
BioMed CentralBMC Bioinformatics

ss
Open AcceSoftware
uShuffle: A useful tool for shuffling biological sequences while
preserving the k-let counts
Minghui Jiang*, James Anderson, Joel Gillespie and Martin Mayne

Address: Department of Computer Science, Utah State University, Logan, UT 84322-4205, USA

Email: Minghui Jiang* - mjiang@cc.usu.edu; James Anderson - mattanderson@cc.usu.edu; Joel Gillespie - jgillespie@cc.usu.edu;
Martin Mayne - mlmayne@cc.usu.edu

* Corresponding author

Abstract
Background: Randomly shuffled sequences are routinely used in sequence analysis to evaluate the
statistical significance of a biological sequence. In many cases, biologists need sophisticated shuffling
tools that preserve not only the counts of distinct letters but also higher-order statistics such as
doublet counts, triplet counts, and, in general, k-let counts.

Results: We present a sequence analysis tool (named uShuffle) for generating uniform random
permutations of biological sequences (such as DNAs, RNAs, and proteins) that preserve the exact
k-let counts. The uShuffle tool implements the latest variant of the Euler algorithm and uses
Wilson's algorithm in the crucial step of arborescence generation. It is carefully engineered and
extremely efficient. The uShuffle tool achieves maximum flexibility by allowing arbitrary alphabet
size and let size. It can be used as a command-line program, a web application, or a utility library.
Source code in C, Java, and C#, and integration instructions for Perl and Python are provided.

Conclusion: The uShuffle tool surpasses existing implementation of the Euler algorithm in both
performance and flexibility. It is a useful tool for the bioinformatics community.

Background
Randomly shuffled sequences are routinely used in
sequence analysis to evaluate the statistical significance of
a biological sequence. For example, a common method
for assessing the thermodynamic stability of an RNA
sequence is to compare its folding free energy with those
of a large sample of random sequences. It is known that
the stability of an RNA secondary structure depends cru-
cially on the stackings of adjacent base pairs; therefore the
frequencies of distinct doublets in the random sequences
are important considerations in such analysis [4,25].
Besides, natural biological sequences often manifest cer-
tain nearest-neighbor patterns: both eukaryotic and
prokaryotic nucleic acid sequences show a consistent hier-

archy in the doublet frequencies; in coding regions, the
codon usage can also be markedly nonuniform. In many
cases, biologists need sophisticated shuffling tools that
preserve not only the counts of distinct letters but also
higher-order statistics such as doublet counts, triplet
counts, and, in general, k-let counts.

Methods for random sequence generation
Several methods are commonly used to generate random
sequences. The basic permutation method works as follows:
for a sequence S [1, n], pick a random number i between
1 and n, swap the two elements S [i] and S [n], then
recurse on the subsequence S [1, n - 1]. The random
sequence generated by the basic permutation method pre-

Published: 11 April 2008

BMC Bioinformatics 2008, 9:192 doi:10.1186/1471-2105-9-192

Received: 21 February 2008
Accepted: 11 April 2008

This article is available from: http://www.biomedcentral.com/1471-2105/9/192

© 2008 Jiang et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 11
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/9/192
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18405375
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2008, 9:192 http://www.biomedcentral.com/1471-2105/9/192
serves the exact count of each distinct letter in the alpha-
bet, but does not preserve the higher-order statistics of k-
let counts. The Markov method [12], which is based on the
Markov chains, generates random sequences that preserve
the k-let counts only on average: the counts of the individ-
ual sequences may deviate from the input distribution.
The swapping method [15], a popular method which is now
folklore, generates random sequences by repeatedly swap-
ping disjoint subsequences flanked by the same (k - 1)-
lets; it does preserve the k-let counts exactly, but produces
random sequences that are only uniform asymptotically
and may need a large number of swapping steps.

The Euler algorithm preserves exact k-let counts
The Euler algorithm is a less-known but very efficient
algorithm for generating truly uniform random k-let-pre-
serving sequences [2,12,15]. We briefly review its history.
Fitch [12] first noticed that a doublet-preserving permuta-
tion is related to an Eulerian walk of a directed multi-
graph; however, the algorithm he proposed does not
generate all permutations with equal probability. Altschul
and Erickson [2] presented the first algorithm (also based
on Eulerian walks in directed multigraphs) for generating
truly uniform random sequences that preserve either the
doublet counts or the triplet counts or both; however, a
crucial step of their algorithm for generating random
arborescences depends on a trial-and-error procedure,
which is a potential bottleneck in performance. This bot-
tleneck was eliminated by Kandel et al. [15], who replaced
the trial-and-error procedure with a simple and efficient
procedure based on random walks in directed multi-
graphs. They also generalized the Euler algorithm to pre-
serve the k-let counts for arbitrary k, and suggested a
simple data structure for implementation. This data struc-
ture is based on look-up tables and requires O(σ2k-2) space
and time; it quickly become inefficient as the alphabet
size σ and the let size k increase. Since the work by Kandel
et al. [15], a better algorithm has been proposed by Wil-
son [19,23] for generating random arborescences, which
is the crucial step of the Euler algorithm that Kandel et al.
[15] improves upon Altschul and Erickson [2]. The supe-
riority of Wilson's arborescence generation algorithm to
the two previous algorithms by Altschul and Erickson [2]
and by Kandel et al. [15] is both proved in the theoretical
sense by Wilson [19,23], and demonstrated in the practi-
cal sense by a comparison of our implementation with a
previous implementation (to be discussed later).

Implementations of the Euler algorithm
We are aware of two previous implementations of earlier
variants of the Euler algorithm. The dishuffle program by
Clote et al. [6] implements the original version of the
Euler algorithm by Altschul and Erickson [2]. The shufflet
program by Coward [11] implements the improved ver-
sion of the Euler algorithm by Kandel et al. [15]. In this

paper, we present a sequence analysis tool (named uShuf-
fle) for shuffling biological sequences while preserving
the k-let counts. The uShuffle program is based on the lat-
est variant of the Euler algorithm [2,15] and uses Wilson's
algorithm [19,23] in the crucial step of arborescence gen-
eration. Our goal is to provide a versatile tool that is as
efficient and as flexible as possible:

Arbitrary alphabet size and let size
In specific applications, the alphabet size σ and the let size
k are often fixed: for biological sequences, typical alphabet
sizes are 4 (for DNAs or RNAs) and 20 (for proteins), and
typical let sizes are 2 (for dinucleotides) and 3 (for
codons). While it is tempting to implement the Euler
algorithm just for the fixed alphabet and let sizes at hand,
we believe the flexibility of arbitrary alphabet and let sizes
is useful. The dishuffle program by Clote et al. [6], for
example, is hard-coded for shuffling RNA sequences pre-
serving dinucleotide counts (with alphabet size σ = 4 and
let size k = 2). It is apparent that such an implementation
cannot be used easily in other applications with different
alphabet and let sizes.

Efficiency
When the alphabet size and the let size are both small
constants, the running time of the Euler algorithm (with
any of the three variants of arborescence generation
[2,15,23]) is linear in the sequence length. So it may
appear that the efficiency of the shuffling program would
not an issue since any conceivable downstream analysis of
the randomized data would much slower than the shuf-
fling. However, we note that the linear running time has
been proved only for the case that the alphabet and let
sizes are constant [15]. It is not at all clear whether the lin-
ear performance of the Euler algorithm is scalable for arbi-
trary alphabet and let sizes. As mentioned earlier, the
"standard" data structure suggested by Kandel et al. [15]
has time and space complexities O(σ2k-2), which can
become exponential when the alphabet size σ and the let
size k become large, approaching the order of the
sequence length. Indeed, as we will discuss later, we have
reason to believe that this very data structure has been
used in the shufflet program by Coward [11].

Furthermore, the implementation of the Euler algorithm
(in particular, the crucial step of arborescence generation)
is non-trivial because of its heavy use of graph-theoretical
concepts such as directed multigraphs and Eulerian walks.
Although Wilson's celebrated algorithm [19,23] dates
back to 1996, and is well-known in the theoretical com-
puter science community, Coward's implementation of
shufflet in 1999 [11] still uses the old arborescence algo-
rithm by Kandel et al. [15]. We are not aware of any imple-
mentation of Wilson's algorithm in bioinformatics
applications. By careful choices of algorithms and data
Page 2 of 11
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:192 http://www.biomedcentral.com/1471-2105/9/192
structures, and by scrupulous algorithmic engineering, we
strive for the most efficient implementation.

Multiple forms and programming languages
The dishuffle program by Clote et al. [6] is written in
Python; the shufflet program by Coward [11] is a web
application in C. To reach the widest audience, we have
made our uShuffle program available in several forms. It
can be used as a command-line program, a web applica-
tion, or a utility library. Source code in C, Java, and C#,
and integration instructions for Perl and Python are pro-
vided.

Implementation
This section consists of four subsections. In the first two
subsections, we discuss, at a conceptual level, the Euler
algorithm and its crucial step of arborescence generation,
in preparation of the discussion of implementation
details. In the third subsection, we present the algorithmic
engineering details of our implementation. In the fourth
subsection, we describe the software organization and
user interfaces of the uShuffle tool. To justify our algo-
rithm choices and to explain our optimization tech-
niques, the discussions in the first three subsections are
necessarily technical. The readers who are not particularly
interested in the theoretical discussion of graph algo-
rithms or the technical details of algorithmic engineering
can safely skip to the fourth subsection for the software
organization and user interfaces.

The Euler Algorithm
In this subsection, we review some basic concepts of the
Euler algorithm.

Directed multigraph
A k-let is a subsequence of k consecutive elements in a
sequence. Let S be a sequence to be permuted. Let Tk be a
uniform random sequence that preserves the k-let counts
of S. (For example, T1 is a simple permutation of S, and T2
is a permutation of S with the same dinucleotide counts.)
To generate Tk for k ≥ 2, the Euler algorithm [2,15] first
constructs a directed multigraph G. We refer to Figure 1 for
an example. For each distinct (k - 1)-let in S, G has a ver-
tex. For each k-let L in S, which contains two (k - 1)-lets L1

and L2 such that L1 precedes L2, G has a directed edge from
the vertex for L1 to the vertex for L2. Duplicates of k-lets
may exist in S, so there may be multiple edges between the
vertices.

Correspondence between permutations and Eulerian walks
As we scan the k-lets in S one by one, we also walk in the
directed multigraph G from vertex to vertex. When all the
k-lets are scanned, each edge in G is visited exactly once:
the walk is Eulerian. On the other hand, given an Eulerian
walk in G, we can recover a sequence by spelling out the
(k - 1)-lets of the vertices along the walk (and discarding
the overlaps). Since each k-let in S corresponds to an edge
in G, every Eulerian walk in G corresponds to a sequence
with the same k-let counts as S. Kandel et al. [15] showed
that, as long as an Eulerian walk starts and ends at the
same two vertices s and t that correspond to the starting
and the ending (k - 1)-lets of S, the i-let counts for all 1 ≤
i ≤ k are preserved. Therefore, generating a uniform ran-
dom sequence Tk reduces to generating a uniform random
Eulerian walk in G from s to t.

Correspondence between Eulerian walks and arborescences
For an Eulerian walk in G, each vertex v of G except the
ending vertex t has a last edge ev that exits from v for the last
time. The set of last edges for all vertices except t forms an
arborescence rooted at t: a directed spanning tree in which
all vertices can reach t. Given an arborescence A rooted at
t, a random Eulerian walk from s to t with the last edges
conforming to A can be easily generated [2,15]:

1. For each vertex v, collect the list of edges Ev exiting from
v. Permute each edge list Ev separately while keeping ev the
last edge on the list.

2. Walk the graph G in accordance with the edge lists {Ev}:
start from s (set u ← s), take the first unmarked edge (u, v)
from the list Eu, mark the edge, then move to the next ver-
tex v (set u ← v); continue until all edges are marked and
the walk ends at t.

In directed multigraphs, there is a nice correspondence
between Eulerian walks and arborescences: every arbores-
cence rooted at t corresponds to exactly the same number
of Eulerian walks [3,15]. Therefore, generating a uniform
random Eulerian walk in G from s to t reduces to generat-
ing a uniform random arborescence in G rooted at t. In the
next subsection, we discuss algorithms for generating ran-
dom arborescences, some of which are based on, quite
amusingly, random walks again.

Generating Random Arborescences
In this subsection, we review the existing algorithms for
arborescence generation, and explain our choice of Wil-
son's algorithm [19,23]. There are two major approaches

Directed Multigraph for the Sequence AATATFigure 1
Directed Multigraph for the Sequence AATAT.

A T
Page 3 of 11
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:192 http://www.biomedcentral.com/1471-2105/9/192
to generating random arborescences and spanning trees:
determinant algorithms and random-walk algorithms.

Determinant algorithms
Determinant algorithms are based on the matrix tree the-
orem [3, Chapter II, Theorem 14]. For a graph G, the prob-
ability that a particular edge e appears in a uniform
random spanning tree is the ratio of two numbers: the
number of spanning trees that contain the edge e, and the
total number of spanning trees. The matrix tree theorem
allows one to compute the exact number of spanning trees
of a graph by evaluating the determinant of the combina-
torial Laplacian (or Kirchhoff matrix) of the graph. A ran-
dom spanning tree can be generated by repeatedly
contracting or deleting edges according to their probabili-
ties.

The first determinant algorithms were given by Guénoche
[14] and Kulkarni [16]: for a graph of n vertices and m
edges, a random spanning tree can be generated in
O(n3m) time. This running time was later improved to
O(n3) [7]. Colbourn, Myrvold, and Neufeld [8] simplified
the O(n3) time algorithm and showed that the running
time can be further reduced to O(n2.376), the best upper
bound for multiplying two n × n matrices [9].

Random-walk algorithms
Random-walk algorithms use an entirely different
approach to generating random spanning trees. Aldous
[1] and Broder [5] (after discussing the matrix tree theo-
rem with Diaconis) independently discovered an interest-
ing connection between random spanning trees and
random walks:

Simulate a uniform random walk in a graph G starting
at an arbitrary vertex s until all vertices are visited. For
each vertex v ≠ s, collect the edge {u, v} that corre-
sponds to the first entrance to v. The collection T of
edges is a uniform random spanning tree of G.

For a graph G and a vertex v in it, define the cover time
Cv(G) as the expected number of steps a random walk
starting from v takes to visit all vertices of G. The running
time of the Aldous-Broder algorithm [1,5] is clearly linear
in the cover time. In the context of shuffling biological
sequences, Kandel et al. [15] extended Aldous-Broder
algorithm [1,5] to generate uniform random arbores-
cences of Eulerian directed graphs in the cover time. Wil-
son and Propp [24] then presented an algorithm for
generating uniform random arborescences of general
directed graphs in 18 cover times.

Wilson's algorithm
Wilson [19,23] showed that random arborescences and
spanning trees can be generated more quickly than the

cover time by a cycle-popping algorithm which simulates
loop-erased random walks. For a graph G and two vertices
u and v in it, define the hitting time hu,v(G) as the expected
number of steps a random walk takes from u to v. The run-
ning time of Wilson's algorithm [19,23] is linear in the
maximum or mean hitting times of the corresponding sto-
chastic graphs. As Wilson [19,23] noted, the mean and
maximum hitting times are always less than the cover
time, and the differences can be quite significant in certain
graphs. Therefore, for generating uniform random arbo-
rescences, Wilson's algorithm [19,23] is superior to Kan-
del et al.'s algorithm [15].

For completeness of presentation, we include in the fol-
lowing the pseudocode of Wilson's algorithm [19,23]:

RandomTreeWithRoot(r)

1 for i ← 1 to n

2 InTree [i] ← false

3 Next [r] ← nil

4 InTree [r] ← true

5 for i ← 1 to n

6 u ← i

7 while not InTree [u]

8 Next [u] ← RandomSuccessor(u)

9 u ← Next [u]

10 u ← i

11 while not InTree [u]

12 InTree [u] ← true

13 u ← Next [u]

14 return Next

Let Eu be the set of directed edges exiting from the vertex
u. The function RandomSuccessor(u) chooses a uniformly
random edge (u, v) from Eu, then returns the vertex v.

Unlike the Aldous-Broder algorithm [1,5], which simu-
lates a single random walk from the root to visit all verti-
ces, Wilson's algorithm [19,23] simulates multiple
random walks: starting from each unvisited vertex, a ran-
dom walk continues until it joins a growing arborescence
Page 4 of 11
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:192 http://www.biomedcentral.com/1471-2105/9/192
which initially contains only the root. A random walk fol-
lows the Next [·] pointers; whenever a previously visited
vertex is encountered again, a loop is formed and imme-
diately erased because the Next [·] pointer is overwritten
(in the first while loop). As soon as a walk reaches the
growing arborescence, all vertices in the walk join the
arborescence as one more branch.

A comparison of the two approaches
We now give a comparison of the two approaches to gen-
erating random arborescences. Kandel et al. [15] proved
that the cover time of an Eulerian directed multigraph of
n vertices and m edges is O(n2m). From our preceding dis-
cussion on the cover time and the hitting time, it follows
that the expected running time of Wilson's algorithm
[19,23] on the same multigraph is at most O(n2m) too,
neglecting the log n factors.

For a multigraph, the number m of edges can be arbitrarily
larger than the number n of vertices. So it might appear
that the determinant algorithm by Colbourn et al. [8],
which runs in deterministic O(n3) time or even O(n2.376)
time, would be a better alternative than the random walk
algorithms [15,19,23]. However, we note that when m is
large the intermediate values of the determinant compu-
tation can be large too. On the typical computer systems
today, the arithmetic operations on floating-point num-
bers do not have enough precision to guarantee the accu-
racy and stability in the numerical computation of the
determinant algorithms. The random walk algorithms
[15,19,23], on the other hand, require only basic opera-
tions on small integers, and do not have these numerical
problems. Therefore, we have decided to implement Wil-
son's random-walk algorithm [19,23] for arborescence
generation.

Implementation Details
In this subsection, we describe the details of our imple-
mentation of the Euler algorithm [2,15,19,23] for gener-
ating k-let-preserving random sequences.

Kandel et al.'s data structure
As suggested by Kandel et al. [15], a simple implementa-
tion of the Euler algorithm [2,15] may use a look-up table
of size σk-1 for all possible (k - 1)-lets as vertices in the
directed multigraph G, then build an adjacency matrix of
size σk-1 × σk-1 for the edges in G. When both σ and k are
small constants, the space requirement of this simple
approach, σ2k-2, may not look severe. However, a calcula-
tion shows that, even for σ = 20 (the alphabet size of pro-
teins) and k = 3 (a typical choice of k), the space
requirement amounts to

σ2k-2 = 204 = 160, 000.

On the other hand, the typical length of a protein
sequence is below 1000. Even though a sequence itself
may be stored in only 1 kilo-bytes, the permutation algo-
rithm still requires hundreds of times more space regard-
less. The situation becomes even worse when k is further
increased: even for the rather innocent-looking parame-
ters σ = 20 and k = 5, the space requirement

σ2k-2 = 208 > 168 = 232

exceeds all 4 giga-bytes of memory that can be accommo-
dated by a 32-bit computer! We note that the two sets of
parameters that Coward [11] used for experiments on his
shufflet program were only

σ = 4, k = 6, σ2k-2 = 1, 048, 576

and

σ = 20, k = 3, σ2k-2 = 160, 000.

We will discuss more about this in our comparison of
uShuffle and shufflet in the Results and Discussion sec-
tion.

Representing directed multigraph in linear space
To make the uShuffle program scalable, it is clear that
careful algorithmic engineering are necessary in the
implementation. As we discussed in the previous subsec-
tion on the Euler algorithm, the directed multigraph G
contains a vertex for each distinct (k - 1)-let in S. Since the
number of (k - 1)-lets in S is exactly l - k + 2, G has at most
l - k + 2 vertices, and hence exactly l - k + 1 directed edges
between consecutive (k - 1)-lets. This implies that the size
of G is in fact linear in the length l of the sequence S to be
permuted. With suitable data structures, uShuffle needs
only linear space.

In the following, we first explain the construction and rep-
resentation of the directed multigraph G, then explain the
random sequence generation after the graph construction.
The graph construction consists of two steps: determine
the set of vertices, then add the directed edges.

Determining vertices
We use a hashtable to determine the set of vertices. The
hashtable consists of a bucket array of size b = l - k + 2, the
number of (k - 1) lets in S, and a linked list at each bucket
to avoid collision by chaining [10]. Each (k - 1)-let x =
x1x2�xk-1 has a polynomial hash code

h x x a x a x a x a

x a x a x a x

k k
k k

k k

()

((())

= + + + +
= + + + +

− −
− −

−

1
1

2
2

2
2

1

1 2 2 −−1) ,a
Page 5 of 11
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:192 http://www.biomedcentral.com/1471-2105/9/192
where a = /2 is the reciprocal of the golden ratio;

the index of x to the bucket array is

i(x) = Nh(x)·bQ mod b.

Initialize the hashtable to be empty, then try to insert the
(k - 1)-lets into the hashtable one by one. If a (k - 1)-let is
the first of its kind, it is assigned a new vertex number then
inserted into the hashtable; its starting index to the
sequence S is also recorded. If a (k - 1)-let has been
inserted before, it is not inserted to the hashtable: its ver-
tex number and index to the sequence S are copied from
those of the first (k - 1)-let of its kind. After insertions, we
can deduce the total number of vertices in the directed
multigraph from the largest vertex number assigned. The
memory for vertices are then allocated.

Adding directed edges
To add the directed edges, we use an adjacency-list repre-
sentation to avoid the excessive memory requirement of
an adjacency-matrix. In an adjacency-list representation,
two edge lists need to be maintained at each vertex: a list
of incoming edges and a list of outgoing edges. The outgo-
ing edge lists are necessary for generating Eulerian walks
[2]. The incoming edges lists are necessary for generating
arborescences when Kandel et al.'s algorithm [15] is used
(as in the implementation by Coward [11]). We use Wil-
son's algorithm [19,23] for generating arborescences. As
we discussed in the previous section, Wilson's algorithm
[19,23] is faster than Kandel et al.'s algorithm [15]. Fur-
thermore, we note here that Wilson's algorithm [19,23]
has another advantage over Kandel et al.'s algorithm [15]
in terms of the ease of implementation. Instead of one
backward random walk from the ending vertex t to reach
all other vertices as in Kandel et al.'s algorithm [15], Wil-
son's algorithm [19,23] uses multiple forward random
walks from each unvisited vertex to join the arborescence
rooted at t: the outgoing edge lists alone are sufficient for
generating both the Eulerian walks and the arborescences.

Representing edge lists and managing memory
For maximum efficiency, we implement each edge list as
an array of vertices. The numbers of outgoing edges differ
from vertex to vertex; if we allocate a fixed-size array for
each vertex, then we would have to make each array large
enough to hold all edges in the worst case, and the result-
ing space requirement would become quadratic in the
length l of the sequence S. We could of course first count
the number of outgoing edges for each vertex, then allo-
cate a separate array just large enough for each vertex.
However, this would require us to call the relatively
expensive memory allocation function once for each ver-
tex.

In our implementation, we allocate one large array for all
edges (the total number of edges is l - k + 1), then parcel
out pieces to individual vertices. To achieve this, we first
scan the sequence S to count the number of outgoing
edges for each vertex, then point the array (outgoing edge
list) of each vertex to successive offsets of the large array.
With this optimization, the number of memory alloca-
tions is reduced to only 4: one for the hashtable bucket
array, one for the array of (k - 1)-lets as hashtable entries,
one of the array of vertices, and one for the array of edges.
The memory for the bucket array and the hashtable entries
can be freed as soon as the directed multigraph is con-
structed.

Sequence generation after graph construction
After the construction of the directed multigraph, we can
generate a random sequence in three steps. As discussed in
the previous section, we need to first simulate the loop-
erased random walks [19,23] to generate an arborescence,
next permute the individual edge lists while maintaining
the last edges, then simulate an Eulerian walk guided by
the edge lists and output the sequence along the walk.
Since each edge list is implemented as an array, the per-
mutation can be executed very efficiently. To output the
random sequence along the walk is also easy, since each
vertex keeps the starting index of its first occurrence in the
input sequence.

Software Organization and User Interfaces of the uShuffle
Tool
In this subsection, we describe the software organization
and user interfaces of the uShuffle tool.

C Library and command-line tool
Our initial implementation of uShuffle is in the C pro-
gramming language. The C version of uShuffle consists of
two components: a uShuffle library (ushuffle.c and ushuf-
fle.h) and a command-line tool (main.c).

In a typical scenario, multiple k-let-preserving random
sequences are generated for each input sequence. The
graph construction stage of the uShuffle program needs to
be done only once for the multiple output sequences. To
give the users an option for optimization, we export three
interface functions in the uShuffle library:

void shuffle(const char *s, char *t, int l, int k);

void shuffle1(const char *s, int l, int k);

void shuffle2(char *t);

The function shuffle accepts four parameters: s is the
sequence to be permuted, t is the output random
sequence, l is the length of s, and k is the let size k. The

()5 1−
Page 6 of 11
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:192 http://www.biomedcentral.com/1471-2105/9/192
function shuffle simply calls shuffle1 first and shuffle2
next: shuffle1 implements the construction of the directed
multigraph; shuffle2 implements the loop-erased random
walks in the directed multigraph and the generation of the
random sequence. The statistical behavior of a random
permutation depends heavily on the random number
generator.

Coward [11] noted that the default implementations of
random number generators on various platforms are
often unsatisfying, so he implemented his own generator
using an arguably better algorithm. We note that there are
numerous algorithms for random number generation,
and new algorithms are continuously being proposed:
whether one algorithm is superior to the other can be
quite subjective. Instead of limiting the users to a particu-
lar implementation, we set the default generator to the
random function from the standard C library, then export
an interface function to allow sophisticated users to cus-
tomize the generator:

typedef long (*randfunc_t)();

void set_randfunc(randfunc_t randfunc);

The command-line uShuffle tool is a minimal front-end
of the uShuffle library that illustrates a typical use of the
library. It has the following four options:

-s <string> specifies the input sequence,

-n <number> specifies the number of random sequences
to generate,

-k <number> specifies the let size,

-seed <number> specifies the seed for random number
generator.

Java applet
The uShuffle program is ported to the Java programming
language. Beside having a library and a command-line
tool, the Java version of the uShuffle program can also run
as an applet in a web browser. We refer to Figure 2 for a
screenshot of the uShuffle Java applet1: The interface of
the applet is minimal and consists of three parts: an input
text area at the top, an output text area at the bottom, and
a control panel in the middle. The control panel contains
two text fields and a button. The maximum let size k and
the number n of output sequences can be set in the two
text fields. When the "Shuffle" button is clicked, the applet
takes the input sequence from the input text field, strips
away the white spaces, generates n random sequences that
preserve the k-let counts, then outputs the sequences in
the output text area. The output is in the Fasta format

when n > 1: each output sequence is preceded by a com-
ment line containing a sequence number ranging from 1
to n.

The uShuffle Java applet keeps all the output sequences in
memory for display in the output text area. When the
number n of output sequences and the input sequence
length l are exorbitantly large, for example, n = 10, 000,
000 and l = 100, the total memory required to hold the
output sequences may exceed the maximum heap size of
the Java virtual machine (JVM) and the applet may hang.
This is not a bug in our program but is due to the limit of
JVM; nevertheless, we prepared a web page to instruct the
users how to increase the maximum heap size of JVM.

C#/Perl/Python versions
The uShuffle program is also ported to the C# program-
ming language. Perl and Python are popular program-
ming languages for bioinformatics; they allow easy
integration with programs written in C. Instead of porting
the uShuffle program to Perl and Python at the source
code level, we prepared two web pages to instruct the
users how to extend the Perl and Python environments
with the uShuffle library.

Results and Discussion
We have performed two sets of experiments to test the per-
formance of two major forms of the uShuffle tool: we first
benchmark the performance of the uShuffle C library,
then compare the performance of the uShuffle Java applet
with the shufflet program by Coward [11].

Performance of uShuffle C Library
We tested the uShuffle C library on a desktop PC2 with test
data consisting of both real biological sequences and arti-
ficially generated random sequences.

Experiment on real biological sequences
The real biological sequences were acquired from two
sources: first, 152 protein sequences (with a total of
91262 amino acids) were sampled from the Human Pro-
tein Reference Database3, one sequence from each of the
152 molecular classes; second, 69 micro RNA precursor
sequences (with a total of 4773 nucleotides) of Mus.mus-
culus (house mouse) were extracted from the supplemen-
tary data4 of Bonnet et al. [4].

Our experiments on these real biological sequences
showed that the uShuffle library is extremely efficient: in
just one second, it can generate either (i) 700 doublet-pre-
serving random sequences for each of 152 protein
sequences, or (ii) 12000 doublet-preserving random
sequences for each of the 69 RNA sequences.
Page 7 of 11
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:192 http://www.biomedcentral.com/1471-2105/9/192
Experiments on artificially generated random sequences
In order to analyze the performance of uShuffle with var-
ious sets of parameters, we also performed a systematic
test of uShuffle on artificially generated random
sequences. For simplicity, the sequence lengths were exact
powers of two from 212 to 224, that is, from around 4, 000
to around 16, 000, 000. These numbers are somewhat
arbitrary; nothing prevents a user from running uShuffle
on very long sequences, even at the genome scale, as long
as the computer has enough memory to store the input
sequence and has some additional (very minimal, as dis-
cussed in the Implementation section) memory required
by our implementation.

For each sequence length, 64 uniform random sequences
over the English alphabet [a-z] were generated as test
sequences; for each test sequence, 64 k-let-preserving ran-
dom sequences were then generated by uShuffle. The total
running time for uShuffle to generate the 64 × 64 = 4096
k-let-preserving random sequences was recorded for each
sequence length. Two getrusage system calls were placed
in the test program to sandwich the code region being
benchmarked; the differences of the two timestamps were
used to calculate the running times.

We refer to Figure 3 for a log-log plot of the total running
times of the uShuffle program for k = 2 and k = 3 at various

Screenshot of uShuffle Java AppletFigure 2
Screenshot of uShuffle Java Applet.
Page 8 of 11
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:192 http://www.biomedcentral.com/1471-2105/9/192
sequence lengths. The plot shows that the running time of
the uShuffle program is essentially linear in the length of
the sequence to be shuffled.

The absolute running times are not very effective in dem-
onstrating the extreme efficiency of the uShuffle program.
We refer to Figure 4 for a ratio plot that is more illustra-
tive. For k = 2 and k = 3, and for each sequence length, the
plot shows not the absolute running time of the uShuffle
program but the ratio of two running times:

1. the running time for the uShuffle program to generate
the k-let-preserving sequences, and

2. the running time for the simple permutation method
[10] (reviewed in the Background section) to shuffle the

same number of random sequences without preserving the
k-let counts.

The ratio plot shows that the running time of the uShuffle
program is on average only 1.5 times that of the simple
permutation method for k = 2, and only 2 times for k = 3.
The simple permutation method is minimal: for each
position of the input sequence it executes only one ran-
dom function call plus one swap. The uShuffle program,
on the other hand, performs a lot more work; although
the 64 k-let-preserving random sequences of each test
sequence are generated by one shuffle1 and 64 shuffle2
function calls to avoid redundant multigraph construc-
tion, each shuffle2 function call still includes the genera-
tion of an arborescence by loop-erased random walks
[19,23] and the generation of an Eulerian walk guided by
the individual edge lists shuffled by simple permutations.
In light of the contrasting complexities of the uShuffle
program and the simple permutation method, the small
ratios of their running times are remarkable. A careful
reader will notice an interesting fact from Figure 4, when
the sequence length increases to 224 (about 16 millions),
the running time of the uShuffle program for k = 2 is even
less than the simple permutation method! The "strange"
phenomenon had kept us puzzling for a long time until
we eventually convinced ourselves that this is not a bug
but a feature. We note that, in each step, the simple per-
mutation method randomly swaps two elements scattered
in a large array of 224 elements. On the other hand, the
uShuffle program performs random walks in small multi-
graphs (at most 26 vertices for k = 2 and over the [a-z]
alphabet) and permutes the individual edge lists (each
with approximately 224/26 elements) separately. The
memory references of the uShuffle program are much
more local than those of the simple permutation method.
Computers with modern memory architectures aggres-
sively optimize code with local memory references by
sophisticated caching schemes, which promotes the per-
formance of the uShuffle program.

We refer to Figure 5 for the running times of the uShuffle
program at various values of the parameter k, where the
test sequence length is fixed at 1024. The running time of
the uShuffle program peaks at k = 4, which is about three
times its running time for k = 2, then gradually decreases
as k increases, and finally drops to zero at k = 1024
because, with a sequence length of 1024, the only 1024-
let-preserving random sequence is the input sequence
itself. This plot shows that the uShuffle program is effi-
cient for all possible values of k.

Comparison of uShuffle Java Applet with shufflet
There exist two other implementations of the Euler algo-
rithm. The dishuffle program by Clote et al. [6] imple-
ments the original version of the Euler algorithm by

Ratios of Running Times for k = 2 and k = 3Figure 4
Ratios of Running Times for k = 2 and k = 3. Ratios of
running times of uShuffle and simple permutation method at
various sequence lengths for k = 2 and k = 3.

k = 3

 1

 1.5

 2

 2.5

 3

2^12 2^14 2^16 2^18 2^20 2^22 2^24

k = 2

 0.5

Running Times of uShuffle for k = 2 and k = 3Figure 3
Running Times of uShuffle for k = 2 and k = 3. Running
times of uShuffle in milli-seconds at various sequence lengths
for k = 2 and k = 3.

k = 3

 10

 12

 14

 16

 18

 20

 22

2^12 2^14 2^16 2^18 2^20 2^22 2^24

k = 2

 8
Page 9 of 11
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:192 http://www.biomedcentral.com/1471-2105/9/192
Altschul and Erickson [2]. Hard-coded for shuffling RNA
sequences preserving dinucleotide counts, dishuffle is not
a general tool for arbitrary alphabet and let sizes. Another
program, shufflet by Coward [11], implements the
improved version of the Euler algorithm by Kandel et al.
[15] for arbitrary let size k. As we have explained in the
Implementation section, the arborescence generation
algorithm by Kandel et al. [15], while superior to the algo-
rithm by Altschul and Erickson [2], is still inferior to Wil-
son's algorithm [19,23]; besides, its look-up table data
structure is inefficient for large alphabet and let sizes.

In terms of functionality, the shufflet implementation
[11] is closer to our uShuffle implementation. Shufflet
was written in the C programming language, and had
been hosted as a web application (but has been taken off-
line). We were unable to perform a comprehensive com-
parison of uShuffle and shufflet. However, Coward [11]
mentioned two experiments performed on a Digital DEC/
Alpha 2100 web server:

1. 100 shufflings of a DNA sequence of 10000 nucleotides
with k = 6 take about 2.5 seconds;

2. 100 shufflings of a protein sequence of 1000 amino
acids with k = 3 take less than 1 second.

We performed similar experiments with the uShuffle Java
applet on an Apple iMac computer (2 GHz PowerPC G5
running MacOS 10.4.9, Firefox 2.0.0.3, and Java 1.5.0):

1. 1000 shufflings of a DNA sequence of 10000 nucle-
otides with k = 6 take about 1.5 seconds;

2. 4000 shufflings of a protein sequence of 1000 amino
acids with k = 3 take less than 1 second.

Assuming comparable performances of the two comput-
ers, we estimate that our uShuffle Java applet is about
15–20 times faster than shufflet in the experiment on
nucleotides (k = 4), and about 40 times faster than shuf-
flet in the experiment on amino acids (k = 20).

We certainly understand the difficulty of such a compari-
son: a web server in 1999 versus a desktop computer in
2005; a C program in a native machine versus a Java
applet in a virtual machine. Nevertheless the comparison
illustrates the better scalability of our uShuffle Java applet
for large let sizes. The difference between the two perform-
ance ratios, 15–20 versus 40, suggests that uShuffle
remains efficient even for large let size, while shufflet
becomes more inefficient as the let size increases, due to
(very likely) the use of the inefficient look-up table data
structure by Kandel et al. [15].

Conclusion
The uShuffle tool is based on superior graph algorithms
and is carefully engineered to be extremely efficient. It
achieves maximum flexibility by allowing arbitrary alpha-
bet size and let size, and is available in many forms for dif-
ferent kinds of users. We believe uShuffle is a useful tool
for the bioinformatics community.

Availability and Requirements
Project name: uShuffle.

Project home page: http://www.cs.usu.edu/~mjiang/ush
uffle/

Operating systems: Platform independent.

Programming languages: C, Java, C#, Perl, Python.

Other requirements: None.

Licence: FreeBSD.

Any restrictions to use by non-academics: None.

Authors' contributions
MJ designed the software and the experiments, imple-
mented the C and Java versions of uShuffle program, and
wrote the technical report. JA ported the Java program to
C#, investigated software licenses, and designed the uSh-
uffle logo. JG wrote the test program, performed the
experiments, and wrote the instructions for Perl integra-
tion. MM wrote the Java applet interface and the instruc-
tions for Python integration. All authors reviewed the
source code and contributed to the home page construc-
tion.

Running Times of uShuffle for Various Let Size kFigure 5
Running Times of uShuffle for Various Let Size k.
Running times of uShuffle in milli-seconds at a fixed sequence
length for various let size k.

 1024

 50

 100

 150

 200

 250

 300

 350

 2 4 8 16 32 64 128 256 512
 0
Page 10 of 11
(page number not for citation purposes)

http://www.cs.usu.edu/~mjiang/ushuffle/
http://www.cs.usu.edu/~mjiang/ushuffle/

BMC Bioinformatics 2008, 9:192 http://www.biomedcentral.com/1471-2105/9/192
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

Note
1MacOS 10.4.9, Firefox 2.0.0.3, Java 1.5.0.

2Dell XPS M1710: 2.1 GHz Intel Dual-Core 2 processor, 2
GB dual in-line RAM; Microsoft Windows Vista Business
Edition, Cygwin 1.5.24, gcc 3.4.4 with -O3 option.

3http://www.hprd.org/moleculeClass.

4http://bioinformatics.psb.ugent.be/
supplementary_data/erbon/nov2003/.

Acknowledgements
We thank the anonymous reviewers for valuable comments. This research
was partially supported by National Science Foundation grant DBI-0743670
and Utah State University grant A13501.

References
1. Aldous DJ: The random walk construction of uniform span-

ning trees and uniform labelled trees. SIAM Journal of Discrete
Mathematics 1990, 3(4):450-465.

2. Altschul SF, Erickson BW: Significance of nucleotide sequence
alignment: a method for random sequence permutation that
preserves dinucleotide and codon usage. Molecular Biology and
Evolution 1985, 2(6):526-538.

3. Bollobás B: Modern Graph Theory. Springer; 2002.
4. Bonnet E, Wuyts J, Rouzé P, van de Peer Y: Evidence that micro-

RNA precursors, unlike other non-coding RNAs, have lower
folding free energies than random sequences. Bioinformatics
2004, 20(17):2911-2917.

5. Broder A: Generating random spanning trees. Proceedings of the
30th Annual Symposium on Foundations of Computer Science (FOCS'89)
1989:442-447.

6. Clote P, Ferr'e F, Kranakis E, Krizanc D: Structural RNA has
lower folding energy than random RNA of the same dinucle-
otide frequency. RNA 2005, 11:578-591.

7. Colbourn CJ, Day RPJ, Nel LD: Unranking and ranking spanning
trees of a graph. Journal of Algorithms 1989, 10:271-286.

8. Colbourn CJ, Myrvold WJ, Neufeld E: Two algorithms for unrank-
ing arborescences. Journal of Algorithms 1996, 20(2):268-281.

9. Coppersmith D, Winograd S: Matrix multiplication via arithme-
tic progressions. Journal of Symbolic Computation 1990, 9:251-280.

10. Cormen TH, Leiserson CE, Rivest RL, Stein C: Introduction to Algo-
rithms Second edition. MIT Press; 2001.

11. Coward E: Shufflet: shuffling sequences while conserving the
k-let counts. Bioinformatics 1999, 15(2):1058-1059.

12. Fitch WM: Random sequences. Journal of Molecular Biology 1983,
163:171-176.

13. Freyhult E, Gardner PP, Moulton V: A comparison of RNA folding
measures. BMC Bioinformatics 2005, 6:241.

14. Guénoche A: Random spanning tree. Journal of Algorithms 1983,
4:214-220.

15. Kandel D, Matias Y, Unger R, Winker P: Shuffling biological
sequences. Discrete Applied Mathematics 1996, 71(1–3):171-185.

16. Kulkarni VG: Generating random combinatorial objects. Jour-
nal of Algorithms 1990, 11(2):185-207.

17. Le S-Y, Chen J-H, Currey KM, Maizel JV Jr: A program for predict-
ing significant RNA secondary structures. Computer Applications
in the Biosciences 1988, 4(1):153-159.

18. Nussinov R: Sone rules in the ordering of nucleotides in the
DNA. Nucleic Acids Research 1980, 8(19):4545-4562.

19. Propp JG, Wilson DB: How to get a perfectly random sample
from a generic Markov chain and generate a random span-
ning tree of a directed graph. Journal of Algorithms 1998,
27(2):170-217.

20. Rivas E, Eddy SR: Secondary structure alone is generally not
statistically significant for the detection of noncoding RNAs.
Bioinformatics 2000, 16(7):583-605.

21. Seffens W, Digby D: mRNAs have greater negative folding free
energies than shuffled or codon choice randomized
sequences. Nucleic Acids Research 1999, 27(7):1578-1584.

22. Smith TF, Waterman MS, Sadler JR: Statistical characterization of
nucleic acid sequence functional domains. Nucleic Acids
Research 1983, 11(7):2205-2220.

23. Wilson DB: Generating random spanning trees more quickly
than the cover time. Proceedings of the 28th Annual ACM Symposium
on the Theory of Computing (STOC'96) 1996:296-303.

24. Wilson DB, Propp JG: How to get an exact sample from a
generic Markov chain and sample a random spanning tree
from a directed graph, both within the cover time. Proceedings
of the 7th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA'96) 1996:448-457.

25. Workman C, Krogh A: No evidence that mRNAs have lower
folding free energies than random sequences with the same
dinucleotide distribution. Nucleic Acids Research 1999,
27(24):4816-4822.
Page 11 of 11
(page number not for citation purposes)

http://www.hprd.org/moleculeClass
http://bioinformatics.psb.ugent.be/supplementary_data/erbon/nov2003/
http://bioinformatics.psb.ugent.be/supplementary_data/erbon/nov2003/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15217813
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15217813
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15217813
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15840812
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15840812
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15840812
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10745997
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10745997
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6842586
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16202126
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16202126
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2454711
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2454711
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7433114
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7433114
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11038329
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11038329
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10075987
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10075987
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10075987
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6835847
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6835847
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10572183
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10572183
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10572183
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Methods for random sequence generation
	The Euler algorithm preserves exact k-let counts
	Implementations of the Euler algorithm
	Arbitrary alphabet size and let size
	Efficiency
	Multiple forms and programming languages

	Implementation
	The Euler Algorithm
	Directed multigraph
	Correspondence between permutations and Eulerian walks
	Correspondence between Eulerian walks and arborescences

	Generating Random Arborescences
	Determinant algorithms
	Random-walk algorithms
	Wilson's algorithm
	A comparison of the two approaches

	Implementation Details
	Kandel et al.'s data structure
	Representing directed multigraph in linear space
	Determining vertices
	Adding directed edges
	Representing edge lists and managing memory
	Sequence generation after graph construction

	Software Organization and User Interfaces of the uShuffle Tool
	C Library and command-line tool
	Java applet
	C#/Perl/Python versions

	Results and Discussion
	Performance of uShuffle C Library
	Experiment on real biological sequences
	Experiments on artificially generated random sequences

	Comparison of uShuffle Java Applet with shufflet

	Conclusion
	Availability and Requirements
	Authors' contributions
	Note
	Acknowledgements
	References

