized
in different ways in different experiments, we used the raw
signal intensity data (Affymetrix CEL files) rather than the
normalized expression data. This further restricted the
data available to us, as these raw data are not required for
submission of expression data to the GEO database and
are not included with all datasets. Only experiments with
at least 10 microarray samples were considered. We ended
up with 357 samples in 12 experiments for yeast, 242
samples in 8 experiments for fly and 123 samples in a sin-
gle experiment for worm (Table 2). For within-array nor-
malization we used the Robust Multi-array Averaging

(RMA) algorithm [31] as implemented in the R statistical
software bioconductor library [32]. However, our
between-array normalization was done by normalizing
for total sample expression (see below), as we found this
to yield better results than RMA-normalizing per experi-
ment (data not shown). Total expression normalization
prevents spurious correlation due to differences in total
expression level between samples. For the yeast and fly
datasets, data were pooled across all experiments before
total expression normalization and calculation of the co-
expression correlation coefficients.

The Affymetrix probe set expression levels were translated
to gene expression levels, and for genes that were repre-
sented by multiple probe sets the median was taken. These
genes were further filtered according to gene sets used
(Table 3). Both GEO and GNF datasets were further nor-
malized according to total sample expression level by
dividing each gene expression value by the mean expres-
sion value of all considered genes in the microarray sam-
ple. This further minimizes spurious correlations due to
differences in total expression level between experimental
conditions or across tissues.

No artificial cut-off was used to filter out noisy low expres-
sion values, or to define presence or absence of gene
expression in a sample. This is not necessary, as we are
using correlation between expression profiles rather than
absolute expression levels. The inclusion of non-biologi-
cally significant noise should not result in spurious corre-
lations between genes, and if there is a correlation

Table 2: GEO expression datasets used

Species GEO series ID Number of samples Reference

Fly GSE6515 78 [36]
GSE1690 10 [37]
GSE2780 10 [38]
GSE2828 12 [39]
GSE3069 18 [40]
GSE3842 72 [41]
GSE4714 30 [42]
GSE4235 12 [43]

Worm GSE2180 123 [44]
Yeast GSE4807 30 [45]

GSE6073 12 [46]
GSE1311, GSE1312, GSE1313 66 [47]

GSE1639 18 [48]
GSE1693 26 [49]
GSE1934 24 [50]
GSE1938 15 [51]
GSE1975 28 [52]
GSE2343 12 [53]
GSE3076 96 [54]
GSE3821 16 [55]
GSE4135 14 [56]
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between low expression values then they are probably not
merely noise and should not be filtered out.

It should be noted that while we used log2-transformed
signal intensity values in a multi-species study involving
different microarray platforms, and not relative abun-
dances as Liao & Zhang did [16], our analysis does not suf-
fer from the same problems that led them to use relative
abundances. We do not directly compare expression val-
ues between different microarray platforms. Instead, these
expression values are converted to co-expression values
for each platform separately. This process involves only
within-platform signal intensity comparisons. The
between-species – and therefore between-platform – com-
parisons are done at the co-expression level and involve
comparisons of Spearman rank correlation coefficients.

Co-expression score calculations
We used Spearman rank correlation coefficients as the
microarray signal intensity values were not normally dis-
tributed. For the GEO datasets comprising several experi-
ments (the fly and yeast sets), these data were pooled
before gene pair co-expression correlation coefficients
were calculated.

In order to be able to compare co-expression relationships
between species, we used the gene orthology relationships
as defined by the euKaryotic clusters of Orthologous
Groups (KOG) database [18]. We chose to use KOGs
instead of a metagenes-based approach such as was used
by Stuart and colleagues [21] in order to maximize cover-
age, as KOGs not only contain bidirectional best hits but
also closely related paralogs. The gene to KOG mapping
was done using the STRING database version 6.1 [33].
Mapping of the protein IDs used in STRING to the gene
IDs used on the microarrays was done using Ensembl
BioMart [34]. Of the 13955 human genes with expression
data used in this study 8186 could be mapped to KOGs.

A single pair of KOGs can have multiple co-expression val-
ues if one or both of them contain multiple genes per spe-
cies. In such a case these co-expression scores need to be
combined into a single co-expression score representative
of all pairwise combinations of genes in the two KOGs
(Figure 5). We accomplished this by taking the mean of all

such gene pair co-expression scores, resulting in a single
KOG-based co-expression score (within-species averag-
ing).

In order to incorporate evolutionary conservation into the
final co-expression scores, we took the mean of the spe-
cies-specific KOG-based co-expression scores over all spe-
cies considered (between-species averaging). For the
comparison between human and multi-species conserved
co-expression the union of all the sets was taken for max-
imal coverage – i.e. all KOG-based co-expression scores
were used regardless of which species were represented in
the KOGs.

Disease gene ranking analyses
We investigated the co-expression ranking performance
between candidate disease genes and known disease genes
for each pair of disease genes causing the same disease
(Figure 6). To this end we ordered all co-expression values
between a known disease gene and the genes in a candi-
date disease locus, and scored the relative rank (0–1) of
the actual causative gene in the resultant list. If the causa-
tive gene was at the top of the list it was assigned a relative
rank of 1.0, and if at the bottom it received a relative rank
of 0.0. A score of 0.5 indicates an equal number of more
highly co-expressed and less highly co-expressed non-dis-
ease genes in the candidate locus, and is equivalent to ran-
dom expectation. For each disease each causative gene was
sequentially treated as the known disease gene and tested
against all the other loci.

To avoid ranking candidate disease genes which do not
have any co-expression relationship with each other at all,
we randomly permuted the co-expression datasets used to
determine the random distribution of co-expression
scores for each dataset. We then excluded all disease gene
pairs for which the co-expression score fell within 2 stand-
ard deviations of the randomization means. These distri-
butions all had co-expression scores with a mean of
approximately zero and standard deviations ranging
between 0.05 and 0.09 depending on the dataset. Multi-
ple randomizations always resulted in almost identical
score distributions per dataset due to the large numbers
involved.

Table 3: Genes included in the co-expression calculations

Species Genes included in co-expression data Number of genes

Human Those with gene names also present in Affymetrix HG-U133A microarray platform 13955 (11410 genes in all disease loci combined)
Mouse Those with mouse gene names (unknown transcripts, RIKEN transcripts and predicted 

genes excluded)
14000

Fly Those with FlyBase IDs 13282
Worm WormBase-annotated genes 17948
Yeast Those with systematic names (Y...IDs) 6563
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To investigate the influence of evolutionary conservation
on disease gene pair ranking performance, human-
derived co-expression data were compared with co-expres-
sion data averaged across all five species included in the
study. Additionally, pairwise species comparisons were
performed comparing human-only co-expression data
with pairwise conserved co-expression between human
and mouse, fly, worm or yeast.

In order to test for the effect of averaging gene-gene co-
expression within KOGs, the performance of the GNF

human expression set when using KOG-based co-expres-
sion was compared to its performance when using gene-
based co-expression.

Tools
The R statistical software package [35] was used for the
microarray data processing and the Spearman rank corre-
lation calculations, as well as for statistical tests and data
plotting. For performance reasons, small custom-written
C++ programs were used to average the gene-gene correla-
tion coefficients into KOG-KOG correlation coefficients,

Procedure for calculating conserved co-expression scoresFigure 5
Procedure for calculating conserved co-expression scores. The procedure is illustrated using an example involving 
KOGs KOG0011 and KOG3438 between human and fly. KOG0011 contains two genes in each species (RAD23A, RAD23B 
and FBgn0026777, FBgn0039147 in human and fly respectively) while KOG3438 contains one in human (CKS1B) and two in fly 
(FBgn0010314 and FBgn0037613). For each species a KOG0011-KOG3438 co-expression (thick purple and green arrows) 
correlation is calculated by taking the mean of all gene-gene combinations (thin black arrows) for the two KOGs. The mean of 
these species-specific KOG-pair correlations (thick vertical orange arrow) is taken to represent the final multispecies 
KOG0011-KOG3438 co-expression correlation. This co-expression value is used for all relevant gene-pairs as their KOG-
based co-expression score. If co-expression is conserved in both species then this value will be high, if it is high in only one spe-
cies it will be intermediate, and if it is low in both it will be low.

Human Fly

KOG0011

KOG3484

RAD23A

RAD23B

CKS1B

FBgn0026777

FBgn0039147

FBgn0010314

FBgn0037613

Nucleotide excision 
repair factor NEF2, 
RAD23 component

Cyclin-dependent 
protein kinase
CDC28, regulatory 
subunit CKS1

0.486

0.494
0.09

0.068

0.099

0.111

0.29 0.090.49
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and the per-species KOG-KOG correlations into cross-spe-
cies KOG-KOG correlation values. Python scripts were
written for the disease gene correlation coefficient ranking
analyses. All scripts and source code are available on
request.
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