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Abstract

Background: Microarray-based pooled DNA experiments that combine the merits of DNA
pooling and gene chip technology constitute a pivotal advance in biotechnology. This new technique
uses pooled DNA, thereby reducing costs associated with the typing of DNA from numerous
individuals. Moreover, use of an oligonucleotide gene chip reduces costs related to processing
various DNA segments (e.g., primers, reagents). Thus, the technique provides an overall cost-
effective solution for large-scale genomic/genetic research. However, few publicly shared tools are
available to systematically analyze the rapidly accumulating volume of whole-genome pooled DNA
data.

Results: We propose a generalized concept of pooled DNA and present a user-friendly tool
named Microarray Pooled DNA Analyzer (MPDA) that we developed to analyze hybridization
intensity data from microarray-based pooled DNA experiments. MPDA enables whole-genome
DNA preferential amplification/hybridization analysis, allele frequency estimation, association
mapping, allelic imbalance detection, and permits integration with shared data resources online.
Graphic and numerical outputs from MPDA support global and detailed inspection of large amounts
of genomic data. Four whole-genome data analyses are used to illustrate the major functionalities
of MPDA. The first analysis shows that MPDA can characterize genomic patterns of preferential
amplification/hybridization and provide calibration information for pooled DNA data analysis. The
second analysis demonstrates that MPDA can accurately estimate allele frequencies. The third
analysis indicates that MPDA is cost-effective and reliable for association mapping. The final analysis
shows that MPDA can identify regions of chromosomal aberration in cancer without paired-normal
tissue.

Conclusion: MPDA, the software that integrates pooled DNA association analysis and allelic
imbalance analysis, provides a convenient analysis system for extensive whole-genome pooled
DNA data analysis. The software, user manual and illustrated examples are freely available online
at the MPDA website listed in the Availability and requirements section.
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Background

Since the pioneering work of Arnheim et al. in 1985 [1],
the analysis of pooled DNA samples has undergone exten-
sive development over the past two decades [2,3]. The
main applications of pooled DNA techniques in genomic/
genetic studies include association mapping [4,5], poly-
morphism identification/validation [6,7], genetic diver-
sity [8,9] and mutation detection [10,11]. The
millennium revolution of the pooled DNA technique was
its integration with microarrays [12], and the performance
of which has been examined broadly [13-23]. This new-
generation biotechnique significantly decreases the cost of
large-scale genomic/genetic studies; for example, costs
due to typing numerous DNA samples are reduced by
pooling genomic DNA, and expenses related to primers
and assay kits are reduced by using microarray genotyp-
ing. Therefore, microarray-based pooled DNA provides a
cost-saving and valuable avenue for deciphering the mys-
teries of the human genome.

Analysis of high-density genome-wide pooled DNA data
involves a series of sophisticated procedures that require
simultaneous and extensive data processing, statistical
estimation and hypothesis testing. The data attributes/
structures become more complicated and the computa-
tional complexity increases significantly when compared
to a candidate-region or low-resolution genetic analysis.
The urgent demand for efficient, publicly available soft-
ware has motivated us to develop the shared software,
Microarray Pooled DNA Analyzer (MPDA), which enables
elaborate genome-wide pooled DNA analysis. The major
functions of MPDA include data processing (feature
extraction and quality evaluation), statistical estimation
(whole-genome estimations of the coefficient of preferen-
tial amplification/hybridization [CPA] and allele fre-
quency [AF]), and gene mapping (whole-genome single-
locus/multilocus association analysis and single-locus/
multilocus allelic imbalance analysis). Graphical and
numerical outputs provide for global and detailed inspec-
tion of the human genome. Figure 1 presents the analysis
framework of MPDA.

MPDA implements association analysis [24-27] and
allelic imbalance analysis [28-32] based on a generalized
concept of pooled DNA, of which there are two types in
this study. The first is a "population-level (artificial)"
DNA pool, which is constructed by mixing genomic DNA
from different subjects. This pool is formed by laboratory
work and reflects interindividual variations in DNA. The
second type, an "individual-level (natural)" DNA pool, is
contributed by a single subject. This DNA pool is formed
naturally and reflects intercell variations in DNA. The arti-
ficial DNA pool concept is used to construct association
analyses, whereas the natural DNA pool concept is used to
develop allelic imbalance analyses.
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Implementation

Software and interface

MPDA was developed based on MATLAB® software and
adapted to MS Windows® 98/ME/NT/2000/XP/2003.
MPDA provides a user-friendly interface created using the
MATLAB® Graphic User Interface (see Additional files 1, 2,
3). Users can easily analyze their data by merely checking
the option boxes in the MPDA interface. For users work-
ing on machines without installing MATLAB® software, we
also developed stand-alone executables generated via the
MATLAB® compiler. Moreover, two data examples
reported in this paper are included in the MPDA software
to demonstrate its functionalities and data input formats.
The details on statistical methods and operation proce-
dures can be found in the MPDA user manual. The soft-
ware, user manual and additional data examples are
available online at the MPDA website.

Genetic typing experiments and data format

All the genotyping experiments were performed with leu-
kocyte DNA using the Affymetrix GeneChip Human Map-
ping 100 K Set (Affymetrix, CA, USA) that contains
116,204 single nucleotide polymorphisms (SNPs) with a
median intermarker distance of 8.5 kb and 92% genome
coverage within 100 kb of a SNP [33]. Oligonucleotide
probes for the SNPs were tiled on two arrays, Xba and
Hind chips. Leukocyte genomic DNA was isolated using
the Puregene genomic DNA purification kit (Gentra Sys-
tems, MN, USA). The DNA concentration was quantified
using a NanoDrop ND-1000 Spectrophotometer (Nano-
Drop Technologies, DE, USA). For individual genotyping
experiments, a total of 500 ng of genomic DNA with con-
centration at 50 ng/ul was used. For allelotyping of DNA
pools, a total of 500 ng of mixed genomic DNA with an
equal amount of DNA from each selected individual was
used. Genotyping of each individual (also called a "natu-
ral DNA pool") or allelotyping each experimental DNA
pool (also called an "artificial DNA pool") was performed
according to the GeneChip Mapping Assay Protocol. The
assay details can be obtained from the Affymetrix Gene-
Chip Mapping 100 K Assay Manual [34]. For each SNP,
the implanted genotyping analysis tool, GeneChip® DNA
Analysis Software Version 3.0, provided intensity data for
the five best quartet pairs. Each quartet pair contained
sense-strand and antisense-strand probe quartets, and
each probe quartet consisted of perfect-match and mis-
match probe cells for two different alleles.

Feature extraction

For feature extraction from intensity data, MPDA calcu-
lated the relative allele signal (RAS) of each SNP for each
subject. The average of the mismatch intensities of a pair
of alleles were subtracted from the perfect match intensi-
ties to adjust background noise and yield an adjusted
intensity. The adjusted intensity of an allele was divided
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by the sum of adjusted intensities from an allele pair to
calculate a relative proportion for a strand under each
quartet. Medians of the relative proportions over five
quartets were calculated for sense and antisense strands
respectively, and the two medians were averaged to yield
the composite RAS (CRAS). The CRAS measure was a basic
element of subsequent analyses.

To evaluate the quality of SNP data, MPDA calculated a
discrimination signal (DS) for each SNP for each subject.
For each probe pair, the sum of perfect match and mis-
match intensities was divided by the difference between
perfect match and mismatch intensities to yield a DS
value. For each allele and probe cell, the median of DS val-
ues over five probe quartets was taken as the median DS
value (MDS). A min-max criterion, which picked the min-
imum MDS over two probe cells for each allele and then
took the maximum from the two minimums, was used to
calculate the final DS (FDS) value for each SNP for each
subject. The FDS can serve as an index of genotyping qual-
ity—the higher the index FDS, the better the genotyping
quality of the SNP. For a good-quality SNP, an FDS of >
1.5% was suggested by the Modified Partitioning Around
Medoids (MPAM) Mapping Algorithm in the Affymetrix
GeneChip DNA Analysis Software User's Guide.

Whole-genome CPA analysis

MPDA estimates the whole-genome CPA and the corre-
sponding standard error. For any given SNP, subjects who
were genotyped individually and were heterozygous with
respect to the SNP were selected. Their hybridization
intensities were transformed into CRAS as described in
Feature Extraction. The CRAS pairs were collected and
used to estimate CPA according to the arithmetic mean
[35], geometric mean, and bias-correction CPA [36]. The
corresponding standard error was calculated via a resam-
pling procedure with an underlying model that the CRAS
followed a beta distribution [21,37-39]. The detailed sta-
tistical formulae can also be found in Appendix A in the
MPDA user manual.

MPDA provides several options of data types for the calcu-
lation of CPA. Firstly, Affymetrix users can select chromo-
somes of interest and provide hybridization intensity data
of 100 K or 500 K to calculate CPA. Secondly, users who
apply an existing CPA database can provide their own
CPAs or use two CPA reference datasets provided by
MPDA. Thirdly, non-Affymetrix users can input pairs of
peak intensities from different platforms, such as the
matrix-assisted laser desorption/ionization time-of-flight
(MALDI-TOF) and the Illumina HumanHap550 Geno-
typing BeadChip. If users want to calculate standard error
of the CPA estimate, they should enter the number of
bootstrap replications into MPDA.
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The integrated system of microarray pooled DNA
analysis, MPDA.

Whole-genome AF estimation

MPDA estimates AFs in regards to a population-level DNA
pool (Component 1 of MPDA, see Additional file 2) or an
individual-level DNA pool (Component 2 of MPDA, see
Additional file 3). Hybridization intensity data of DNA
pools were transformed into CRAS as described in Feature
Extraction. Given a SNP, CRAS were unadjusted estimates
of AFs in DNA pools. To adjust preferential amplification/
hybridization of alleles, the estimated CPA was multiplied
by the CRAS of the second allele to amplify (suppress) the
suppressed (amplified) CRAS. The new CRAS of the sec-
ond allele replaced the original CRAS used in calculating
the unadjusted AF to estimate the adjusted AF. The vari-
ance of the unadjusted AF estimate was calculated based
on binomial sampling variation; the variance of the esti-
mated adjusted AF included extra variation due to CPA
calibration [5] and experimental error [19,40,41]. MPDA
allows users to input Affymetrix-format hybridization
intensity data or non-Affymetrix-format intensity pair
data to estimate AFs. The detailed statistical formulae for
AF estimates and their standard errors can be found in
Appendix B in the MPDA user manual.

Whole-genome association analysis

MPDA provides whole-genome single- and multi-locus
association tests to screen loci susceptible to traits of inter-
est based on population-level DNA pools (i.e., artificial
DNA pools), where CPA calibration is properly incorpo-
rated into the AF estimates and association tests (Compo-
nent 1 of MPDA, see Additional file 2). For single-locus
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association tests, differences of adjusted AF estimates of
two groups are calculated, and the AF differences are
divided by the corresponding standard error of the AF dif-
ference to construct the test statistics. MPDA provides two
test statistics: one assumes a common CPA between two
groups whereas the other does not. MPDA requires users
to input the experimental error while performing the test.
For multilocus association tests, the sliding-window
empirical p-value test (SWEPT) statistics are used, which
are composite scores of a series of p-values from single-
locus association tests [42]. The single-locus p-value can
come from either the MPDA single-locus association test
or user-specified p-value data. Users also must select
weight functions, truncation thresholds, window sizes,
and three SWEPT statistics, i.e., the multiplicative-effect
SWEPT, additive-effect SWEPT and minimum SWEPT.
MPDA calculates an empirical p-value of the SWEPT sta-
tistic based on a Monte Carlo procedure. The number of
Monte Carlo replications should be provided while con-
ducting the test. The detailed statistical formulae for sin-
gle-point and multipoint association tests can be found in
Appendix C in the MPDA user manual.

Whole-genome allelic imbalance analysis

MPDA provides an innovative whole-genome allelic
imbalance analysis to identify regions of chromosomal
aberration based on individual-level DNA pools (i.e., nat-
ural DNA pools), where CPA calibration is incorporated
into the AF estimates and allelic imbalance analysis
(Component 2 of MPDA, see Additional file 3). A SNP has
alternate alleles M and N. Theoretically, for each natural
DNA pool that is diploid, the AF of allele M should be 0,
0.5 or 1 with respect to 0, 1, or 2 copies of allele M. Devi-
ations from the standards are called allelic imbalance and
suggest chromosomal aberration.

We first introduce the single-locus allelic imbalance anal-
ysis. We estimated AFs for each of the healthy controls fol-
lowing a similar procedure for AF estimation as described
in Whole-Genome AF Estimation, where the role of an
artificial DNA pool was replaced by a natural DNA pool.
We used the estimated AFs to establish standards repre-
senting a control population free from chromosomal
aberrations, described as follows. For each SNP, we calcu-

lated the mean and prediction error of AF estimates, ( £, ,
0,, ), under each of three genotypes {uv, uv € (MM, MN,
NN)} and then constructed the corresponding prediction
bands by i, + 77- &,,, where ris a critical level for deter-

mining statistical significance. Next, we estimated AFs for
each patient sample following the same procedure for
unaffected samples. We checked whether the estimated AF
of the patient was located within one of the three predic-

http://www.biomedcentral.com/1471-2105/9/196

tion bands constructed from an unaffected population. If
the estimated AF of a SNP was outside of the three predic-
tion bands, then the SNP was identified as an allelic
imbalance point.

Next, we introduce the multilocus allelic imbalance anal-
ysis. There are two statistics for this purpose. The first sta-
tistic is called SCORE1, which is used to detect allelic
imbalance regions based on the results of the single-locus
allelic imbalance analysis. Positive scores are assigned to
significant SNPs (i.e., allelic imbalance SNPs) and nega-
tive scores are assigned to non-significant SNPs (i.e., non-
allelic imbalance SNPs). Scores for SNP loci are accumu-
lated from the starting SNP on each chromosome. The
cumulative sum score is called SCORE1. A significantly
increasing trend in SCORE1 implies that the region con-
tains many SNPs with abnormal AFs and is a potential
chromosomal aberration region. The second statistic is
called SCORE2, which focuses on detecting regions that
contain a chromosomal segment with a low proportion of
heterozygous SNPs. All SNPs are divided into hetero-
zygous and non-heterozygous SNPs for each patient. If the
estimated AF of a SNP is located within the prediction
band N £ 77- Oyn - then the SNP is classified as a het-

erozygous SNP; otherwise, it is classified as a non-hetero-
zygous SNP. Negative scores are assigned to heterozygous
SNPs and positive scores are assigned to non-hetero-
zygous SNPs. Scores for SNP loci are accumulated from
the starting SNP on each chromosome. This cumulative
sum score is called SCORE2. The detailed statistical for-
mulae for single-point and multipoint allelic imbalance
analyses can be found in Appendix D in the MPDA user
manual.

Results

Whole-genome CPA analysis

Preferential amplification/hybridization, which is quanti-
fied by CPA, is a major factor interfering with the estima-
tion of AF in pooled DNA studies. CPA has been defined
as a ratio of a pair of peak intensities [36] and is related to
the polymorphic nucleotide type and GC content of
probes [21]. Failure to adjust preferential amplification/
hybridization may result in serious bias in AF estimates
thus leading to false conclusions in association mapping
and allelic imbalance detection. Therefore, investigation
of the pattern of whole-genome preferential amplifica-
tion/hybridization and provision of cost-free CPA data-
bases for future calibration of AF estimates in pooled DNA
studies are critical [21,36,43]. We used MPDA to establish
and update our CPA databases. In a new analysis, we indi-
vidually genotyped 367 independent subjects recruited in
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our previous project "The Taiwan Han Chinese Cell and
Gene Bank" [44] using the Affymetrix GeneChip Human
Mapping 100 K Set. Subjects who were heterozygous with
respect to SNPs from the 367 subjects were selected, and
the hybridization peak intensities for both alleles from
these individuals were extracted to estimate the pairs of
CRAS and then estimate three CPAs of SNPs across the
human genome. The corresponding standard errors for
the CPA estimates were calculated based on a beta-distrib-
uted bootstrapping procedure with 1,000 replications (see
Methods-Whole-genome CPA analysis).

MPDA provides both graphic and numerical outputs of
CPA estimates. Figure 2 shows whole-genome scatter plots
of the bias-corrected CPA estimates in log, scale versus
physical positions by chromosome. The gap on each chro-
mosome represents the centromeric region; log,(CPA) > 0
indicates preferential amplification/hybridization of
allele 1 over allele 2, and vice versa for log,(CPA) < 0,
whereas log,(CPA) = 0 indicates no preference in this
regard. Numerical outputs showed that whole-genome
mean, median, standard deviation, minimum and maxi-
mum of the estimated log,(CPA) were 0.047, 0.052,
0.545, -2.570 and 2.252 respectively. The estimated CPAs
play important roles in subsequent analyses, including AF
estimation, association analysis and allelic imbalance
analysis (see next sections). Calculations of genome-wide
CPAs for the constructed Taiwanese-specific CPA database
were finished within 10 hours using a PC with an Intel
Pentium IV 2.4 GHz processor and 2 GB RAM. Calcula-
tions of standard error for genome-wide CPAs with 1,000
bootstrap replications were finished within 27 hours.

In addition to the Taiwanese-specific CPA database based
on 367 Taiwanese samples, we also constructed another
CPA database that includes the 367 Taiwanese samples as
well as 42 African-Americans, 42 Caucasians, and 20 East
Asians from the Human Variation Panel (Coriell Cell
Repositories). The two CPA databases were then inter-
faced and included with the MPDA software. As the aim of
MPDA is to provide a convenient tool for genome-wide
genetic analysis, MPDA not only has user-friendly inter-
faces but also provides several options for gathering CPA
information. In addition to directly using one of the two
MPDA-provided databases, users can also input user-spec-
ified CPAs or carry out CPA estimation based on the sup-
plied intensity pair data. The CPA database is applicable
to different studies because of high stability across labora-
tories and time (see Section Discussion). However, if users
would like to construct their own database, parallel com-
putations organized by chromosomes, carried out on
multiple PC's, are recommended when the sample size is
large.

http://www.biomedcentral.com/1471-2105/9/196

Whole-genome AF estimation

To illustrate whole-genome AF estimation of population-
level pooled DNA data using MPDA, we carried out an
allelotyping experiment based on the Affymetrix Gene-
Chip Human Mapping 100 K Set. Equal amounts of DNA
from 240 Taiwanese samples were mixed to construct an
artificial DNA pool that was subjected to allelotyping
using DNA chips (see Methods-Genotyping Experiments
and Data Format). A set of two arrays (Xba array and Hind
array) was used to assay the DNA pool. SNPs that had a
call rate of < 90% in the individual genotyping data were
excluded. The pairs of CRAS in the DNA pool were calcu-
lated based on the original hybridization intensity data
(saved in the Example directory of MPDA). Following fea-
ture extraction, the CRAS pairs were used to calculate the
unadjusted and adjusted AF estimates by incorporating
the Taiwanese-specific CPA database provided in MPDA.
Standard errors of the AF estimates were also calculated.
The analysis was executed under Component 1 of MPDA.
To examine the accuracy of the AF estimates from MPDA,
the true AF was calculated by an allele counting approach
using the individual genotyping data for all of the 240
study subjects involved in the artificial DNA pool (see
Additional file 4). We then compared the true AF from the
individual genotyping data with the unadjusted and
adjusted AF estimates from the pooled DNA allelotyping
data. The numerical results of the three types of AFs are
presented graphically in Figure 3.

The adjusted AF estimates clearly outperformed the unad-
justed estimates, verifying the importance of CPA calibra-
tion in AF estimation. Moreover, the adjusted AF highly
correlated with the true AF (correlation coefficient =
0.983), demonstrating that MPDA can accurately estimate
AFs in pooled DNA studies. The improvement of AF esti-
mation was observed on every chromosome. In this exam-
ple, all calculations were finished within one minute.
Importantly, MPDA provides two CPA reference datasets,
so users can perform preferential amplification/hybridiza-
tion for AF estimation without collecting any individual
genotyping data for CPA calculation, which greatly
reduces the study cost and computational time for a
pooled DNA study. We also performed AF estimation for
individual-level pooled DNA data, and examples are pre-
sented below (see Results-Whole-Genome Allelic Imbal-
ance Analysis).

Whole-genome association mapping

To evaluate the performance of MPDA with regard to
whole-genome association mapping based on popula-
tion-level hybridization intensity data using MPDA, we
performed allelotyping experiments with pool sizes of 10
and 30 individuals, respectively, using the Affymetrix
GeneChip Human Mapping 100 K Set. Samples in the two
artificial DNA pools were randomly drawn from the same
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Figure 2

Genome-wide distribution of CPA. In each subfigure, the horizontal axis denotes the physical position of the SNP (scale in
megabases, Mb) and the vertical axis denotes the estimated CPA in log, scale. The three red lines stand for log,(CPA) = -1,
log,(CPA) =0, and log, (CPA) = | with respect to the first allele being suppressed twofold compared with the second allele, no
relative suppression/amplification, and the first allele being amplified twofold compared with the second allele.

Taiwanese population. All samples were also genotyped
individually. The true AFs in the two DNA pools were cal-
culated (see Additional file 5). SNPs that had a call rate of
< 90% or were non-polymorphic in the individual geno-
typing data were excluded. A set of two arrays (Xba array
and Hind array) was used to assay the two DNA pools,
respectively. In each DNA pool, MPDA used the original
hybridization intensity data (saved in the Example direc-
tory of MPDA) to calculate the adjusted AF estimate of
each SNP locus by incorporating the Taiwanese-specific
CPA database provided in MPDA. Pooled DNA single-
and multi-locus association scans were then carried out to
examine the difference in AF distribution between the two
DNA pools (see Methods-Whole-Genome Association
Analysis). Note that, CPA calibration should be applied to
adjust for preferential amplification/hybridization, other-
wise the true association may not be detected [36].

Genome-wide single-locus association tests were carried
out based on modified chi-square statistics of common
CPAs, where binomial sampling error and CPA calibra-
tion error were calculated by MPDA. An experimental
standard error of 0.02 was assigned; the standard error
was derived from our previous experiments in which dif-
ferent pool sizes, multiple DNA formation, and chip rep-
lications were taken into consideration [21]. The pooled
DNA single-locus p-values for SNP markers were then cal-
culated to provide a marginal effect of a single locus. We
also conducted single-locus allele-based association tests
based on individual genotyping data to evaluate the per-
formance of the population-level pooled-DNA associa-
tion tests. Figure 4 presents the Bonferroni-type adjusted
p-values in a -log; , scale across the human genome versus
physical position by chromosome, where the raw (unad-
justed) p-values were multiplied by the number of SNPs
and then transformed to a -log, scale. Because the
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Genome-wide distribution of the true, unadjusted and adjusted allele frequencies. In each subfigure, the horizontal
axis denotes the true allele frequency (TAF) from individual genotyping data and the vertical axis denotes the estimated allele
frequency (EAF) from pooled allelotyping data, where the adjusted estimate of allele frequency is represented by red points
and the unadjusted allele frequency is represented by blue points.

adjusted p-values may be greater than 1, it was possible to
get negative values after taking a -log,, transformation.
Under a test size of 0.01 (i.e., the black reference line in
Figure 4), results of whole-genome association mapping
based on the data from pooled allelotyping and individ-
ual genotyping experiments were highly consistent except
for a few loci. Note that, it is always necessary to carefully
examine genotyping quality and attributes of the identi-
fied SNPs in order to reduce the possibility of false posi-
tives. In this example, the significant SNPs on
chromosomes 1, 8, 10 and 13, which were identified by
pooled allelotyping but not validated by individual geno-
typing, have either very low FDS or minor AF. This sug-
gests that the statistical significance may be induced by
measurement error. In this example, all calculations of
single-locus association tests were finished within seven
minutes.

We further carried out multilocus association tests. Based
on the series of single-locus p-values in the order of the
SNP physical positions provided by the annotation file of
the Affymetrix GeneChip Human Mapping 100 K Set, we
applied a multiplicative SWEPT statistic with equal
weight, a p-value truncation threshold of 0.05 and a win-
dow size of 5. The final empirical p-values versus ordered
windows across the human genome were calculated by
chromosome, based on 10,000 Monte Carlo replications.
None of the SNPs had significant AF differences (data not
shown). Because the two sample pools were from the
same Taiwanese population, it is not surprising that no
significant SNP loci should be identified by both associa-
tion tests. The running time of MPDA for multilocus asso-
ciation analysis depends on the number of Monte Carlo
replications. In this example, all calculations of multilo-
cus association analysis were finished within 4.5 hours.
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Whole-genome allelic imbalance analysis

Identification of chromosomal aberrations and allelic
alterations, such as aneuploidy, gene amplification/dupli-
cation, gene deletion, and loss of heterozygosity (LOH), is
an important way to identify genes involved in cancer and
other diseases. For this purpose, MPDA provides an effi-
cient allelic imbalance analysis based on individual-level
hybridization intensity data. The function is illustrated by
an example aiming to identify aberrant chromosomal
regions associated with acute lymphoblastic leukaemia
(ALL). This example involves 14 ALL patients from our
previous study [45-48] and the 471 healthy controls used
for CPA calculation. All samples were individually geno-
typed using the Affymetrix GeneChip Human Mapping
100 K Set. We carried out single- and multi-locus allelic
imbalance analyses of the 14 patients (see Methods-
Whole-Genome Allelic Imbalance Analysis). Whole-
genome AFs for each healthy control were estimated with

MPDA, and the estimated AFs were used to construct pre-
diction bands for the genotypes NN, MN and MM. The
whole-genome pattern of the estimated AFs for a healthy
control is shown in Figure 5. Almost all AF points are
located within each of the three banded regions indicating
allele M frequencies of 0, 0.5 and 1, which correspond to
the genotypes NN, MN and MM, respectively.

The whole-genome AFs of the 14 ALL cases were also esti-
mated individually using MPDA. Moreover, for each
patient, MPDA carried out single-locus allelic imbalance
analysis to detect SNPs with signals of allelic imbalance.
For multilocus allelic imbalance analysis, we calculated
the cumulative sum statistic SCORE1 by assigning a value
of +30 to each AI SNP and a value of -1 to each NAI SNP,
and we calculated SCORE2 by assigning a value of -10 to
each SNP having an AF corresponding to a heterozygous
SNP and a value of +3 to each SNP having an AF corre-
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sponding to a non-heterozygous SNP. In this example, all
calculations of whole-genome single-locus and multilo-
cus allelic imbalance analyses for one patient were fin-
ished within 4.6 minutes.

Figure 6 - Figure 10 show representative examples of sev-
eral abnormal patterns identified by this analysis; these
correspond to trisomy (Figure 6), deletion of a micro-
scopic chromosomal segment (Figure 7), amplification of
both ends of a chromosome and copy-neutral LOH in the
middle of the same chromosome (Figure 8), deletion of a
submicroscopic chromosomal region (Figure 9), and
common deletion of the TCRa/8 locus in three ALL
patients (Figure 10). In each figure, the horizontal axis
denotes the physical position of SNPs (scale in mega-
bases, Mb), the left vertical axis denotes AF, and the right
vertical axis denotes the score value. Each point stands for
one SNP. Non-allelic imbalance SNPs (NAI SNPs) are rep-
resented by blue points, and allelic imbalance SNPs (Al
SNPs), identified by the single-locus allelic imbalance
analysis, are represented by red points. The orange curve
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denotes the multilocus allelic imbalance cumulative sum
statistic SCORE1, and the purple curve denotes the LOH
cumulative sum statistic SCORE2. Results on specific
chromosomes are used to illustrate different types of Al
situations and the corresponding chromosomal aberra-
tions, where dashed green lines define boundaries of aber-
rant regions identified by MPDA.

The relationship between allelicimbalance and DNA copy
number change was validated by real-time PCR (data not
shown). Importantly, allelic imbalance analysis is able to
reveal biological features associated with chromosomal
aberration. For example, the TCRa/$ locus on 14qll
identified by MPDA has been reported to be a frequently
deleted region in ALL, partly due to somatic DNA rear-
rangement during T-cell differentiation. Interestingly, few
SNPs on the allelic imbalance region in the three ALL
patients showed normal AFs corresponding to hetero-
zygous genotype (Figure 10), suggesting existence of two
copies of the corresponding DNA segment. This impli-
cates that DNA rearrangement of VD] gene segments of
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the TCRo/6 locus rather than simple deletion, occurred in
these ALL samples. Two reference databases of AF means
and prediction errors derived from healthy controls are
included in MPDA, thus providing a free and time-saving
resource for the detection of chromosomal/allelic aberra-
tions in a target DNA sample.

Discussion

Compared to individual genotyping data analysis, there is
very limited access to free public software for population-
based pooled DNA analysis, and most of these focus on
frequency estimation. For pooled DNA single-locus anal-
ysis, PoolFilter [49] estimates AF for microsatellite mark-
ers. For pooled DNA multilocus analysis, the packages
LDPooled [50], EHP.R [51] and Pools2 [52] use expecta-
tion-maximization algorithms to estimate haplotype fre-
quency. However, the complicated computations lead to
the restriction of small pool size and/or small number of
markers in the analysis. None of these three packages
allows automatic selection of SNPs involved in the haplo-
type analysis or contains a multilocus association test.
Although these methods have pioneered pooled DNA

http://www.biomedcentral.com/1471-2105/9/196

multilocus analysis, these limitations restrict their appli-
cation to practical whole-genome pooled DNA analysis.
For genome-wide microarray pooled DNA data, EMMU-
RAS.R [20] is a collection of R-language functions that
provides data pre-processing, including the calculations
of discrimination score and RAS. PPC [53] is an algorithm
that estimates AF for the Affymetrix GeneChip Human
Mapping 10 K Array. GenePool is a recently published
package [22] that provides AF estimation and association
tests for microarray data. The major difference between
GenePool and MPDA is that MPDA provides both data
analysis for natural DNA pools as well as artificial DNA
pools, but GenePool provides data analysis only for artifi-
cial DNA pools. There are other programs that provide
partial analysis for pooled DNA data (e.g., the Affymetrix
GDAS), but these have not been released for free public
access. Our previously developed PDA [42] provides sin-
gle- and multi-locus association tests by analyzing peak
intensity data from matrix-assisted laser desorption/ioni-
zation time-of-flight mass spectrometry [6,54-57]. PDA
also handles data from different genotyping platforms;
however, it is not straightforward to use for whole-
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Genome-wide single- and multi-locus allelic imbalance analyses — Deletion of a microscopic chromosomal seg-

ment.

genome microarray pooled DNA data analysis even
though supplementary sophisticated data processing can
be handled by users themselves.

In this paper we introduce MPDA, which has a user-
friendly interface and applications for studying two differ-
ent types of pooled DNA. The MPDA extends the advan-
tages and capabilities of existing software to provide an
integrated analysis system for whole-genome microarray
pooled DNA studies. Importantly, in addition to its func-
tions of feature extraction, CPA estimation and AF estima-
tion, MPDA is applicable to both population-level and
individual-level DNA pools and thus is a useful approach
to systematically identify disease susceptible genes by
detecting marker-trait association and aberrant chromo-
somal regions inferred from allelic imbalance. The pro-
posed association analysis provides a reliable whole-
genome screening method. The results help to dramati-
cally reduce the number of study SNPs involved in the fol-

low-up confirmation study and thereby reduce costs. The
proposed analysis of allelic imbalance provides comple-
mentary and auxiliary information on chromosomal
abnormalities for other detection approaches, such as
copy number estimation [58-62]. For example, as illus-
trated in Figure 8, allelic imbalance analysis can detect a
genomic aberrant region with copy-neutral LOH, which
can not be detected using copy number analysis. Com-
pared to the other software for pooled DNA analysis, to
our knowledge, MPDA is the first software that integrates
whole-genome pooled DNA analysis and chromosomal
aberration detection.

Moreover, the allelic imbalance method can also be
applied to monitor genotyping quality and identify copy
number polymorphisms. We have applied this method to
healthy controls who had been genotyped individually to
check the patterns of the estimated AFs. For example, as
shown in Figure 11, the whole-genome AFs of a healthy
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control showed an obviously abnormal pattern where a
significant proportion of SNPs were located outside the
three prediction bands (i.e., the red points in Figure 11)
on most chromosomes. Because no identifiable disease
was reported for this individual during sample collection
and due to the dispersed distribution of the SNPs with
abnormal AFs across the whole genome, this result
strongly suggests that contamination with another
genome(s) occurred during DNA preparation or genotyp-
ing procedures. In addition, our proposed allelic imbal-
ance analysis is potentially useful to identify copy number
polymorphisms, which are useful genetic markers for
gene mapping and gene testing of microdeletion or micro-
duplication disorders [62]. In addition to analyzing copy
number polymorphisms using individual-level hybridiza-
tion intensity data, we are also developing methods to val-
idate/identify copy number polymorphisms based on
population-level pooled DNA data. Polymorphism vali-
dation/identification using population-level pooled DNA
data is cost-saving and efficient for SNPs [6,7,54] and
other genetic polymorphisms [49,63-65].

Analyses in MPDA rely on the provided reference data-
bases of CPA and prediction bands from individual geno-
typing data. The methods are feasible only if the reference
databases are stable and applicable to analyses performed
in different laboratories and conditions. Therefore, we
evaluated the stability of CPA and AF based on individual
genotyping data from different laboratories and time as
follows. (1) Stability of CPA and AF across laboratories:
we calculated CPA based on individual genotyping data of
our 367 Taiwanese samples and 90 Asian samples in the
HapMap project, respectively. The Pearson correlation
coefficient between the two sets of CPAs was 0.913. In
addition, the two sets of CPA were applied to adjust AF in
the example discussed in Section Whole-genome AF esti-
mation. The correlation coefficient between the two sets
of AF estimates was 0.995. The high correlation coeffi-
cients demonstrate the stability of CPA and AF estimation
based on different reference data from different laborato-
ries. (2) Stabilities of CPA and AF across genotyping time:
we partitioned our 367 Taiwanese samples into five sub-
sets according to their genotyping time. The five subsets
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Genome-wide single- and multi-locus allelic imbalance analyses — Deletion of a submicroscopic chromosomal

region.

contained 95, 10, 96, 90 and 76 samples, respectively; the
second subset was excluded from the analysis because of
the small sample size. Then we calculated CPAs of the four
subsets (called S1, S2, S3 and S4) in order. Correlation
coefficients of CPAs from each pair of subsets were calcu-
lated. They were Corr(S1,S2) = 0.975, Corr(S1,S3) =
0.971, Corr(S1,54) = 0.965, Corr(S2,S3) = 0.971,
Corr(S2,54) = 0.968, and Corr(S3,54) = 0.967. In addi-
tion, the CPAs from different subsets were applied to
adjust the unadjusted AFs in the example discussed in Sec-
tion Whole-genome AF estimation. The correlation coeffi-
cients between any pair of AFs were 0.999. The high
correlation coefficients demonstrate the stability of CPA
correction across genotyping time. We followed similar
methods to investigate the stability of prediction bands,
and high correlations of prediction bands across laborato-
ries and time were observed. The results verified the stabil-
ity of the MPDA-provided databases.

We also evaluated the robustness of our allelic imbalance
method. Firstly, the assumption that a genome is diploid
is inherent in most genotype calling algorithms

[33,66,67]. Deviation from diploidy causes genotype call-
ing errors, thereby resulting in misleading conclusions in
subsequent analysis [68]. This assumption is particularly
impractical for genotyping DNA from cancer cells, which
usually have abnormal copy number for chromosomal
segments. Our approach avoids this problem by estimat-
ing AFs for each SNP of patients without requiring geno-
type information. Secondly, all genotyping experiments
fail to completely preclude biological noise and technical
noise that are inherent in microarray data. For example, in
Figure 5, the noise might have caused AFs of a few SNPs
from a healthy control sample to deviate from the
expected value for a normal reference population. Our
method adjusts background noise during feature extrac-
tion and alleviates abnormal interference by incorporat-
ing multiple loci. Even though noise is not completely
eliminated, the results from real examples show high sen-
sitivity and specificity in our association and allelic imbal-
ance analyses. Thirdly, although all the examples
illustrated in this paper were based on the Affymetrix
GeneChip Human Mapping 100 K Set, the methodology
in MPDA is general and also applied to genotyping arrays
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with higher marker density, such as the Affymetrix Gene-
Chip Human Mapping 500 K Set. Moreover, MPDA not
only accommodates the Affymetrix gene chips but also the
[llumina bead chip genotyping platform by inputting
pairs of normalized image intensities. Users can follow
the instruction in Section 5 of the MPDA user manual to
prepare the input data.

Conclusion

In summary, we have developed a convenient tool,
MPDA, for whole-genome microarray-based pooled DNA
analysis. The four authentic data examples presented in
this paper demonstrate the feasibility and important
applications of MPDA. The first analysis-based on geno-
typing data of 367 subjects-shows that MPDA can be used
to identify genomic patterns of preferential amplification/
hybridization and provide important calibration informa-
tion for pooled DNA data analysis. The second analysis
yielded a correlation coefficient of > 0.98 between
adjusted AF estimates based on allelotyping data from a
DNA pool and true AFs based on individual genotyping

data of the samples, demonstrating that MPDA can accu-
rately estimate AFs based on pooled DNA data. The third
analysis compares the results of two types of association
mapping based on pooled allelotyping as well as individ-
ual genotyping data, and the results indicate that MPDA is
cost-effective and reliable for association mapping. The
final analysis-based on genotyping data of 14 ALL
patients—-detected allelic imbalance in cancer genomes,
indicating that MPDA can identify regions of chromo-
somal aberration in cancer and other diseases. Graphic
and numerical outputs are simultaneously generated by
MPDA to support global and detailed inspection of large
quantities of genomic data. All these features make MPDA
a useful tool for analyzing allelotyping/genotyping
hybridization intensity data for various research interests.

Availability and requirements
The MPDA software, user manual and illustrated exam-
ples can be downloaded from the MPDA website: http://

www.stat.sinica.edu.tw/hsinchou/genetics/pooledDNA/
mpda.htm.
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