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Abstract

Background: Microarray pre-processing usually consists of normalization and summarization.
Normalization aims to remove non-biological variations across different arrays. The normalization
algorithms generally require the specification of reference and target arrays. The issue of reference
selection has not been fully addressed. Summarization aims to estimate the transcript abundance
from normalized intensities. In this paper, we consider normalization and summarization jointly by
a new strategy of reference selection.

Results: We propose a Probe-Treatment-Reference (PTR) model to streamline normalization and
summarization by allowing multiple references. We estimate parameters in the model by the Least
Absolute Deviations (LAD) approach and implement the computation by median polishing. We
show that the LAD estimator is robust in the sense that it has bounded influence in the three-factor
PTR model. This model fitting, implicitly, defines an "optimal reference" for each probe-set. We
evaluate the effectiveness of the PTR method by two Affymetrix spike-in data sets. Our method
reduces the variations of non-differentially expressed genes and thereby increases the detection
power of differentially expressed genes.

Conclusion: Our results indicate that the reference effect is important and should be considered
in microarray pre-processing. The proposed PTR method is a general framework to deal with the
issue of reference selection and can readily be applied to existing normalization algorithms such as
the invariant-set, sub-array and quantile method.

Background

Microarray is one of the most successful techniques in the
field of functional genomics. As a high throughput
approach, it provides a global gene expression profile of a
living cell under certain conditions. The Affymetrix
expression microarray is the most widely-used platform. It
uses 11-20 probes which have 25 oligonucleotide bases,
to represent one gene, and as a whole they are called a
probe-set. Associated with each perfect match (PM)

probe, a mis-match (MM) probe that differs only in the
middle (13%) base is included in some expression arrays.

From each array, we get fluorescence intensity of each
probe after image processing. The estimation of gene
expression from probe intensities is a statistical problem
where much effort has been made. Among them are
Affymetrix's MAS 5.0 [1], Li and Wong's dChip [2-4], and
RMA [5-7]. Each method mainly consists of two modules:
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normalization and summarization. Normalization aims
to reduce non-biological variations that are introduced
during sample preparation, hybridization and instrumen-
tal reading. Summarization combines normalized signal
values in each probe-set and produces a final abundance
estimate for the corresponding gene.

Normalization requires the specifications of reference and
target arrays. We can normalize target arrays against a ref-
erence, no matter whether it is a raw microarray or an arti-
ficially-defined one. In the invariant-set normalization,
which is part of the dChip software, the median intensity
of each array is calculated, and the array with the median
of these overall medians is chosen as the reference; how-
ever, other options are also allowed. The normalization is
carried out according to the smooth curve fitted from the
rank-invariant intensity set between the reference and tar-
get array [2]. The quantile normalization in RMA uses
complete data information and defines a pseudo-refer-
ence by the averaged quantiles. The normalization is car-
ried out based on the quantile-quantile transformation
[5,8]. In the sub-array normalization, once a reference and
a target are given, it divides the whole array into sub-arrays
and normalizes probe intensities within each sub-array
using least trimmed squares (LTS) regression method [9-
11]. However, the issue of reference selection has not been
well addressed.

In this paper, we propose a Probe-Treatment-Reference
(PTR) model that takes into account the reference-effect.
The method based on this model aims to streamline nor-
malization and summarization by allowing multiple ref-
erences. Instead of one reference array, it uses a reference
set to do microarray pre-processing. Compared to the two-
factor model in [6] and [12], which contains probe- and
array-specific effect (later we refer to it as the PA model),
we reformulate the array-specific factor by a treatment fac-
tor and a reference factor in the PTR model. We estimate
the parameters in the model by the least absolute devia-
tions (LAD) approach, which is robust in the sense of
bounded influence [13].

The proposed PTR method tries to integrate normaliza-
tion with summarization in a unified framework. It can be
applied to several existing normalization methods, and is
particularly useful for the sub-array normalization which
aims to reduce spatial variation. Because the reference-
specific effect is adjusted at the probe-set level, implicitly,
from the reference set, our model defines an "optimal ref-
erence" for each probe-set, which may not come from the
same raw array. We show that the fold-change estimates
from the PTR method are resistant to a bad reference
array. It reduces the variation of non-differentially
expressed genes and thereby increases the detection power
of differentially expressed genes.

http://www.biomedcentral.com/1471-2105/9/194

Results

Microarray data sets

The Affymetrix HG-U133A data set [14] contains tripli-
cates of 14 experiments with 42 spike-in genes. These
spike-in genes are organized into 14 gene groups, each of
which contains 3 genes of the same concentration. The
concentrations range from 0-512 pM according to a 14 x
14 Latin square design. In this paper, we analyze experi-
ment 3 and 4 particularly. Experiment 3 contains the trip-
licate: Exp03_R1, Exp03_R2 and Exp03_R3 ; experiment 4
contains the triplicate: Exp04_R1, Exp04_R2 and
Exp04_R3. The concentrations of 36 spike-in genes in
experiment 4 are two-fold higher; the concentrations of
the remaining 6 spike-in genes are 0 in either experiment
3 or 4. Later we refer to these six arrays as data set "Expt-3-
4". Besides, we generate a perturbed data set by adding
noise to array Exp03_R1 and keeping the other five arrays
unchanged. The noise value is defined by &, = max(0, x;),
where x; is a normally distributed random variable with a
zero mean and variance equal to that of the array
Exp03_R1. We denote this perturbed array by Exp03_R1*.

We use another data set, the "Golden spike" data set of
Choe et al. in 2005 [15], to assess the detection power of
differentially expressed genes. The data set contains six
Affymetrix DrosGenomel chips, three replicates for con-
trol and three for treatment. A total of 1309 genes are dif-
ferentially expressed with pre-defined fold changes from
theset, {1.2, 1.5, 1.7, 2.0, 2.5, 3.0, 3.5, 4.0}, between the
treatment and control group.

The PTR method

The PTR method provides an integrative view of normali-
zation and summarization. The scheme is shown in Figure
1. In what follows, we illustrate it by a typical treatment-
control case, in which we have three replicates for control
and three for treatment. The first step is the selection of
references and their target arrays. We propose two simple
and straightforward strategies as follows.

¢ The all-pairwise strategy: all arrays are included in the
reference set; for each reference, all the other arrays are its
targets.

e The cross strategy: all arrays are included in the reference
set; for each reference from control, we take replicates
from treatment as its target arrays; conversely, for each ref-
erence from treatment, we take replicates from control as
its target arrays.

Second, we use existing algorithms such as the invariant-
set, sub-array and quantile, to do normalization between
each reference and its target arrays. In this paper, we use
the function normalize.AffyBatch.invariantset in the Bio-
Conductor's affy package [16] to carry out the invariant-
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The scheme of the PTR method. It includes the reference and target selection, multiple normalization, and three-factor
model fitting of summarization. Here, we only illustrate the cross strategy for the reference and target selection.

set normalization. We keep the default parameter settings
but allow the reference to be selected manually. We use
the procedure described in [9] for the sub-array normali-
zation. The window size is 25, the overlapping size is 10
and the trimming factor is 0.55 for the HG-U133A data-
set.

We write a new R function for the quantile normalization.
The algorithm is not identically the same as the one [8]
used in the RMA package. That is, we normalize each tar-
get array against a raw reference array as follows: sort the
reference and the target array respectively in the ascending
order; replace the sorted intensity values in each target
array with those in the reference array; rearrange intensi-
ties in each target array according to their original orders
[10].

Finally, for each probe-set, we summarize the arrays from
log-transformed PM intensities according to the three-fac-
tor PTR model:

log,(Intensity) = global term + treatment effect + probe
effect + reference effect + error.

The model states that the variation of logarithmic probe
signal values could be sufficiently explained by treat-
ments, probe affinities and references used in normaliza-
tion. The global term and treatment effects are taken to be
the final transcript abundance estimates; the reference
effects and the probe effects could be used for diagnosis.

Perturbed data set

Because the PTR method uses multiple references and the
robust LAD estimation, we expect that the expression esti-
mates are resistant to a single bad reference array. In Fig-
ure 2, we show the M-A plots of the perturbed data set
obtained by different combinations of normalization and
reference selections. In these M-A plots, M values of all
probe-sets are the log-ratios of experiment 4 versus exper-
iment 3 and A values are the average log-intensities of the
two experiments.

The top, middle, and bottom row show the results from
the invariant-set, quantile, and sub-array normalization
respectively. In A1-B1-C1, we take the perturbed array
Exp03_R1* as the reference; in A2-C2, we take the array
Exp03_R2 as the reference, while in B2, we take the aver-
age quantiles as the pseudo-reference; in A3-B3-C3, we
simply use the PTR method coupled with the reference set
of all six arrays. We see that the invariant-set is more sen-
sitive to the perturbed reference array Exp03_R1* (A1) and
it performs well if an appropriate reference is selected
(A2). The quantile method shows a similar but less severe
phenomenon when the quantile-quantile transformation
is based on the array Exp03_R1 *. In contrast, the quantile
normalization using average quantiles as the pseudo-ref-
erence is more resistant to this perturbation. For the sub-
array normalization, the perturbation does not affect the
ratio estimates, since the normalization transformations
are done in each sub-window which greatly reduces the
effects of this global noise.
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M-A plots of the perturbed data set using different normalization and reference selections. Top (Al-A3): invari-
ant-set; middle (B1-B3): quantile; bottom (C1-C3): sub-array. Left column (Al, Bl and ClI): the reference is the perturbed
array Exp03_R/*; Middle column: the reference in both A2 and C2 is Exp03_R2, while the reference in B2 is the pseudo-refer-
ence defined as the average quantiles of all six arrays; Right column (A3, B3 and C3): the result obtained by the PTR method
using all six arrays as references. The grey dots are non-spike-in genes; the black dots are spike-in genes which are expected to
have log-ratio M = |. We can see that the PTR method results are not affected by the perturbed array Exp03_RI* and offers

the smallest variation for non-spike-in genes.

The PTR method improves the performance of all three
normalization algorithms. We see that the log-ratios of

spike-in genes are closer to the expected log-ratio value M

= 1, and non-spike-in genes have smaller variations along
M = 0. The PTR method deals with the single perturbed
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reference array Exp03_R1* well, and it estimates the final
transcript abundance robustly.

Variation reduction by the PTR method

It is shown that the PTR method achieves smaller vari-
ances for the non-spike-in genes in the M-A plots of the
perturbed data set. To further measure the effectiveness of
the PTR method in variation reduction, we compare it
with other pre-processing methods using "Expt-3-4" data
set. The non-spike-in genes are expected to have the same
expression in both experiment 3 and 4, and the differ-
ences between them are due to the non-biological factors.
We pre-process six arrays with different methods of nor-
malization and summarization and estimate the expres-
sion values for both experiment 3 and 4. In the M-A plots,
we fit LOESS curves [17] to the absolute values of M
against A using non-spike-in genes only. The curves
shown in Figure 3 measure the variations of non-spike-in
genes between two experiments. The left, middle, and
right plot respectively show the results from the invariant-
set, quantile, and sub-array normalization method.
Except for the PTR method, we summarize the normalized
results using the expresso function in the affy package [16],
with either the Li-Wong's MBEI [3] or the RMA's median
polish [6] method. From the plots, we see that the PTR
method achieves the smallest variations for each normal-
ization algorithm. In the left plot, we use the invariant-set
normalization for both the PTR method and the other sin-
gle-reference methods. The plot shows that the same pre-
processing method results in different variation curves
with different reference choices. The PTR method reduces
the background noise significantly.

http://www.biomedcentral.com/1471-2105/9/194

In the middle plot, we use the quantile normalization,
taking each raw array as well as the average quantiles to be
the reference. The plot shows substantial improvement by
the PTR method, while the quantile normalization
achieves a moderate performance using the average quan-
tiles as the pseudo-reference. The PTR method provides an
alternative to use the complete data information.

In the right plot of Figure 3, we use the sub-array normal-
ization, and once again the PTR method improves the per-
formance. Furthermore, the curves from the single
reference results can be clustered into two categories. Each
reference array from experiment 3 performs better at the
low-intensity range but worse in the high-intensity range;
whereas each from experiment 4 performs slightly better
in the high-intensity range but worse in the low-intensity
range. A similar yet less prominent pattern also exists in
the results using the invariant-set and quantile normaliza-
tion. Replicates within either experiment 3 or 4 are simi-
lar, but arrays from two experiments lead to more
different results. The PTR method takes reference arrays
from both experiments, combines two types of expression
results and gives the smallest variation in both low- and
high-intensity ranges.

The LOESS assessment has demonstrated that the PTR
method can reduce the variation significantly for the
invariant-set, quantile and sub-array normalization
method. This variation reduction, especially in the low-
intensity range, is particularly valuable in the measure-
ment of gene expressions.

Invariant-set Quantile Sub-array
= — PTR(invar) = — PTR(quantile) = — PTR(subarray)
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Figure 3

The LOESS curves of |M| versus A by various pre-processing method. These plots compare the PTR method with
other pre-processing methods based on the variation assessment of non-spike-in genes. The PTR method gives the smallest

variation for all three normalization algorithms.
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Improvement on detection of differentially expressed
genes

In order to ensure that the detection of differentially
expressed genes is not sacrificed at the effort of variation
reduction by the PTR method in expression analysis, we
compute the receiver operating characteristic (ROC)
curves [6] for the HG-U133A data set. We conduct two
comparative studies on this data set. In the first study, we
compare every two experiments which are next to each
other in the Latin square design. Each pair of experiments
have 36 spike-in genes with 2-fold change. In the second
study, we compare every two experiments which are sepa-
rated by one and exactly one experiment. Each pair of
experiments have 36 spike-in genes with 4-fold change. In
total, we have 14 pairs of experiments in each study. The
curves computed by the ROC package from Bioconductor
[18] are shown at the top of Figure 4. We compare the PTR
method with various pre-processing combinations in the
expresso function of the affy package [16], which includes:
invariant-set normalization plus Li-Wong's MBEI or
RMA's median polish summarization; quantile normali-
zation plus RMA's median polish summarization with or
without RMA's background correction. We see that the
PTR method does equally well with both the quantile and
invariant-set normalization algorithm in this data set. The
PTR method gives the best performance in the detection
of the differentially expressed genes.

In addition, we make the similar comparisons on the
"golden spike" data set. We set the differentially expressed
genes using fold change threshold to 1.2 or 1.7. The ROC
curves are shown at the bottom of the Figure 4. We can see
that the PTR method performs better with the invariant-
set normalization than the quantile normalization. How-
ever, both of them outperform the other pre-processing
methods.

The assessment on both data sets demonstrates the higher
specificity and sensitivity achieved by the PTR method.
The noise reduction improves the detection of deferen-
tially expressed genes.

Implicit reference selection in the PTR model-fitting

Instead of selecting a single reference, we adjust for the ref-
erence effect of each probe-set by the PTR model. The final
transcript abundances are obtained from normalized
arrays using multiple references. In what follows we look
in details how the three-factor model deals with the refer-
ence issue. On the one hand, we directly estimate the
effect of each reference used in normalization at the
probe-set level. It is interesting to consider the estimates of
the reference-specific effect of all probe-sets after the sum-
marization. In the box plots of Figure 5, we show the dis-
tributions of six reference effects in the perturbed data set.
The variations of the reference-specific effect are quite

http://www.biomedcentral.com/1471-2105/9/194

small in the five unperturbed references compared to the
perturbed Exp0O3_R1* reference, which shows an abnor-
mal pattern. This abnormal variation in the reference
effect means that the transformation relations based on
reference Exp03_R1* are more different across all the
probe-sets and indicates its relative worse status.

On the other hand, the three-factor PTR model provides
better fit than the two-factor PA model in term of smaller
residual deviations. We can categorize residuals according
to their reference indices, and calculate the sum of abso-
lute deviations (SAE, see method) for each residual cate-
gory. In a sense, the reference that achieves the minimum
SAE is the "implicit optimal reference" selected by the
model-fitting. In Figure 6, we show the frequency of the
"implicit" references across all the probe-sets selected
from the pre-processing of the data set "Expt-3-4". The
three arrays in experiment 3 are selected more than those
in experiment 4. It is consistent with the results from var-
iation (LOESS) curve assessment which demonstrates that
each single array from experiment 3 outperforms every
single array from experiment 4. The results shown in Fig-
ure 5 and 6 are obtained by the PTR method coupled with
the invariant-set normalization, and the same phenome-
non is also observed using the other normalization meth-
ods.

Discussion

We explicitly address the reference issue in pre-processing
expression microarray and propose the PTR method to
carry out normalization and summarization jointly. The
PTR method can be applied to existing normalization
methods such as the invariant-set, sub-array, and quan-
tile. Particularly, it is the first time we propose a practical
scheme to implement the sub-array normalization. The
sub-array takes into account the spatial pattern of hybrid-
ization, and can properly normalize the majority of probe
intensities even in the presence of scratches or serious
non-homogeneous hybridization. The PITR method
enhances this ability using multiple references in normal-
ization and implicitly selecting an "optimal reference" for
each probe-set during summarization. In general, the PTR
method is applicable to pre-processing biological meas-
urements from array-type instruments such as exon arrays,
beads arrays, pathway arrays, tissue arrays and other cus-
tomized arrays.

The proposed PTR method primarily aims to measure
expressions by Affymetrix chips with technical replicates
as in many designed microarray experiments. In the nor-
malization step, the sample information is not required
although the processing involves multiple pairwise com-
parisons. In the summarization step, the sample informa-
tion is necessary for estimating expression differentiation.
In some situations, especially the class discovery and class
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Distribution of the reference effect. This reference
effect box plot is get from the PTR model-fitting on the per-
turbed data set after the invariant-set normalization. The first
reference array, Exp03_R1*, has been perturbed by adding
noise. It shows a quite different distribution than others.

prediction in the cancer study, no technical replicates are
available for each sample. To apply the PTR method, we
need to assign different treatment labels to different sam-
ples that are not replicates in any sense. In this case, one
microarray has served as two functional parts: array- and
reference-specific effect. For now we could not rule out the
possibility of partial confounding of array- and reference-
specific effect in general. But we argue that, according to
our scheme, normalization is carried out by pooling all
probe-sets while summarization is carried out for each
probe-set separately.

Consequently, we expect that the reference-specific
parameter in each probe-set reflects reference array's block
effect in the present of other probe-sets. The association
between array- and reference-specific effect should not be
significant. It is particular true in the randomized
designed Affymetrix chips.

We have not discussed the background correction issue,
but the existing background correction methods can be
implemented before the normalization step of the PTR
method. Interestingly, we have shown that the PTR
method reduces the variation of non-differentially
expressed genes, especially in the low intensity range. As a
consequence, we improve the signal-to-noise ratio and
increase the detection power of the deferentially expressed
genes. The improvement is achieved without any addi-
tional information.
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The frequency of being the "implicit optimal refer-
ence". It illustrates the frequency of reference arrays which
have been served as the "implicit optimal reference" across
all the probe-sets. It is computed from the residual assess-
ment after the PTR method with the invariant-set normaliza-
tion on the data set "Expt-3-4".

We include all arrays in the reference set and use the cross
strategy to select the corresponding target arrays for the
data set in this paper. We are aware that they may not be
the optimal strategy for reference and target selection.
However, the PTR method can protect against and detect
abnormal arrays. First, by using the robust LAD method in
the summarization, we can accurately estimate the tran-
script abundance as long as the majority of normalization
results are right. Second, we can evaluate the array quality
by the reference effect distribution, as shown in Figure 5.
The array showing distinct distribution from other arrays
is likely to be a bad candidate for reference and may be
excluded from the reference set in the next-round PTR
processing.

The computational complexity of the PTR method can be
decomposed into two parts: normalization and summari-
zation. In an experiment with N arrays, at most we need
to carry out N(N-1) pairwise normalization. Thus the
complexity is approximately N times of that of single-ref-
erence normalization. The median polishing algorithm
used in the summarization is an iterative procedure. Com-
pared to the algorithm used in RMA, the median polish-
ing in the PTR is three-way instead of two-way with
approximately N times the memory. According to our
experience, it does not need substantially more iterations
to achieve the same accuracy.
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The current implementation of the PTR method needs the
R running environment for data input/output and visual-
ization. The normalization part could be carried out by
C++ or R depending on the selection of normalization
methods. The core computation of the PTR summariza-
tion is written in C++ and is called by an R interface. Take
the "Expt-3-4" for example, if we use the all-pairwise ref-
erence selection strategy, the normalization procedure
costs about 2 minutes for the quantile algorithm and 5
minutes for the invariant-set algorithm in a computer
with Intel Pentium 2.8 GHz and 4 GB of RAM. The sum-
marization part takes about 10 minutes on the same
machine. Due to the specification of memory allocation
in R, our current implementation can process a data set up
to total 20 arrays in about one hour on the same machine
mentioned above. This capability can be expanded if we
code the PTR method entirely in C/C++. For a large data-
set, we need to adopt algorithms that allocate memory
more efficiently. We are now working along this direction
to improve the implementation of the PTR method. We
also notice that the examples we have examined in the
article involve at most three replicates per treatment
group. In the case of more samples per treatment group
such as 10 or 20, the reference selection may not be a seri-
ous issue due to the large sample size. The performance of
the PTR method is unclear and the RMA method is a safer
choice.

Conclusion

We propose the Probe-Treatment-Reference (PTR) model
to deal with the reference-specific effect. The PTR method
streamlines normalization and summarization by allow-
ing multiple references in normalization. It can readily be
applied to existing reference-dependent normalization
methods. We evaluate the effectiveness of the PTR method
on two Affymetrix spike-in data sets. The method reduces
the wvariations of non-differentially expressed genes
whereas increases the detection power of the differentially
expressed genes.

Methods

Probe-treatment-reference model

The scheme of the PTR method is shown in Figure 1. We
carry out the PTR model-fitting on each probe-set. The
inputs of the fitting are normalized results using multiple
references. We note that only PM probes are used in sum-
marization even if the MM probes are available. Let varia-
ble y;;, be the ji" normalized probe intensity value of the /'t
replicate for the i treatment, with respect to the k' refer-
ence array, wherei=1, .., Lj=1,.., k=1, .., Kl=1,
.., L. We postulate that log,(y;3;) follows the three-factor
model as below:

logy (Vi) = 4+ &+ B+ 1o+ & (1)

http://www.biomedcentral.com/1471-2105/9/194

where 4 is the global term; ¢; represents the it treatment-
specific effect; S represents the jt probe-specific effect; and
7, represents the kt reference-specific effect. It is neither
simple nor obvious to specify the distribution form for
&gy In addition, they are correlated. In order to make the
model identifiable, we impose one of the following con-
straints:

* Sum constraints: 2; =0, 2, f=0, 2 .= 0;

* Median constraints: median({c;}) = 0, median({}) = 0,
median({y,}) = 0.

We take 1 + ¢ as the final transcript abundance estimate
for the ith treatment.

The PTR model is an extension of the RMA's two-factor PA
model. Rather than the array-specific effect in the two-fac-
tor model, the treatment- and reference-specific effects are
used instead in the PTR model. Suppose that we have two
treatments and each has three replicates. The two-factor
model has 22 (1 + 5 + 10) parameters, assuming the
probe-set has 11 PM probes. After the model-fitting, the
expression values for each treatment are calculated using
the medians or averages across the three replicates. The
PTR model has 23 (1 + 1 + 10 + 5) parameters, if we
include all six arrays in the reference set. The expression
values for each treatment are calculated directly. Mean-
while, it does not necessarily lead to over-fitting if we use
more reference arrays, since the number of normalized
array increases accordingly. For example, using the cross
strategy, three references generate 132 (4 x 11 x 3) nor-
malized PM intensity values, while six references generate
264 (4 x 11 x 6) values. Of course, we are aware that these
normalized intensities do correlated to one another.

Least absolute deviations (LAD) estimation and its
computation

To estimate the parameters in the PTR model, we adopt
the Least Absolute Deviations (LAD) method. That is, we
minimize the sum of absolute errors (SAE):

SAE =
ij.k,

|3ijk1 | = 2 |1082(Yijk1) —p-a;=Pi=r |
1 ikl

(2)
The LAD problem can be reformulated as a linear pro-
gramming (LP) problem and thereby be solved via LP
algorithms, such as the simplex and the interior point
algorithm [19,20]. We notice that in the PTR model all
regressors are categorical variables. It is easily seen that
SAE is not minimized if the median of residuals indexed
by the same level of a factor is not zero. In this case, the
corresponding ¢;, S or y, can be adjusted by making the
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median zero and this always leads to the reduction of the
sum in (2). Therefore, the LAD solution has the property:

median({ 3.} | 1) =0,
median({e;,} | j) =0,
median({e, } | k) = 0.

Consequently, we can minimize the sum of absolute devi-
ations by the "median polish" approach [21]. Namely, in
each step, we sweep out the median for each level of one
categorical variable. In each iteration, we run the median
polishing through all categorical variables. The SAE is
reduced during each step and we stop the iteration once it
becomes stable. Our experiences show that at most 20
iterations can give satisfactory results.

Robustness of LAD estimator

The LAD estimator is the maximum likelihood estimator
when the error variable follows a double exponential
(Laplace) distribution [13]. Monto Carlo studies also
demonstrate that it works well in the cases of a mixture of
normals or contaminated normal error distributions [22].
The robustness of LAD can also be quantified by the influ-
ence function (IF) which measures the effect of infinitesi-
mal perturbation of one data point on the estimates in the
summarization model. We first rewrite the PTR model as
follows:

x{
Y=XB+¢= B+e, (3)

T

Xn

where X is the design matrix consisting of -1, 0 and 1; Sis
a vector of parameters including the effects of each probe,
treatment and reference; x; is an indicator vector which
indexes the signal value y, by its level of each factor. In the
example of the "Expt-3-4" data set, we have two treat-
ments and each has three replicates. The probe-set has 11
PM probes, and we include all six arrays in the reference
set for the PTR method. Under the sum constraints, ¢, = -
oy Pry=-(Pi+ U+ Pio) ni=-(n+ U+ ) and = {4
ay, B - Bior 71 - ¥s}- The indicator vector,

T - —_——
xf' ={1,1,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0},

means that the signal value y; is from the 1% treatment, 37
probe and 2" reference; and the indicator vector,

T N —
x] :{1 /_1/_1/_1/"'7_17_17"'/_1}/

http://www.biomedcentral.com/1471-2105/9/194

means that the signal value y; is from the 2" treatment,
11t probe and 6% reference.

According to [13,23], the influence function of the LAD
estimators at the point (x7, y) is given by:

s G X st =@

where f(0) is the density function of ¢ at zero and the last
term is the sign function, taking value -1, 0, or 1. Since f(0)
> 0, the influence function of the PTR model is bounded
and the largest influence on estimates only depends on
1(0). We have check the influence of treatment effect esti-
mate in the HG-U133A spike-in data set, and they are less

than % for most probe-sets.

Availability and requirements

Software package for the PTR method is available on
http://leili-lab.cmb.usc.edu/yeastaging/projects/ptr/.
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