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Abstract

Background: Integrating data from multiple global assays and curated databases is essential to understand the spatio-
temporal interactions within cells. Different experiments measure cellular processes at various widths and depths, while
databases contain biological information based on established facts or published data. Integrating these complementary
datasets helps infer a mutually consistent transcriptional regulatory network (TRN) with strong similarity to the
structure of the underlying genetic regulatory modules. Decomposing the TRN into a small set of recurring regulatory
patterns, called network motifs (NM), facilitates the inference. Identifying NMs defined by specific transcription factors
(TF) establishes the framework structure of a TRN and allows the inference of TF-target gene relationship. This paper
introduces a computational framework for utilizing data from multiple sources to infer TF-target gene relationships on
the basis of NMs. The data include time course gene expression profiles, genome-wide location analysis data, binding
sequence data, and gene ontology (GO) information.

Results: The proposed computational framework was tested using gene expression data associated with cell cycle
progression in yeast. Among 800 cell cycle related genes, 85 were identified as candidate TFs and classified into four
previously defined NMs. The NMs for a subset of TFs are obtained from literature. Support vector machine (SVM)
classifiers were used to estimate NMs for the remaining TFs. The potential downstream target genes for the TFs were
clustered into 34 biologically significant groups. The relationships between TFs and potential target gene clusters were
examined by training recurrent neural networks whose topologies mimic the NMs to which the TFs are classified. The
identified relationships between TFs and gene clusters were evaluated using the following biological validation and
statistical analyses: (1) Gene set enrichment analysis (GSEA) to evaluate the clustering results; (2) Leave-one-out cross-
validation (LOOCYV) to ensure that the SVM classifiers assign TFs to NM categories with high confidence; (3) Binding site
enrichment analysis (BSEA) to determine enrichment of the gene clusters for the cognate binding sites of their predicted
TFs; (4) Comparison with previously reported results in the literatures to confirm the inferred regulations.

Conclusion: The major contribution of this study is the development of a computational framework to assist the
inference of TRN by integrating heterogeneous data from multiple sources and by decomposing a TRN into NM-based
modules. The inference capability of the proposed framework is verified statistically (e.g., LOOCYV) and biologically (e.g.,
GSEA, BSEA, and literature validation). The proposed framework is useful for inferring small NM-based modules of TF-
target gene relationships that can serve as a basis for generating new testable hypotheses.
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Background

Enormous amount of data has been generated by the use
of high-throughput analytical methods in biology during
the last two decades. However, the inherited properties of
these data create significant problems in their analysis and
interpretation. Standard statistical approaches are not
powerful enough to dissect data with thousands of varia-
bles (i.e., semi-global or global gene expression data) and
limited sample sizes (i.e., several to hundred samples in
one experiment). These properties are typical in microar-
ray and proteomic datasets [1] as well as other high
dimensional data where a comparison is made to biolog-
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ical samples that tend to be limited in number, thus suf-
fering from curse of dimensionality [2].

One approach to address the curse of dimensionality is to
integrate multiple large data sets with prior biological
knowledge. This approach offers a solution to tackle the
challenging task of inferring transcriptional regulatory
networks (TRN). Transcriptional regulation is a process
that needs to be understood at multiple levels of descrip-
tion [3,4] (Figure 1) including (1) the factor-target gene
interaction, in which transcription factors (TF) activated
under certain conditions interact with their conserved
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Transcriptional regulation level

The gene transcriptional regulatory program. The gene transcriptional regulatory program can be simplified in two lev-
els. At the factor-gene binding level, the "activated" TFs bind to their specific conserved sequence motifs, called transcription
factor binding sites (TFBS). When the binding process is completed, the regulation mechanism instructs the gene transcription
from transcriptional start site (TSS) (DNA to mRNA); first part of the central dogma in molecular biology.
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binding site sequences; and (2) transcriptional regulation,
which explains how the bindings of TFs to their unique
recognition sites regulate the expression of specific genes.
A single source of information such as gene expression
data is aimed at only one level of description (transcrip-
tional regulation level), thus it is limited in its ability to
obtain a full understanding of the entire regulatory proc-
ess. Other types of information such as TF - binding site
sequence relationships revealed by genome-wide location
analysis [5] provide complementary constraints on the
models of regulatory processes. By integrating limited but
complementary data sources, we can realize a mutually
consistent hypothesis bearing stronger similarity to the
underlying causal structures [4]. Among the various types
of high-throughput biological data available nowadays,
time course gene expression profiles and genomic analysis
data are two complementary sets of information that can
be used to infer regulatory components. Time course gene
expression data are advantageous over typical static
expression profiles as time can be used to disambiguate
causal interactions. Binding site sequence data based on
the analysis of genomic loci, on the other hand, provide
high-throughput quantitative information about 7in vivo
binding of transcriptional activators to the target regula-
tory regions of the DNA. Prior biological knowledge gen-
erated by geneticists will help guide inference from the
above data sets and integration of multiple data sources
offers insights into the cellular system at different levels.

A number of researches have explored the integration of
multiple data sources (e.g, time course expression data
and sequence motifs) for TRN inference [6-9]. A typical
approach for exploiting two or more data sources uses one
type of data to validate the results generated independ-
ently from the other (i.e., without data fusion). For exam-
ple, cluster analysis of gene expression data followed by
the identification of consensus sequence motifs in the
promoters of genes within each cluster [8]. The underlying
assumption behind this approach is that genes co-
expressed under varying experimental conditions are
likely to be co-regulated by the same TF or sets of TFs. Hol-
mes et al. [10] constructed a joint likelihood score based
on consensus sequence motif and gene expression data
and used this score to perform clustering. Segal er a/. [11]
built relational probabilistic models by incorporating
gene expression and functional category information as
input variables. Gene expression data and gene ontology
(GO) data were combined for TRN discovery in B cell
[12]. Computational methodologies that allow systematic
integration of data from multiple resources are needed to
fully utilize the complementary information available in
those resources.

Another way to reduce the complexity of the TRN infer-
ence problem is to decompose it into simple units of com-
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monly used network structures. TRN is a network of
interactions between TFs and the genes they regulate, gov-
erning many of the biological activities in cells. Breaking
down the TRN into simplest units of commonly used net-
work architectures helps in understanding complex bio-
logical networks. Such patterns of local interconnections
are called network motifs (NM) [13]. Since the establish-
ment of the first NM in Escherichia coli [14], similar NMs
have also been found in eukaryotes including yeast [15],
plants, and animals [16-18], suggesting that the general
structure of NMs are evolutionarily conserved. One well
known family of NMs is the feed-forward loop (FFL) [19],
which appears in hundreds of gene systems in E. coli
[14,20] and yeast [15,21], as well as in other organisms
[13,16-18,22,23]. A comprehensive review on NM theory
and experimental approaches is currently available [24].
Knowledge of the NMs to which a given TF belongs facili-
tates the identification of downstream target gene clusters.
In yeast, a genome-wide location analysis was carried out
for 106 TFs and five NMs were considered significant:
autoregulation, FFL, single input module, multi-input
module and regulator cascade. The first four NMs are tran-
scriptionally related, while the last one reflects the signal-
ling pathway activities beyond transcriptional regulation.

In this study, we developed a computational framework
that integrates information from time course gene expres-
sion experiment, genomic location analysis, binding site
sequence, and GO category information to infer the rela-
tionship between TFs and their potential target genes
based on known and predicted NMs. This was accom-
plished through a three-step approach outlined in the fol-
lowing. First, we applied cluster analysis of time course
gene expression profiles to reduce dimensionality and use
the GO category information to determine biologically
meaningful clusters, upon which a model of the regula-
tory module is built. This step enables us to address the
scalability problem that is faced by researchers in inferring
TRNs from time course gene expression data with limited
time points. Second, we trained support vector machines
(SVMs) to classify TFs into different NMs based on their
time course gene expression profiles, location analysis
data, and target binding site sequences. The resulting SVM
classifiers were utilized to predict NMs for TFs with
unknown NMs. Finally, we used recurrent neural network
(RNN) models that mimic the topology of NMs to iden-
tify gene clusters that may be regulated by a TF, thereby
inferring the regulatory relationships between the TFs and
gene clusters. A hybrid of genetic algorithm and particle
swarm optimization (GA-PSO) methods was applied to
train the RNN models. We tested the proposed computa-
tional framework using changes in gene expression asso-
ciated with cell cycle progression in yeast [8], genomic
location data [15], binding site sequences [25], and corre-
sponding GO category information [26].
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Results

Clustering genes into groups with enrichment for biological
functions

We selected 800 cell cycle-regulated genes and grouped
them into clusters by fuzzy c-means (FCM), where genes
with similar expression profiles are represented by a gene
cluster or a metagene. The optimal cluster number is
determined by the mutual information between gene
clusters and their GO annotations (Figure 2). We com-
pared the performance of FCM clustering with two differ-
ent m values and the k-means clustering (Figure 2). The
highest zscore (the maximal mutual information
between gene clusters and their GO annotations) was
obtained when the number of clusters is 34 by FCM clus-
tering with m = 1.1573. We evaluated the resulting clus-
ters through the gene set enrichment analysis (GSEA)
method. Table 1 presents the 34 clusters and their corre-
sponding enriched GO categories. All clusters except 10,
18,21, 22, 25 and 26 are enriched in some GO categories.
Details of all clusters are provided in Additional file 1. We
used these clusters as metagenes in our subsequent analy-
ses to reduce the search space for TF-target gene relation-
ship inference.

Predicting NMs for TFs

203 proteins were identified as DNA-binding transcrip-
tional regulators in the yeast genome [27]. A genome-
wide location analysis was carried out for 106 TFs and five
NMs were considered significant (auto regulation, feed-
forward, single input, multi-input, and regulator cascade).
The first four NMs are transcriptionally related (shown in
Figure 3, left panel), while the last one reflects the signal-
ing pathway activities beyond transcriptional regulation
(not shown). The 106 TFs include about 52% of the
known TFs in the yeast genome.

Among the 800 cell cycle related genes, 85 have been
identified to have TF-related functions based on their GO
annotation. Out of these, 14 TFs have known NMs. A list
of 85 TFs is presented in Additional file 2. We used data
from 106 TFs to train SVM classifiers with time course
gene expression profile and binding site sequence data as
inputs to classify the TFs into four NMs. We retrieved the
binding site sequence data for the TFs from the TRANS-
FAC database [28]. For TFs with unknown binding site
sequences, we used the discovered binding site sequences
described by Harbison et al. [27].

The trained SVM classifiers were evaluated and optimized
using the LOOCV method. The final SVM classifiers were
utilized to predict the NMs for 71 TFs with unknown
NMs. Through the LOOCV method, we evaluated if both
gene expression profile and binding site sequence infor-
mation are needed in assigning TFs to NM categories.
When we used gene expression profile alone as input to
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SVM, the average test error was 23.6%. After incorporating
binding sequence data into the input data, the test error
was reduced to 15.8% (Table 2). The increased perform-
ance implies that the encoded binding site sequence infor-
mation is useful in predicting the critical TFs.

Inferring TF-target gene relationships in yeast

Recurrent neural network (RNN) models that mimic the
topology of the known/predicted NMs were constructed
to identify the relationships between TFs and putative
gene clusters. The RNN models were trained to select for
all 85 TFs the downstream targets from the 34 gene clus-
ters.

Table 3 presents experimental results obtained for various
numbers of generations that GA was used. The PSO gener-
ation for RNN is set to 1000 [29]. As illustrated in the
table, the minimum value of RMSE decreases as the
number of generations increases. The minimum RMSE for
GA generations 600 and 800 are 0.077 and 0.075 respec-
tively. In this study, we chose 600 for generations of GA.
Our inference method mapped all 85 TFs to the target
gene clusters and inferred the most likely NMs.

We evaluated the predicted TF-target gene relationships
for the following eight well known cell cycle related TFs:
SWI4, SWI5, FKH1, NDD1, ACE2, KAR4, MET28 and
RAP1. Among these, the first five have NM assignments,
while the last three were assigned to different NMs by the
SVM classifiers. Since the "true" gene regulatory network
was not available, the accuracy of putative regulatory rela-
tionship was determined by searching known gene con-
nections in databases. Based on the results of the NM
module prediction, we collected literature evidences from
SGD [30] and BIND [31] databases. We examined the
inferred relationships for each of the eight TFs. An inferred
relationship is assumed to be biologically significant if the
TFs are correlated with the biological functions associated
with the critical downstream cluster(s). Figure 3 lists the
significant relationships; the eight TFs yielded an average
precision of 82.9%. We calculated the precision as TP/
(TP+FP), where TP and FP denote true positive and false
positive, respectively. Network motifs for four of these TFs
were identified in Chiang et al. [32] together with other
four TFs. The eight TFs in [32] yielded an average precision
of 80.1%.

Discussion

The main goal of this study was to infer the components
and underlying mechanism of gene regulation in yeast
based on the combined constraints from multiple infor-
mation sources. Our method effectively utilizes genomic
location analysis for the establishment of NM for each TF.
Target genes are grouped into biologically meaningful
clusters and are represented by the average expression pro-
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Table I: Gene set enrichment analysis (GSEA) for clusters generated by FCM with the optimal fuzziness value.

Cluster ID  # of genesin Enriched Functional Category Total Genes in the category Clustered Genes P value
cluster
| 10 nucleosome 10 9 |.8E-27
DNA binding 229 9 7.2E-13
2 25 steroid metabolic process 43 5 4.9E-07
steroid biosynthetic process 32 4 5.8E-06
3 5 cytokinesis, completion of separation Il 5 4.9E-15
cell separation during cytokinesis 13 5 1.4E-14
4 33 kinetochore 54 5 6.6E-06
mitotic cell cycle 271 8 0.000047
5 16 cellular bud 150 6 9.2E-07
cytoskeletal part 180 6 2.7E-06
6 29 dolichyl-phosphate-mannose-protein 7 3 2.8E-06
mannosyltransferase activity
protein amino acid O-linked glycosylation 16 3 0.000043
7 28 transporter activity 338 8 0.000063
primary active transmembrane transporter activity 53 4 0.000071
8 37 microtubule 35 4 0.000042
cytoplasmic microtubule 14 3 0.00006
9 I cellular bud neck 115 5 6.9E-07
site of polarized growth 152 5 2.7E-06
10 44 N/A N/A N/A N/A
I 37 DNA helicase activity 75 14 I.1E-18
mitotic recombination 41 7 2.1E-09
12 16 ribonucleoside-diphosphate reductase activity 4 2 0.000034
cell cycle process 440 7 0.000043
13 28 plasma membrane 261 9 8.6E-07
transmembrane transporter activity 246 7 0.000063
14 31 leading strand elongation 14 3 0.000035
DNA replication 131 8 9.1E-08
DNA metabolic process 710 15 I.1E-07
16 22 L-serine ammonia-lyase activity 3 2 0.000033
17 32 microtubule-based process 101 12 1.9E-14
microtubule cytoskeleton 94 I 3.3E-13
18 15 N/A N/A N/A N/A
19 20 cellular bud 150 6 4.1E-06
site of polarized growth 152 5 0.000078
20 10 cell wall 114 7 SE-11
glucanosyltransferase activity 6 2 0.000032
21 6 N/A N/A N/A N/A
22 28 N/A N/A N/A N/A
23 29 pentose transmembrane transporter activity 4 3 3.2E-07
fructose transmembrane transporter activity 15 3 0.000035
24 35 chromosome 231 12 1.3E-09
mitotic sister chromatid cohesion 22 5 8.4E-08
DNA replication 131 8 3.4E-07
25 30 N/A N/A N/A N/A
26 5 N/A N/A N/A N/A
27 8 response to pheromone 94 7 8.6E-13
conjugation with cellular fusion 119 7 4.7E-12
28 24 amine transmembrane transporter activity 16 4 2.6E-07
polyamine transmembrane transporter activity 10 3 5.3E-06
29 17 sulfur metabolic process 67 I 7.3E-19
methionine metabolic process 24 7 7E-14
30 30 cytoskeletal part 180 9 7E-08
spindle 80 6 1.4E-06
31 14 energy reserve metabolic process 36 3 0.000055
cellular carbohydrate metabolic process 213 5 0.000058
32 15 MCM complex 6 5 1.9E-13
pre-replicative complex 15 6 2.4E-13
DNA replication preinitiation complex 21 6 2.6E-12
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Table I: Gene set enrichment analysis (GSEA) for clusters generated by FCM with the optimal fuzziness value. (Continued)

33 6 cell wall 114 5 9.2E-09
structural constituent of cell wall 19 3 4.3E-07

34 22 DNA-dependent DNA replication 97 10 5.8E-14
15 5 4.8E-10

replisome

To evaluate whether the gene clusters are enriched in some known biological function or process, we performed GSEA for gene clusters generated
from FCM clustering with m = 1.1573 and ¢ = 34. The cut off P-value is 0.0001. The enriched function(s) are listed in the table. Significant
function(s) are correlated with all gene clusters except cluster 10, 18, 21, 21, 25 and 26.

files of the genes in the cluster. Cluster analysis coupled
with the idea of categorizing TFs into pre-defined NMs
increased the robustness of our analysis not only in terms
of obtaining meaningful modules, but also in terms of
addressing the scalability problem. Some genes are very
important in biological processes, thus are regulated

through multiple pathways as shown by the presence of
several distinct binding site sequences. Our proposed
method allows the representation of a gene in different
regulatory NMs since a TF can be assigned to more than
one NM. This is different from previous approaches where
only a single model is used for TRN inference [33,34].
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Figure 2

Clustering results using k-means and FCM. The cluster results from different cluster methods are compared using z-
score, a measurement based on the mutual information between cluster membership and known gene attributes. Three clus-
tering results are plotted: k-means clustering and FCM clustering with two m values (m is the fuzziness parameter): default
value (m = 2) and optimal value (m = 1.1573). K-means outperforms FCM with default m value, whereas FCM with the optimal
m value yields the highest z-score for cluster numbers ranging from 2 to 100. This demonstrates that FCM clustering with opti-
mal m value has the potential to detect the underlying data structure with biological significance.
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Figure 3
Predicted NM from eight known cell cycle dependent TFs. The left panel presents the four transcriptionally related
NMs considered in this study. The right panel depicts inferred TF-target gene relationships for eight known cell cycle depend-

ent TFs.

Table 2: Performance of SVM classifiers evaluated via LOOCV.

Input data Auto regulation Feed-forward loop Single input Multiple input  Average error
Gene expression data 37 48.1 17.6 24.8 23.6
Gene expression data and binding site sequence information 35 30.3 10.8 18.6 15.8

To evaluate the performance of the SVM classifiers, LOOCYV was performed. To examine whether both gene expression data and binding site
sequence information are needed in classifying TFs into different NM categories, we built SVM classifiers using only gene expression data. If only
gene expression data are considered as input data, the average test error is 23.6%. After incorporating binding sequence data into the input data,
test error has been reduced 15.8%. The increased performance implies that the encoded binding site sequence information is useful in predicting
the biological roles TFs play.
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Table 3: The experimental results of GA-PSO with RNN.

GA generations Average RMSE Minimum RMSE
100 1.27 0.78

200 0.84 0.40

400 0.62 0.12

600 0.35 0.077

800 031 0.075

The average and least root mean square errors (RMSEs) obtained
between the output of RNN and the measured expression profile for
the gene clusters are shown as the number of GA generation is varied
from 100 to 800.

Compared to previous methods that aimed at global
TRN inference, the TF-target gene relationships inferred
in this study are expected to correspond more closely to
biologically meaningful regulatory systems and natu-
rally lend themselves to optimum experimental design
methods. For example, the results presented in Figure 3
can be verified from previous biological evidences. For
example, FKH1 is a gene whose protein product is a fork
head family protein with a role in the expression of G2/
M phase genes. It negatively regulates transcriptional
elongation, and regulates donor preference during
switching. To further investigate the possibilities that the
predicted downstream gene clusters are truly regulated
by FKH1, we applied the motif discovery tool, WebMO-
TIFS [35] to find shared motifs in these gene clusters. The
results revealed that a motif called Fork head,
GTAAACAA, is identified as the most significant motif
among these gene clusters [36]. This finding strongly
supports our NM inference results. The details of the
binding site enrichment analysis (BSEA) results are
shown in Additional file 3. Another example is the FFL
involving SWI5, GAT3 and Gene Cluster 10. SWI5 has
been identified as the upstream regulator of GAT3
[7,15,27]. Genes in cluster 10 are mostly involved in
DNA helicase activity and mitotic recombination, both
of which are important biological steps in the regulation
of cell cycle. Although no biological evidences have
shown that SWI5 and GAT3 are involved in these proc-
esses, there are significant numbers of genes in cluster 10
which are characterized (according to yeastract.com) as
genes regulated by both TFs (24 for GAT3 and 23 for
SWI5 out of 44 genes in cluster 10, respectively).

Compared to Chiang et al. [32], the first improvement of
our approach is that instead of predicting the TF and indi-
vidual downstream genes, we group genes into biologi-
cally functional clusters and discover the relationships
between TFs and gene clusters. Through clustering, we
were able to integrate the GO information, reduce the
computational complexity, and established insights into
new interactions. If a gene cluster is involved in the NM of
one TF, and most genes have evidence that they are regu-
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lated by this TF, it is most likely that the genes left in this
cluster are under the regulatory control of the TF. Further-
more, the intermediate result analysis such as GSEA and
motif discovery analysis employed in our method ensure
that every step in the data integration contributes to the
final NM inference.

Conclusion

Reconstruction of TRNs is one of the major challenges
in post genomic era. The study presented here addressed
two important issues in TRN inference: (1) the develop-
ment of analysis methods that utilizes multiple types of
data and (2) network analysis on the NM level. A data
integration approach is proposed to effectively infer the
underlying mechanism and pattern of gene regulation
using yeast as model on the basis of combined con-
straints arising from multiple biological data sources,
including time course gene expression data, location
analysis data, binding site sequence data and GO cate-
gory information. This computational framework
allows us to fully exploit the partial constraints that can
be inferred from each data source. First, to reduce the
inference dimensionalities, the genes are grouped into
clusters by FCM, where the optimal fuzziness value is
determined by statistical properties of gene expression
data and the optimal cluster number is identified by
integrating the GO category information. Then, the
known NM information from location data analysis
together with the binding site information is used to
train SVM classifiers. TFs without NM assignment are
predicted by the classifiers. LOOCYV is used to build the
SVM classifiers with high confidence. Once the NM(s)
for a TF is identified, the hybrid GA-PSO algorithm is
applied to search for target gene clusters that may be reg-
ulated by the TF. This search is guided by the successful
training of a RNN model that mimics the regulatory
NM(s) assigned to the TF. This has been demonstrated
on eight well-studied yeast cell cycle dependent TFs. The
upstream BSEA indicates that the proposed method has
the potential to identify the underlying regulatory rela-
tionships between TFs and their downstream genes on
the NM level. We conducted a thorough evaluation of
our approach by applying it to a well studied process in
yeast (regulation of cell cycle progression). Although we
limited our analysis to gene regulatory program at the
transcriptional level, we believe that our model is
expandable to other biological network inference as
more types of high-through data become available such
as protein-protein interaction data (yeast two-hybrid)
and in vivo (yeast one-hybrid) and in vitro (chromatin
immunoprecipitation) protein-DNA interaction data.
We anticipate that this approach will serve as a novel
method for analyzing multi-source data on the NM
level.
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Methods

Approach overview

The data sources used in this study involve two informa-
tion levels: (1) The location analysis data, binding site
sequences, and GO category information characterize the
physical interactions at factor-gene binding level; (2) The
time course expression data characterize the functional
interactions at transcriptional regulation level. The goal is
to discern dependencies between the gene expression pro-
files and the physical (molecular interaction) mecha-
nisms revealed by complementary data sources (e.g.,
location data and binding site sequences).

The genome-wide location analysis is a genomic scale
assay [5] measuring the in vivo abundance of TFs that bind
to intergenic regions of the DNA. Unlike the expression
data, location analysis provides direct evidence about the
physical processes underlying gene regulation. Available
data from location analysis experiments of 106 TFs, repre-
senting ~52% of the total TFs encoded by yeast genome
were used in this study to determine transcriptional NMs.

The DNA sequence motifs that define transcription factor
binding sites (TFBSs), were extracted from TRANSFAC
database [28]. Additional information for other TFs were
obtained from recent data as described by Harbison et al.
[27].

GO information was used as the source of gene annota-
tions from already validated biological evidences [26].
Three GO categories (biological process, molecular func-
tion, and cellular component) were used as a basis to
determine/evaluate the optimal number of gene clusters.

Gene expression profiling represents a high-throughput
data source, where expression levels for thousands of
genes are measured simultaneously. Models such as Baye-
sian networks [37] or probabilistic relational models [11]
have been used to capture the interactions among the
measured expression levels. The limited number of time
points and the large number of genes present a challenge
in inferring TRNs from time course gene expression data.
The yeast (S. cerevisiae) cell cycle data are based on the
changes in gene expression in terms of transcript abun-
dance at six stages (cln3, cIb2, alpha, cdc15, cdc28, and
elu) [8]. A total of 800 genes were identified as cell cycle-
regulated based on cluster analysis [8]. In this study, we
chose the cdc15 expression data set for 800 genes, because
this set has the largest number of time points (24).

Our proposed computational framework is illustrated in
Figure 4. Besides data pre-processing, there are three suc-
cessive steps involved in this framework. The first step is
gene clustering, where features with similar profiles are
grouped together as a metagene (a gene cluster) to address

http://www.biomedcentral.com/1471-2105/9/203

the scalability problem [38]. The basic assumption is that
a cluster of co-regulated genes share common TFs [39]. To
evaluate the clustering performance, GO categories are
utilized to determine the number of clusters and annotate
gene clusters. Since each cluster mainly represents one
function or process category (evaluated by FuncAssociate
[40]), the regulation network between a TF and a gene
cluster implies that the TF can regulate a group of genes
with similar or related functions [41]. In the second step,
an NM is assigned to a TF, wherein NMs are used instead
of global TRN inference to reduce the complexity of the
inference problem by building SVM classifiers that assign
NM(s) to each TF. TFs with known NMs are used as a
training set [15]. The trained SVM classifiers are applied to
predict NMs for TFs with unknown NMs. To evaluate the
classifier performance, leave-one-out cross-validation
(LOOCV) is applied. In the third step, for each TF with
either known or predicted NM(s), GA generates candidate
gene clusters that may be regulated by the TF according to
the NM. A RNN is trained to mimic the known or pre-
dicted NM. PSO optimizes the parameters of the RNN to
minimize the root mean squared error (RMSE) between
the output of the RNN and the target gene cluster's average
expression profiles. The RMSE is returned to GA to pro-
duce the next generation of candidate gene clusters. The
optimization is continued until a pre-specified maximum
number of iterations or a pre-specified minimum RMSE is
reached. The above procedure is repeated for all TFs.
Known biological knowledge from databases is used to
evaluate the predicted results.

Table 4 summarizes the inputs and outputs of each step
involved in our proposed computational framework. The
steps are elaborated in more details in the following sub-
sections.

Data preprocessing

From the time course gene expression data, 800 genes are
identified as being cell cycle-regulated based on an analy-
sis that combines a Fourier algorithm and a correlation
algorithm [8]. These genes are functionally annotated
based on information from GO. Missing values in the data
are imputed using K nearest neighbour (KNN) imputa-
tion [42]. Following that, the expression profile of each
gene was standardized between 0 and 1.

Known NMs are extracted from location analysis data
[15]. By specifying a threshold value (e.g. P-value < 0.001)
that represents the confidence that a given factor binds to
the corresponding intergenic region, the location data can
be viewed as a combination of four NMs (Figure 5).
Nucleic acids are encoded into numeric values (Table 5)
so that the binding site sequence information derived
from TRANSFAC database can be used as input to SVM
classifiers for NM prediction. Although the numerical val-
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Figure 4

The proposed computational framework. The framework of the proposed method is composed of three parts. First,
gene expression profiles are clustered into biologically meaningful groups by FCM; GO category information of genes is used to
determine the optimal cluster number. To evaluate the gene clusters, gene set enrichment analysis (GSEA) is performed on the
optimal clusters. This analysis revealed that 28 out of 34 optimal clusters were enriched in certain biological categories (P-value
< 0.001) (Table I). In NM assignment part, SVM classifiers are built to classify TFs into known NM categories. For a given TF,
its time course gene expression profile and binding site sequences are used as inputs to SVM classifiers to predict its corre-
sponding NM(s). Positive training data sets include TFs with known NMs from location data analysis. Negative training data sets
include TFs randomly chosen from TF pools (same size as positive ones). After the gene clusters are formed and TFs are
assigned to NM categories, the relationships between TFs and gene clusters are inferred by training recurrent neural networks
(RNNs) that mimic the topologies of the NMs that TFs are assigned to. Since the NM inference only includes small number of
TFs and gene clusters, the computational complexity is reduced compared to the global TRN inference problem (inferring
TRN on gene level by including all genes in one data set). Finally, the inferred TF-target gene relationships are validated by
BSEA and literature results.

ues assigned to nucleic acids do not carry any biological
meaning, they were used in our analysis for the purpose of
implementing the SVM classifier.

Cluster genes into biologically relevant groups

We use cluster analysis to assign genes into functional
groups and use the resulting cluster nodes as metagenes.
Clustering is a widely used technique in microarray data

analysis. An underlying assumption is that genes with
similar expression profiles are more likely to have similar
biological functions [43]. Common clustering algorithms
such as hierarchical clustering, k-means clustering, and
self-organized maps have been used to analyze gene
expression data [9,44,45]. These are called hard clustering
because each gene is assigned to exactly one cluster.
Microarray data involve substantial amount of noise due
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Table 4: Inputs and outputs of the proposed three-step approach
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Steps Inputs

Output(s) Figur

Cluster genes into biologically
relevant groups

- Gene expression profiles

- GO category information
Categorize TFs into different Gene expression profile of a TF

NMs

- Encoded binding site sequences for the TF

Infer NM-based TF-target
relationship via RNN

- Gene expression profile of a TF

Cluster centers/metagenes Fig. 6
Predicted NM(s) for the TF Fig. 7
Identified cluster centers in the known or predicted Fig. 8

NMs (i.e., identified TF-target gene relationship).

- Gene expression profiles of cluster centers

(metagenes)

- Known or predicted NM(s) of the TF

to biological and experimental factors. In this study, we
utilize a soft clustering approach using FCM, which has
been demonstrated to be resilient to noise; genes with
high membership values cluster together in spite of the
noise in the gene expression data [46].

The detailed clustering scheme is shown in Figure 6. The
fuzziness parameter m, and the cluster number ¢ need to
be determined in FCM clustering. The optimal value for m
varies widely from one data set to another. An empirical
method [46] is applied to determine an adequate value for
m based on the distribution of distances between genes.
The optimal cluster cis evaluated by the ClusterJudge soft-
ware [43], which estimates the optimal cluster number
using a figure of merit based on the mutual information
between cluster membership and known gene attributes
in GO database. GO database contains three categories:

i

g
AN

C D

Figure 5

Four transcriptional network motifs in yeast. Four
NMs are considered in this study: (A) auto-regulatory motif;
(B) feed-forward loop; (C) single input module; and (D)
multi-input module. Circle denotes TF and square denotes
gene cluster.

molecular function, biological process, and cellular com-
ponents, to describe attributes of gene products or gene
product groups [26]. All the gene attributes in three cate-
gories are filtered based on the following criteria: (1) they
are as independent as possible (one of any attribute pair
that has a pair-wise uncertainty coefficient U > 0.8 is
removed, U = MI/MI,_ .., where MI denotes the mutual
information between two gene attributes and MI,,, is the
maximum MI among all gene attributes); (2) they are
shared among 10~200 genes. Those passing the filtering
are used for selecting the optimal cluster number. Cluster-
Judge calculates z-score to evaluate the gene attributes that
genes belong to, in contrast to other data-driven
approaches such as Xie-Beni index [47], gap statistic [48],
and adoptive double self organizing map [49] that do not
involve biological evaluation.

To characterize the optimal gene clusters, we utilize Fun-
cAssociate [40] that determines GO terms that are over-
represented among the genes associated with a given clus-
ter relative to what would be expected for randomly cho-
sen sets of genes of the same size. FuncAssociate computes
a one-tailed Fisher's exact test whose categories are
"belongs/does not belong to cluster" and "is annotated/is
not annotated with GO term". This computation is per-
formed for all the GO terms for which annotations are
available, and the P-values obtained are corrected for mul-
tiple hypotheses by comparing raw P-values against those
obtained from 1000 simulated runs using randomized

Table 5: Encoding of nucleic acids by numeric values.

Nucleic acid A C G T U R Y M

Numeric code 005 0.1 0.5 02 025 03 035 04
Nucleic acid K w S B D H \% N
Numeric code 045 05 055 06 065 07 075 08

To incorporate the binding site sequence information into the NM
inference, we encode the nucleic acid sequence by numerical values
according to the nominal transitions in the table.
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The FCM clustering scheme. The scheme illustrates the process to group genes into biologically meaningful clusters. The

gene expression data are first utilized to find the optimal m value for FCM clustering. With the optimal m value, FCM clustering
is performed on gene expression data for cluster numbers ranging from 2 to 100. The cluster results were then evaluated by

using the Clusterjudge software. The cluster number with the largest z-score is chosen as optimal. The GSEA (FuncAssociate)
is performed to evaluate the gene clusters formed using the optimal cluster number.

queries (resampling), as described in detail in Berriz et al.
[40]. The definition of the 'universe' of all genes used by
FuncAssociate corresponds to the set of all genes used in
FCM clustering. Once the cluster analysis is completed, a
set of genes in a cluster is considered as a metagene in the
subsequent analyses.

Categorize TFs into different NMs

Since GO has the most detailed gene annotation, we first
search for genes with GO functional annotation terms
related to transcription such as "transcriptional regulator
activity", "DNA binding", etc. These genes are treated as
potential TFs and also verified by comparison with the
TRANSFAC database. The TF list in TRANSFAC only con-
tains known TFs. The detailed annotation of GO provides
a larger list containing not only the confirmed but also the
potential TFs. These TFs are assigned to different kinds of
motifs by their characteristic of regulation functions. This
is based on the assumption that some TFs play crucial
roles in some specific motifs. Unlike to most previous
TRN inference approaches, where a single large network is
sought, our method focuses on inferring target cluster
gene(s) regulated by a particular TF. This is accomplished
by assigning likely NM(s) to each TF based on prior bio-
logical knowledge collected from literatures that report on
results from traditional experiments or large-scale
genomic location analysis data [15].

Since only a fraction of TFs have known NMs, we build
SVMs to map the relationship among a gene expression
profile of a TF, its binding site sequence data, and its
NM(s). The nucleic acids in the binding site sequence data
are encoded into numeric values (Table 5) before present-
ing them to the SVM classifiers. Figures 7A and 7B depict
the SVM training and operation phases, respectively. In
the training phase, a data set that consists of expression
profile and binding site sequences is constructed for each
classifier. The data set has positives (TFs with known
NMs) and negatives (TFs to which randomly chosen NMs
are assigned) with equal proportions. This data set is used
to train the SVM classifiers. The classifiers are evaluated
through the LOOCYV approach to estimate their prediction
errors. In the operation phase, the expression profile and
the binding site sequence of a TF with unknown NM
assignments are used as inputs to the trained SVM classifi-
ers to predict the NM(s) for the TF. The figures show four
NM modules that are used in this study (auto regulation,
feed-forward, single input, and multi-input). Since a TF
can be assigned to more than one NM, a binary SVM that
can handle only two cases is not sufficient. Thus, as illus-
trated in figures, we use multiple binary SVM classifiers,
each responsible for one NM. Each SVM is trained to
determine whether a TF can be assigned to the NM. We
input the expression profile and binding site sequence
into each of the four trained SVM classifiers to obtain a yes
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SVM classifiers that predict the network motif for a TF on the basis of its binding site sequence and its time
course gene expression profile. The figure shows the scheme for classifying TFs into four NMs. Since one TF can be
assigned to more than one NM, one SVM classifier is built for each NM assignment (four classifiers in the SVM classifier block).
We illuatrate the process in: (A) training phase, where the TFs with known NMs are used to train SVM classifiers, (B) opera-
tion phase, where unknown NMs are predicted by the trained SVM classifiers based on expression profile and binding site of a
TF. In the training phase (A), a data set that consists of expression profile and binding site sequences is constructed for each
classifier. The data set has positives (TFs with known NMs), and negatives are TFs to which randomly chosen NMs are assigned
(equal in size to the positive set). The data set is used to suit the SVM classifiers. The classifiers are evaluated through the
LOOCY approach (dashed box) to estimate their prediction errors. In the operation phase (B), the expression profile and
binding site of a TF with unknown NM assignments are used as inputs to the SVM classifiers trained in (A). The classifiers pre-

dict the NM(s) for the TF.

or no answer. The classifiers are evaluated using LOOCV. 2. Leave the first TF out as a test TF, the remaining TFs

We outline below the steps involved:

serve as a training set.

1. Assemble positive set from genome-wide location data. 3. Build SVM classifiers using the training set.
Sample nTFs randomly from the whole TF set to construct
the negative set (7 = number of TFs in positive set).

4. Use trained SVM classifiers to determine the NM(s) for
the TF left out in Step 2.
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5. Replace the left out TF and leave the next TF out as a test
TF.

6. Repeat Steps 3-5 until each TF is used as a test TF.

7. Summarize the prediction error for the left out TFs.

8. Repeat steps 1-7 100 times.

9. Calculate the mean of the predicted error in 100 runs.

The final SVM classifiers are trained by using all TFs with
known NMs as a positive set and an equal number of ran-
domly selected TFs as a negative set. The NM(s) for a TF
with unknown NM(s) is determined using these classifi-
ers.

Infer NM-based TF-target relationship via RNN

After deciding the NM(s) for all TFs, we construct a model
of the NM for each TF via a RNN, whose topology mimics
the NM that the TF is known or predicted to exhibit. Due
to its capability to capture the nonlinear properties and
dynamic relationships, RNNs have been previously
applied for GRN inference [33,50,51]. For each of the four
NMs in Figure 5, a suitable RNN can be built (Figure 8).
As shown in Figure 8C, each RNN has an architectural lay-
out that mimics the corresponding NM. The rationale for
using RNNs to model gene NMs emanates from their abil-
ity to learn from data and to simulate gene regulation
through the formulation shown in Eq. (1) [52,53]:

dx;(t) <
T =)+ o ]Z_:‘wijxj(t)+bi (1)

where x; is the gene expression level of the ith gene (1 <i
<N, N is the number of genes in the model), ¢(.) is a acti-
vation function introduces nonlinearity to the model (e.g.
sigmoid function), w;represents the effect of jth gene on
the ith gene, b; denotes the bias for the ith term, and 7 is
the decay rate parameter. A negative value of w;; represents
the inhibition of the jth gene on the ith gene, whereas a
positive value of w; represents the activation control of the
jth gene on the ith gene. If w;; is zero, then it means that jth
gene has no influence on the ith gene.

The discrete form of Eq. (1) can written as

N
x;(t + At) = (1 — 7A)x;(t) + Atg Zwijxj(t) +b;

=1

(2)
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Figures 8A and 8B show the architecture of a RNN that can
simulate the mathematical relationship in Eq. (2). As
illustrated in Figures 8A and 8B, the output of each neu-
ron is fed back to its input after a unit delay and is con-
nected to other neurons [51]. It can be used as a simple
form of a NM, where each entity (e.g. TF or gene cluster)
in the network is considered as a neuron. The RNN can
model not only the interactions between entities but also
entity self-regulation. In this study, we consider four RNN
models (Figure 8C), each of which has an architectural
layout that mimics the corresponding NM in Figure 5.

Training the RNNs involves determining the optimal
weights w;;and bias b;. As a cost function, we use the RMSE
between the expected output and the network output
across time (from the initial time point 0 to the final time
point T) and across neurons in the network. The cost func-
tion can be written as:

T N
E(i) = \/TLZZ[xi(r)—x,»(t)]z (3)

t=0 i=1

where x,(t) and x;(t) are the true and predicted values

(expression levels) for the ith neuron (entity) at time t.
The goal is to determine the structure and weights of a
RNN that minimize this cost function.

A hybrid of GA and PSO methods (GA-PSO) is applied to
determine the gene clusters that may be regulated by each
TF. GA generates candidate gene clusters, while the PSO
algorithm determines the parameters of a given RNN rep-
resented by a weight vector w. The RMSE between the
RNN output and the measured expression profile is
returned to GA as a fitness function and to guide the selec-
tion of target genes through reproduction, cross-over, and
mutation over hundreds of generations. The stopping cri-
teria are pre-specified minimum RMSE and maximum
number of generations. The GA-PSO algorithm is run for
each TF to train a RNN that has the architecture mimick-
ing the known NM(s) for the TF or the NM(s) predicted by
the SVMs. Thus, f or a given TF (input), the following steps
are carried out to identify its likely downstream gene clus-
ters (output) based on known or predicted NM(s):

1. Assign the NM to the TF it belongs to. If the NM is
unknown, use SVM to predict the NM(s).

2. Use the following GA-PSO algorithm to build a RNN
model that mimics the NM to identify the downstream
gene clusters.
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Figure 8

The RNN models for NMs. A: RNN model, where the output of each neuron is fed back to its input after a unit delay and
is connected to other neurons. B: Details of a single recurrent neuron. C: RNN models mimicking the topologies of the four
NMs shown in Figure 5. Z-! denotes a unit delay and ®(.) is a logistic sigmoid activation function.
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Table 6: GA and PSO parameter settings. The table presents the GA and PSO parameter settings used in this study.

PSO
Parameter Value
Search space range [-5,5]
Acceleration constants ¢, 2.05
Acceleration constants ¢, 2.05
Size of swarm 50-150

GA
Parameter Value
Crossover One point
Mutation rate 0.05, random
Selection Roulette Wheel
Population size 50-150

2.1. Generate combinations of M gene clusters to repre-
sent the target genes that may be regulated by the TF. Each
combination is a vector/chromosome. The initial set of
combinations is composed of the initial population of
chromosomes.

2.2. Use the PSO algorithm to train a RNN model for each
chromosome, where the input is the TF and the outputs
are gene clusters. The goal is to determine the optimized
parameters of the RNN that maps the measured expres-
sion profiles of the TF to the gene clusters.

2.3. For each chromosome, calculate the RMSE between
the predicted output of the RNN and measured expression
profiles for the target gene clusters.

2.4. Apply GA operators (reproduction, cross-over, muta-
tion) based on the RMSE calculated in Step 2.3 as a fitness
value. This will generate new vectors/chromosomes alter-
ing the choice of output gene cluster combinations.

2.5. Repeat steps 2.1 - 2.4 until stop criteria are met. The
stopping criteria are numbers of generations or minimum
RMSE, depending on which one is met first.

2.6. Repeat Steps 2.1 - 2.5 for each NM the TF is assigned
to.

3. Repeat Steps 1 and 2 for each TF.

When the process is completed, regulatory NMs are con-
structed between TFs and their regulated gene clusters.

We used the OSU SVM Support Vector Machine Toolbox
[54] for implementation of SVMs. The Genetic Algorithm
and Direct Search Toolbox (Mathworks, Natick, MA) and
the PSOt Toolbox [55] were utilized for implementation
of GA and PSO, respectively. The parameter settings of GA
and PSO are shown in Table 6.

List of abbreviations

Transcriptional regulatory network: TRN; network motif:
NM; transcription factor: TF; fuzzy c-means: FCM; gene set
enrichment analysis: GSEA; binding site enrichment anal-

ysis: BSEA; support vector machine: SVM; leave-one-out
cross-validation: LOOCV; recurrent neural network: RNN;
genetic algorithm: GA; particle swarm optimization: PSO;
gene ontology: GO; root mean squared error: RMSE; feed-
forward loop: FFL; transcription factor binding site: TFBS;
transcriptional start site: TSS.
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Additional material

Additional file 1

Gene clusters obtained by using the FCM clustering algorithm. The data
provided present the cluster membership for each of the 800 genes consid-
ered in this study.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-9-203-S1.pdf]

Additional file 2

Potential TFs among yeast cell cycle related genes. The data provided
present TFs we identified from 800 cell cycle related genes based on their
GO annotations. The genes annotated with terms related to transcription
activities and DNA binding are considered as potential TFs.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-203-S2.pdf]

Additional file 3

Predicted motifs for gene clusters. The data provided present the top three
enriched motifs for each gene cluster identified in this study. The motifs
are predicted through promoter sequence analysis of the gene clusters
using WebMOTIFS http://fraenkel. mit.edu/webmotifs/. This information
helps in the validation of the NM prediction results. For example, the pre-
dicted downstream gene clusters of FKH1 all have a motif called
Fork_head, GTAAACAA, in their promoter regions. This suggests that our
NM inference strategy has the capability to identify the downstream target
genes for TFs based on their NM assignment. The motif is annotated in
Pfam database http://pfam.sanger.ac.uk/.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-9-203-53.pdf]
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