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Abstract

Background: Multi-dimensional scaling (MDS) is aimed to represent high dimensional data in a
low dimensional space with preservation of the similarities between data points. This reduction in
dimensionality is crucial for analyzing and revealing the genuine structure hidden in the data. For
noisy data, dimension reduction can effectively reduce the effect of noise on the embedded
structure. For large data set, dimension reduction can effectively reduce information retrieval
complexity. Thus, MDS techniques are used in many applications of data mining and gene network
research. However, although there have been a number of studies that applied MDS techniques to
genomics research, the number of analyzed data points was restricted by the high computational
complexity of MDS. In general, a non-metric MDS method is faster than a metric MDS, but it does
not preserve the true relationships. The computational complexity of most metric MDS methods
is over O(N?), so that it is difficult to process a data set of a large number of genes N, such as in the

case of whole genome microarray data.

Results: We developed a new rapid metric MDS method with a low computational complexity,
making metric MDS applicable for large data sets. Computer simulation showed that the new
method of split-and-combine MDS (SC-MDS) is fast, accurate and efficient. Our empirical studies
using microarray data on the yeast cell cycle showed that the performance of K-means in the
reduced dimensional space is similar to or slightly better than that of K-means in the original space,
but about three times faster to obtain the clustering results. Our clustering results using SC-MDS
are more stable than those in the original space. Hence, the proposed SC-MDS is useful for

analyzing whole genome data.

Conclusion: Our new method reduces the computational complexity from O(N3) to O(N) when
the dimension of the feature space is far less than the number of genes N, and it successfully
reconstructs the low dimensional representation as does the classical MDS. Its performance
depends on the grouping method and the minimal number of the intersection points between
groups. Feasible methods for grouping methods are suggested; each group must contain both
neighboring and far apart data points. Our method can represent high dimensional large data set in

a low dimensional space not only efficiently but also effectively.

Page 1 of 17

(page number not for citation purposes)


http://www.biomedcentral.com/1471-2105/9/179
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18394154
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2008, 9:179

Background

Representing high dimensional data in a low dimensional
space is an important task because it becomes much easier
to study the information structure when the dimension is
greatly reduced. The main idea of MDS techniques is to
configure the coordinates of the data in the significant
space such that the pairwise relationship of relocated data
in a low dimensional space is similar to that in the high
dimensional space of the original data. With the dimen-
sional reduction, one can cluster the data relationships by
their distribution in the low dimensional space and
explore significant patterns. When the data configuration
is Euclidean, MDS is similar to principle component anal-
ysis (PCA), which can remove inherent noise with its
compact representation of data [1]. When the data config-
uration is nonlinear, MDS can be further improved to cap-
ture the imbedded manifold in data [2].

MDS techniques have been applied to many fields, e.g.,
pattern recognition, stock market analysis, and molecular
conformational analysis. However, the computational
complexity of most metric MDSs is over O(N2), though
some non-metric methods can reduce the complexity to

O(N /+/N) [3]. Genomics research represents a challeng-

ing application of MDS. Data from microarray experi-
ments are typically noisy with a large number of genes,
but few replicates and frequent data updates. Due to the
high computational complexity, it is very difficult to apply
MDS to whole genome data, such as ~6000 genes in yeast,
not to mention ~23,000 genes in human.

Taguchi and Oono [4] developed a novel algorithm for
non-metric MDS analysis and applied it to analyze pat-
terns of gene expression. However, the result of a non-
metric MDS method depends heavily on the initial config-
uration and non-metric MDS only preserves the order of
similarities instead of the original scale of similarities.
Therefore, it remains an important issue to reduce the
computational complexity for a metric MDS. In this
paper, we develop a fast metric MDS method for large data
sets that is suitable for data analysis and updates. Indeed,
the computational time for 6000 target data points is
within 30 seconds in a PC with CPU 1.67 GHz and 2G
memory.

We review typical MDS techniques in the following and
propose a new MDS method to solve the problem of large
data sets in Section 3. We split the data into overlapping
subsets, apply our MDS technique to each subset, and
then recombine the configurations of the subsets into the
same space. We call this method the split-and-combine
MDS (SC-MDS) method. The complexity of SC-MDS is
O(p? N), where p is the dimension of the feature space,
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which is far smaller than the number of data points N. In
Section 4, we evaluate the performance of SC-MDS using
simulation, apply SC-MDS to the GO database, and lastly,
improve the K-means clustering of gene expression pro-
files by applying SC-MDS to yeast cell cycle microarray
data [5].

There are many different categories of MDS techniques.
For example, a distinction can be made between metric
and non-metric MDSs, between weighted and unweighted
MDSs, between single matrix and multiple matrices, and
between deterministic and probabilistic matrices [3,6]. In
this section, we introduce three typical MDS methods that
are relevant to the present work.

Classical MDS (CMDS)

Torgerson [7] proposed the first MDS method. The dis-
tance is the Euclidian distance, and the similarity matrix is
complete (with no missing data) and symmetric. The
main idea was that given the Euclidean distances or the
inner products among points, it is possible to construct a
matrix X of Cartesian coordinates of these points in the
Euclidean space. Torgerson derived matrix X from the dis-
tance (or similarity) matrix D and showed what to do
when the distance matrix includes noisy data. The key is
to apply the double centering operator and singular value
decomposition (SVD).

Double centering is the process of subtracting the row and
column means of a matrix from its elements and adding
the grand mean. For example, suppose that D is a product
matrix, that is, D = XT X, where X is a p x N matrix with
each column of X being a vector in a p -dimension space.
We defineiasa N x 1 vector in which every element is one

and B=(X—ﬁXiiT)T(X—%XiiT) as the similarity

matrix with the means of the column vectors being zero.
Then we have

B=(X —ixiiT)T(X —ixiiT)
N N

=X X - L xTxiiT - LiiTxTx L iiTXTXiiT
N N N2

p-Lpii’-LiiTp+ L iiTpii’
N N Nz
D

, =D, + Dy,

O

(1)
where D, denotes the row means, D, denotes the col-

umn means and ﬁg denotes the grand mean. If

_ _L..T . .
H=1- 411", (1) can be simplified as
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B = HDH. (2)

After performing double centering on D, one can apply
SVD to B. Since B is symmetric, the decomposition is of
the form

B = UVU. 3)

1
Hence, VB = X — ﬁXl 1T =uv 2, where the columns of

JB are the coordinates of data, with the mean of the data
being moved to the original point.

. . . T
When D is a distance matrix, d;; = \/(xl —x;) (% —xj),

where x; is the configuration of the i-th data point. The
double centering of D2 is equal to -2B, provided that

N
in =0. Hence, the CMDS method performs double

i=1
centering on D2, multiplies by —%, and then performs

SVD, which gives the configurations of the data. Thus, the
key scheme of PCA is embedded in this CMDS method.
When we want to find out the r dimensional configura-
tions of the data in the space generated by the r principal
components, we only use the first leading r spectrums and
r columns of U to generate X, that is,

X=Jv.u,, (4)

where V, is the r x r sub-matrix of V and U, is a matrix of
size N x 1.

There are many drawbacks of this method [8]. For exam-
ple, missing data is not allowed and the computational
complexity is O(N3). Hence, this method is not suitable
for massive data sets.

Chalmer's Linear Iteration Algorithm

One of the force-based models of MDS is the spring
model [9]. It considers each point of the data as a vertex
in a low dimensional space, with springs connecting each
vertex and the distance (or the spring length) between ver-
tices proportional to their high dimensional distance. If d;
jdenotes the high dimensional distance between vertices i
and j, and ¢, ;denotes the low dimensional distance, then
the stress between vertices i and j is proportional to |d;; -
3, |- The spring model computes (N - 1) forces at each ver-
tex per iteration, and the computational complexity of
this model is O(N?2) per iteration.

Chalmers [8] proposed a linear iteration time layout algo-
rithm. Instead of computing all the forces at each point,
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he computed only constant forces in the neighborhood of
each point and randomly chose another constant point
that is not in the neighborhood to compute the large dis-
tance effect. Only constant points are computed at each
point, so that the computational complexity is reduced to
O(N) per iteration. This spring model does not find the
steady state solution in general. One can only process a
fixed number of iterations, say 8 or 10, as opposed to find-
ing the converged solution. Note that the constant forces
are selected in both the neighborhood and afar. Failure to
incorporate one of these two forces will diminish the per-
formance of this method [8].

Anchor Point Method

As in Chalmers' linear layout algorithm, in the anchor
point MDS method [10] only a portion of data is used to
reconstruct the layout for intermediate steps. The data are
grouped into clusters, so that the distances between points
in different clusters are less meaningful than the distances
between points in the same cluster.

In this method, some points in the same cluster are cho-
sen as anchors and others are considered as floaters. Dis-
tance information of anchors is used to construct the
coarse structure of layout, and the floaters are used to
update the fine structure. When a small number of K
anchor points are chosen, a modified MDS procedure
only computes the N x K matrix. Buja et al. [10] showed
that the number of anchors could not be smaller than the
dimension p of the given data. Moreover, the anchors
should be chosen carefully because random choices of
anchors do not work [10]. This is challenging when the
grouping structure is unknown.

From these two methods, we can see that the intermediate
steps for calculating MDS do not need to employ all
entries of the dissimilarity matrix. We can use this prop-
erty to reduce the computational complexity of MDS.
Another important issue is choosing the number of
dimensions for layout. In a small data set, one can use the
elbow test or similar methods to detect the changing
shape for the decay of the spectrum of SVD to determine
the layout dimension. In a large data set, one feasible
approach is to use stochastic methods by cross-validation
to measure the layout dimension [11].

Methods

We first describe SC-MDS using a simple case, and for con-
venience we use the classical MDS (CMDS) as the default
MDS method to show how we can improve it. Assume
that x; € R are the coordinates of data points fori=1,...,.N
and p <<N. We define d;; = ||x; - x;||, as the Euclidean dis-
tance between x; and x;. N is large such that applying the
CMDS technique is impractical. We split the points into
two overlapping sets S; and S,, and the intersection of
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these two sets contains more than p points. The main idea
is to apply MDS to each individual set to get the configu-
ration, and to use the information of the overlapping
points to combine the two sets into one. There are two
problems that need to be solved: (1) how to combine two
sets into one and (2) what is the sufficient condition for
this solution to be equivalent to that obtained by working
directly with the full set? The solutions to these two prob-
lems are proposed in the next subsections.

Combination Method

When we split the whole set of data points into two over-
lapping subsets of equal sizes, the combined size of the
two distance matrices for the two subsets is less than that
for the whole set. Assume that the configurations of these
two subsets obtained from MDS are x;,and x;, and the
dimensions of the two configurations are the same. We
can fix the coordinates of the data points in the first set
and use the overlapping data points to find an affine map-
ping U(-) + b such that for each intersection point x;, , €
S %1 = Ux;, + b, where x; , € S, for some j. Note that the
matrix U of the affine mapping is a unitary matrix, which
is a volume-preserving operator. The affine mapping can
be found as follows.

Assume X; and X, are matrices in which the columns are
the two coordinates of the overlapping points obtained by
applying MDS to two data sets, and X, and X, are the
means of columns of X; and X,, respectively. In order to
use the same orthogonal basis to represent these vertices,
we apply QR factorization to X; — X,1" and X, — X,i7,
so that X, —X,i" =Q,R, and X, - X,i" = Q,R, . Since
these two coordinates represent the same points, the trian-
gular matrices R, and R, should be identical when there is

no rounding error from computing the QR factorization
in X; and X,. The positive and negative signs of columns

of Q; could be arbitrarily assigned in the computation of
QR factorization. Hence, the signs of columns of Q;

should be adjusted according to the corresponding diago-
nal elements of R; so that the signs of diagonal elements

of R, and R, become the same.

After the signs of columns of Q; are modified, we conclude

QlT(Xl_XliT):QzT(Xz_}_(ziT) (5)

Furthermore, we can obtain

X, =QQ5 X, - QQ5 (X,i") + X i (6)
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That is, the unitary operator is U = Q,QJ and the shifting

operator is b= -Q,Q1X, + X,

In practice, one problem with the X; and X, obtained by
CMDS from a distance matrix is that some of the eigenval-
ues of the double centered distance matrix can be nega-
tive. When negative eigenvalues occur, the dimension of
the configuration is determined by the number of positive
eigenvalues. This could cause those two triangular matri-
ces R, and R, to be unequal and sometimes the dimen-
sions of the configurations of the two subsets are different.
In the case of equal dimensions, we can still use equation
(6) to combine the two data sets into one, but the equality
in equation (6) becomes an approximation and the com-
bination will induce computing errors. In the case that the
dimension of X, is not equal to that of X,, for example,
dim(S,) = g, < dim(S,) = gq,, we project x; , into the space
generated by the leading ¢, basis of Q, We then use the
new projected configuration of x;, and the configuration
x;  to perform the combination processing. The projection
of x; , from ¢, dimension to ¢, dimension induces compu-
tational errors too. To avoid this error, the sample number
of the overlapping region is important. This sample
number must be large enough so that the derived dimen-
sion of data is greater or equal to the real data.

Sufficient Condition for Successive Combinations

In the case of a large number of data points, the data
points are split into several overlapping groups such that
the number of overlapping points is greater than the
dimension of real data. The recombination approach is
similar to the case of two overlapping subsets. For exam-
ple, we split data points into K overlapping chained sub-
sets {S,,...S;}, i.e. S, S, # &; we apply the MDS
techniques to each S;; we use the configurations of S, as
the central reference and combine the subsets around S;;
we repeat this procedure until all the subsets are com-
bined.

The minimal number of points of each overlapping region
and the grouping method used will strongly affect the per-
formance of the low dimensional layout of MDS. Firstly,
if the number of the overlapping points is smaller than the
real data dimension, the rank of the affine mapping will
be less than the dimension of data and the affine mapping
cannot transform the coordinates to the corresponding
coordinates. We demonstrate this point by a simulation
case in the next section. Secondly, points of each group
should be chosen both in the neighborhood and beyond.
This has been mentioned in [3], where the information of
both the neighborhood and afar is used for the spring
model. If one puts only the neighboring points into the
same group, the rotation effect will hamper the perform-
ance of the low dimensional layout (see Fig. 1d later).
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2D simulation results. a. The 2D CMDS projection of 2000 simulation points. b. The 2D layout of an approximate solution by
SC-MDS with no dimension loss (N; = 30, N, = 200). The points in a group were chosen randomly. c. The 2D layout of the

approximate solution by SC-MDS with a loss of 12 dimensions (N;=5, N

= 200). The points in a group were chosen randomly.

d. The 2D layout of the approximate solution by SC-MDS with a loss of fZ dimensions (N, = 5, N, = 200). The points in a group

were chosen by the neighboring method.

These two conditions are sufficient to guarantee good per-
formance in a low dimension layout. The layout of the
correct approximation solution of our method is outlined
(see Fig. 1b).

Computational Complexity Reduction

We now show how SC-MDS reduces the computational
complexity of CMDS from O(N3) to O(N) when p <<N.
Assume that there are N points in a data set, N, is the
number of points in each intersection region, and N, is the
number of points in each group. When we split N points
into K overlapping groups, we have KN, - (K-1)N;= N, and

(N=N7)

we have K = ~———~
(Ng—NI

~ O(N).

For each group, we apply CMDS to compute the coordi-
nates of the group data, which costs O(N ;) computation
time. At each overlapping region, we apply QR factoriza-
tion to compute the affine transform, which costs O(N;)
computation time. Since the lower bound of N;is p+1, we
can assume that N, = ap for some constant a. Then the
total computation time is about
@)+ L op*) w OpN).  (7)
(a=1)p
Thus, when p <<N, the computation time of the SC-MDS
becomes O(p2N). Moreover, if p<+/N, the computa-

N-p ol
(o=1)p

tional complexity is smaller than O(vNN), which is the
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computational complexity for the fast MDS method pro-
posed by Morrison et al. [12]. When p is very large (say p?
> N), SC-MDS has no advantage in computational speed,
but it makes the computation feasible even when the
computer memory does not afford the MDS computation.
Furthermore, if we do not use CMDS as our default MDS
method but use the linear time algorithm [8] instead, then
we can further reduce the complexity of the SC-MDS
method to O(pN). This improvement makes application
of the MDS to large data sets feasible. Hence, data analysis
using SC-MDS can guarantee better accuracy than existing
non-metric MDS methods.

Results and Discussion
Simulation experiments
We simulate a spiral in two dimensions:

r=2627r<0<5rm

First, let us construct the reference coordinates X. Discre-

tize #into N-1 intervals and let ,= 27+ id0, dg = NSiLl At

each 6, k points are constructed with noise. The following

steps generate the data:

Construct two raw vectors ¢, and ¢,,

1 =291, ) €OSQ| ijp |+ Mir

qZ,i = 2q|_l/k_] Sinql_i/k_l + ni,
where n; is a random variable with normal distribution n;
~ N(0,1), for i = 1UEN. Then we add some p-2 dimen-
sional randomness into the coordinate matrix as follows.
LetZ = <0rjui,]->, u;j~N(0,1), fori = 1UEN and j = 1Up - 2,
where ¢ is the parameter to control the standard devia-
tion of random variables. The final reference coordinates
matrix X is

X =141, 4y Z]" = [x1, %50 %pn]s

where x; € Rr. So the distance matrix is D = (d; ]-> with d;; =
[|x; - ;|- In this simulation, p = 17 is used.

Fig. 1a is the 2D projection obtained by applying CMDS
to 2000 simulation points. Then, in the first application of
SC-MDS, we set the number of points in each group to N,
= 200 and the number of points in each intersection
region to N, = 30 such that the number of the overlapping
points is greater than the real dimension 17. All points in
each group are chosen randomly. In order to measure the
difference between classical MDS and SC-MDS, we use the
STRESS (Kruskal's goodness of fit index) to compute the

http://www.biomedcentral.com/1471-2105/9/179

error between the distance matrixes. The formula of
STRESS is

5 2
2 (dj,j~di,j)
1]
Sd7;
i,j

STRESS =

where d, ; refers to the distance matrix of the original data
and Eii, j refers to that for the SC-MDS reconstruction. In

this spiral example, the STRESS of computing errors for
SC-MDS is only 3.93 x 10-!4, and the STRESS for CMDS is
only 1.25 x 1015, These errors are here considered as
rounding errors. Thus, SC-MDS can reconstruct the con-
figuration as does CMDS; the result of our method (Fig
1b) is similar to the 2D projection in Fig. 1a. Because this
spiral example has only two essential dimensions, the 3rd
to 17th dimensions are considered as random perturba-
tions. If we reduce the number N, from 16 to 3 but keep

N, = 200, we can see that the 2D SC-MDS representation

keeps the shape of spiral but becomes more and more
blurred as N, decreases. At the same time, the STRESS

increases when N, decreases, as will be shown in Fig 2. In
Fig. 1c, we set N, = 200 and N, = 5 and the points in each

group are also chosen randomly. The performance is now
slightly worse than CMD due to dimension loss; the
STRESS here is 0.0398. In Fig. 1d, we set N, = 200 and N,

=5, and group points neighboring to each other into the
same group. It shows that the performance is totally bad -
the spiral structure is lost and the STRESS increases to
0.5232.

Figure 2 shows the correlation between STRESS and the
number of points in the overlapping region N,. There are
two lines. The solid line refers to points in each group that
are chosen randomly, while the dash line refers to points
in each group that are chosen from neighbors; all N, are
fixed to 200. Points in each line are the average of 20
repeats of STRESS computed with different randomly
choosing points in each group. We can see that the
STRESS of each line decays as N, increases. When N; is
larger than the real dimension of data, the STRESS is
almost zero. When N is smaller than the real dimension
of data, the performance of solid line is better than the
dash line. Without the afar information in each group, the
performance is worse. That is, randomly choosing points
in each group helps to reduce the error when N; is not
large enough.
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Computational error as a function of N,. The solid line refers to the case where the points in each group are chosen randomly,
while the dash line refers to the case where the points in each group are chosen from neighbors. In all cases, N, is fixed to 200.

In the same simulation example, we observed the rela-
tionship between error and the number of groups. When
Njis larger than the dimension of the data, like N;= 20, we
can reconstruct the configuration of the data well. The
number of groups of our grouping method does not affect
the STRESS and the average STRESS is ~10-12. Hence, SC-
MDS gives accurate results if we carefully control the
number of overlapping points and choose random points
in each group.

Next, we compare the speeds of non-metric MDS, CMDS
and SC-MDS. We create random vectors in a 20-dimen-
sion space, with the sample size ranging from 50 to 2000.

In Figure 3 the black line (non-metric MDS) and the blue
line (CMDS) are produced by Matlab default scripts, mds-
cale.m and cmdscale.m. The red line refers to our SC-MDS
method. We can see that the simulation result matches
our theoretical analysis.

Because of the hardware limitation to process CMDS, we
use only a set of 2000 sample points as the maximal sam-

ple size to demonstrate that SC-MDS performs as well as
CMDS when the number of data points (N) is not very
large. We give below an example of large N to show that
SC-MDS works well in a large data set that cannot be han-
dled by CMDS.

Gene Correlation Map

Gene correlation maps are used to represent the correla-
tions of genes such that genes with similar biological func-
tions or in the same biological pathway tend to be located
in the same neighborhood. It provides a prior probability
in many applications of genome research by Bayesian
methods. Since Affy U133A GeneChip is widely used in
many studies, we used genes listed in this chip and GO
descriptions on the Gene Ontology website to create the
gene correlation map. In this chip, there are 22,283 genes
and 2168 GO terms are used in the list of these genes.
Hence, we consider each gene a binary vector with length
of 2168. If the i-th term of the vector is one, then this gene
has the i-th GO description. There are 5781 genes without
any GO description so that these genes are not used to
compute the correlation with the genes with a GO descrip-
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Speed comparison among non-metric MDS, CMDS and SC-MDS. The SC-MDS method is denoted by the red line, the CMDS
method is denoted by the blue line, and the non-metric MDS method is denoted by the black line. The black and red lines are

produced by average of 20 repeats.

tion. Hence, the term-document matrix is reduced to the
size of 16502 x 2168.

To apply the CMDS to a distance matrix of 16502 x 16502
is impossible for current hardware. So we use SC-MDS to
randomly separate the 16,502 genes into 6 overlapping
subsets, where N; = 2200 and N, = 4500. Although the
essential dimension should be smaller then 2168, we still
use N; = 2200 to ensure accurate reconstruction. The QR
operation and SVD operation are available for this size. In
each subset, we compute the 4500 x 4500 distance matrix
and then compute the 3D MDS layout. Figure 4 is the 3D
layout of SC-MDS results on these 16,502 genes. In this
figure, two genes located closely have similar GO descrip-
tions. We use the Euclidian distance in this 3D layout to
measure the relationship between genes. For example,
gene probe IDs 220259_at, 220815_at, 221980_at,
201015_s_at, 209880_s_at, 219765_at, 203018_s_at,
205523 _at, 209879 _at, 218796_at refer to the same GO
description and they have the same coordinates in Figure
4. This gene correlation map is useful for many gene selec-
tion problems. Although we could not validate this result

by comparing it with CMDS, we can repeat the SC-MDS
procedure to see if we get consistent results among
repeats. We find that the values of STRESS between differ-
ent repeats are all small. This suggests that our method is
stable for this large data set.

Another way to check our method is to sample a subset of
genes to create the correlation map, for example, 4000
sampled genes. Then we can compare the performance
between CMDS and SC-MDS. We randomly sampled
4000 genes from the 16,502 genes, and then compute the
distance matrix corresponding to these genes. The CMDS
layout showed that there are 1106 dimensions in this
gene set. Then we applied SC-MDS to this distance matrix
with three different pairs (N, = 2200, N, = 2500), (N, =
1110, N, =2000) and (N;= 500, N, = 1000). We repeated
SC-MDS 10 times for each pair. Figure 5a is the 2D CMDS
layout. The STRESS between the original data and CMDS
is 1.796 x 10-15. Figure 5b is the 2D SC-MDS layout with
(N;=2200, N, = 2500), and its average STRESS compared
with the original data is 0.0138. Figure 5c is the 2D SC-
MDS layout with (N; = 1110, N, = 2000), its average
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Figure 4

The 3D layout of SC-MDS on 16,502 human genes. (N, = 2200, N, = 4500) In this correlation map, genes with similar biological
functions or in the same biological pathway tend to be located in the same neighborhood.

STRESS is 0.0140. Figure 5d is 2D SC-MDS layout with (N,
= 500, N, = 1000), and its average STRESS is 0.0282. We
can see that all the 2D structures are preserved, though less
well in Figure 5d where there is a substantial dimension
loss.

Gene expression clustering

The goal of gene expression clustering is to subdivide a set
of gene expressing profiles into clusters such that genes in
the same cluster share the same or similar patterns of
expression profiles. In the situation with high dimen-
sional data, researchers tend to obtain a manifold, which
is defined by the regression of the data. Because gene
expression data is typically noisy, by clustering the projec-
tion of data in this manifold, which is in a lower dimen-
sional space in comparison to the original data, a better
result can be obtained. In this section, we show that the
SC-MDS method can successfully transform a high
dimensional gene expression data set to a much lower
dimension and preserve the intrinsic information of the

original data. This transformation makes the clustering
algorithm faster to get a converged solution. Moreover,
the representation of these gene expression data in this
lower dimensional space reveals a better clustering result
in biological validation.

We use the a38-synchronized yeast cell cycle dataset [5].
There were 5006 genes in the data set, and each gene has
a 25 point-time-course expression profile. However, this
expression profile contained missing values, and we input
these missing values by the KNN imputation method
[13]. To avoid the synchronized block effect, we remove
the first two points of the time course data, so that the
expression profiles for each gene are left with 23 time-
course points. We then (1) compute the pair-wise dissim-
ilarity of genes from each subset that are randomly chosen
by the sufficient condition of SC-MDS; (2) apply SC-MDS
to the subsets to reconstruct the new coordinate in the fea-
ture space; and (3) cluster genes in this feature space.
Because CMDS cannot handle large samples and thus can-
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2D MDS comparison of 4000 GO samples. a The 2D CMDS projection of 4000 sampled genes of Affy UI33A GeneChip. b The
2D layout of an approximate solution by SC-MDS with no dimension loss (N, = 2200, N, = 2500). The points in a group are
chosen grandomly. ¢ The 2D layout of the approximate solution by SC-MDS with loss of 1058 dimensions (N;= 1110, N, =
2000). The points in a group are chosen randomly. d The 2D layout of the approximate solution by SC-MDS with loss of 1668
dimensions (N, = 500, N, = 1000). The points in a group are chosen randomly.

not be used to reduce the dimension when the sample size
is large, we do not consider the clustering results in the
reduced dimension space derived from CMDS. Instead,
we compare the clustering results in the reduced dimen-
sion space derived from SC-MDS with the results obtained
in the original (non-reduced) space.

Using the standard Euclidean distance to measure the
pair-wise dissimilarity of genes, we process the SC-MDS
method such that the data points are split into 61 groups,
N, =100 and N, = 200.

Note that instead of computing the pair-wise dissimilarity
for every pair, we need to compute only the pair-wise dis-
similarity in each group. This reduces the computational
complexity of all processing to O(N). We choose N, to be

greater than the length of original time course data points
to satisfy the sufficient condition for an accurate layout.

Using a PC with CPU 1.67 GHz, 2G memory and Matlab
R14 as the testing software, we complete the analysis with
the CPU time of ~46 seconds. From the degradation rate
of the distribution of standard deviations of output coor-
dinates (Figure 6) the derived from the average of 30
repeats with different randomly grouping the elements of
each subgroup, there are turning points at the 4th, 7thand
11th coordinates; after the 11th coordinate, the degrada-
tion is very small. By examining the second order differ-
ence of Figure 6, a local extremum occurs at 4th, 7th and
11th coordinates. Because the standard deviation decreases
smoothly after the 7t coordinate, and because the varia-
tion of the concavity in the 7t coordinate is larger than
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The standard deviation of each coordinate of the layout representation. The first turning point occurs at dimension 4, the sec-
ond turning point occurs at dimension 7, and after dimension || the standard deviation decays smoothly.

those at the 4th and 11t coordinates, we assume that the
variables after dimension 7 are noisy and can be removed
for dimension reduction. Hence, we lay out these 5006
genes on a 7-dimensional space. In this space, two genes
located nearby will have similar expression profiles in this
dataset. Then we perform the K-means clustering method
to compare the clustering result between the original
expression data and our low dimensional layout.

Note that K-means usually get a local optimal solution.
When we want to obtain a reliable solution, we need to
repeat K-means several times and choose the best solu-
tion. Or we can define a function to measure the quality
of K-means solutions, and then apply the simulated
annealing to get the optimal solution. Thus, obtaining a
reliable K-means solution will take time. Fortunately,
applying K-means in the reduced dimension space are
more stable than applying K-means in the high dimen-
sion space. That is, the iteration of K-means in the reduced
dimension space converges faster than in the high dimen-
sion space. To demonstrate how dimension affects the sta-
bility of K-means, we repeat K-means on the yeast cell

cycle data in the SC-MDS space with different restricted
dimensions, until K-means obtain 50 converged solu-
tions. Figure 7 shows that the CPU times are inversely pro-
portional to the data dimension. The time K-means
requires in a seven dimensional space is ~1/3 of a 23
dimensional space. Hence dimension reduction acceler-
ates the K-means solution. However, although applying
K-means in a low dimension space is faster than in a high
dimension space, loss of too many dimensions will dis-
tort the distance relationship between data points, thus
distorting the clustering result. Hence, the dimension of
reduced space should be determined carefully.

Before applying K-means clustering, we determine how
many clusters we should use as the parameter in the K-
means process. We search the number of clusters in the K-
means process from 10 to 75. Since the clustering result of
K-means depends on the initial guess of the centroids of
the sets, we repeat 30 times the K-means process and use
the Bayesian Information Criterion (BIC) score [14] to
pick up the best clustering index from the mean of these
30 clustering results. In each K-means process, if it does
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Figure 7
K-means convergence time vs. data dimension.

not reach convergence in 100 iterations, we reset the ini-
tial values of the cluster centers and re-run the K-means
process until the process converges. We set the upper
bound for re-running time to be 5. If the re-running time
reaches this upper bound, we choose the final cluster
index by the best cluster sets from the previous iteration
results.

The BIC score is computed by the following formula:

n k
BIC = zlog zPr(xi [ej)Pr(e)) |- @108’(")'
i=1 j=1

where n is the number of data points, k is the number of
clusters, ¢; is the j-th model and p is the length of data
points. We assume that each cluster from the K-means
procedure is a multivariate normal distribution. The first
term of the formula is the log-likelihood and the second
term is penalty. When the data fit the model well, the term
of log-likelihood becomes larger. We assume that the
standard deviations of the multivariate normal distribu-
tions are the same, so that there are (k+1)p parameters, k
means, and one standard deviation in the p dimensional

space, in these k clusters (models). If a model becomes
complicated, i.e., the number of the model parameters
becomes large, the BIC score will decay. In Fig. 8, the dash
line is reduced by taking the average of 30 repeats and the
solid line is reduced by taking the maximal value of 30
repeats. We can see that the maximal value of solid line
occurs in 45 clusters and the maximal of the dash line
occurs in 61 clusters. Hence, we partition 5006 genes into
61 clusters in our example.

We cluster the original data set and the reduced 7-dimen-
sional space data set from SC-MDS separately, and each
data set gives rise to 61 distinct gene clusters. Then we
input gene names from these clusters to the MIPS Func-
tional Catalogue Database. The outputs indicate that 13
clusters of the original clustering data set are significant to
the cell cycle (p-value is smaller than 10-3). In contrast, 14
clusters of the 7-dimensional data set are significant to the
cell cycle function. Twenty pairs of almost matched clus-
ters, which consist of highly similar genes, are found by
comparing the clusters from the two data sets. Nine clus-
ters of the 7-dimensional data set are not annotated to any
function, while 13 clusters of the original clustering data
set are not annotated. The details of these paired clusters
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The curve of BIC Scores vs. number of clusters in K-means. The solid line denotes the max of 30 repeats of the BIC score. The
dash line denotes the average of 30 repeats of the BIC score. The maximal value of the average curve occurs at 61 clusters.

After 61 clusters the average curve starts decaying.

are shown in Additional file 1 and file 2. There are many
unpaired clusters, which contain lower proportions (the
match rate < 80%) of similar genes. In Figs. 9 to 11, we
show these lower matched pairs that are related to cell
cycle. In Figs. 9 and 10 the biological validation shows
that these clusters obtained from SC-MDS are better than
the corresponding clusters from the original 23-dimen-
sional space data. In Fig. 9(a), 45.5% genes are indicated
to have cell cycle function in the cluster obtained in the
reduced space, and its p-value is 1.1 x 10. In Fig. 9(b),
40% genes are indicated to have cell cycle function in the
cluster obtained in the original space, and its p-value is 1.4
x 108, There are, however, another 37 genes that are
included in the corresponding cluster in the original
space. Nine of them have significant functions in DNA
processing. Conversely, there are another 17 genes that are
included in the corresponding cluster in the reduced
space. Six of them have significant function in mitotic cell
cycle and cell cycle control. In Fig. 10, 51.8% of the genes
in the 32t cluster are annotated to have cell cycle func-
tions in the cluster of K-means in the reduced space, while

the genes in the corresponding cluster in the original
space, the 29t cluster, 42.3% are annotated to have cell
cycle function. Compare the difference between Fig. 10(a)
and 10(b). Five genes included in the cluster of the origi-
nal space have no significant in the cell cycle function.
Conversely, 7 genes included in the cluster of the reduced
space include 3 genes (YHR152w, YML128c and
YOR265w) that are significant in meiosis. In Fig. 11,
45.8% of the genes in the 54 cluster of the reduced space
are annotated to have cell cycle, its p-value = 7.27 x 1014;
48% of the genes in the 58 cluster of the original space are
annotated to cell cycle function, its p-value = 2.03 x 107,
We can see that in this pair, the cluster in the reduced
space is worse than that in the original space. The other
comparisons between the clusters from the reduced 7-
dimensional space data and from the original space data
are shown in Additional file 1 and file 2. Combine the
above three cases and twenty pairs that are almost
matched, we can see that applying K-means to the SC-
MDS reduced space performs at least as well as in the orig-
inal data set. SC-MDS did not distort the pairwise relation-
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K-means on reduced space, cluster number is 20, 83 genes
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K-means on original space, cluster number is 59, 103 genes
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Comparison of the clustering results in the reduced space and in the original space (l). (a) The 20t cluster of K-means in the 7-
dimensional space from the SC-MDS method. 45.5% of the genes in this cluster are annotated cell cycle functions. (b) The 59t
cluster of K-means in the original 23-dimensional space. 40% of the genes in this cluster are annotated cell cycle functions. The
blue lines are gene expression profiles and the red line indicates the average of these expression profiles.

ship between data points, and it speeds up the analysis
with accuracy preserved.

Conclusion

Our new method reduces the computational complexity
from O(N?3) to O(N) when the dimension of the feature
space is far less than the number of genes N, and it suc-
cessfully reconstructs the low dimensional representation
as does the classical MDS. Its performance depends on the
grouping method and the minimal number of the inter-
section points between groups. Feasible methods for
grouping methods are suggested; each group must contain
both neighboring and far apart data points. Our method
can represent a high dimensional large data set in a low
dimensional space not only efficiently but also effectively.
This Split-and-Combine method makes the parallel com-
putation of MDS feasible. If samples increase to the level

that one computer could not handle, we can split data to
several subgroups, assign them to different computers to
compute the MDS, and then collect the results and com-
bine them into one. In the cell cycle example, we showed
that the clustering results of dimension reduction are
more stable than the results in the original space. Hence,
SC-MDS has overcome the curse of dimensionality in
MDS.

Availability and requirements
e Project name: SCMDS

¢ Project home page: http://idv.sinica.edu.tw/jengnan/

scmds/scmds.html

e Operating system(s): OS Portable (Source code to work
with many OS systems)
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Comparison of the clustering results in the reduced space and in the original space (ll). (a) The 32t cluster of K-means in the
7-dimensional space from SC-MDS method. 51.8% of genes in this cluster are annotated cell cycle functions. (b) The 29t clus-
ter of K-means in the original 23-dimensional space. 42.3% of genes in this cluster are annotated cell cycle functions.

¢ Programming language: Matlab 6.0 or higher
® Licence: GNU GPL

e Any restrictions to use by non-academics: License
needed. Commercial users should contact jeng-
nan@gmail.com
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Additional material

Additional file 1

Function annotation of original space clustering. This file provided the
function annotation of the best K-means clustering result in data pre-
sented by original space. Each column refers to a cluster. If the cluster has
no efficient annotated function, then the corresponding column is empty.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-179-S1 xls]

Additional file 2

Function annotation of reduced space clustering. This file provided the
function annotation of the best K-means clustering result in data pre-
sented by reduced 7-dimensional space. Each column refers to a cluster. If
the cluster has no efficient annotated function, then the corresponding col-
umn is empty.

Click here for file
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7-dimensional space from the SC-MDS method. 45.8% of genes in this cluster are annotated cell cycle functions. (b) The 58th
cluster of K-means in the original 23-dimensional space. 48% of genes in this cluster are annotated cell cycle functions.
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