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Abstract
Background: In the past decades, various protein subcellular-location (SCL) predictors have been
developed. Most of these predictors, like TMHMM 2.0, SignalP 3.0, PrediSi and Phobius, aim at the
identification of one or a few SCLs, whereas others such as CELLO and Psortb.v.2.0 aim at a broader
classification. Although these tools and pipelines can achieve a high precision in the accurate prediction of
signal peptides and transmembrane helices, they have a much lower accuracy when other sequence
characteristics are concerned. For instance, it proved notoriously difficult to identify the fate of proteins
carrying a putative type I signal peptidase (SPIase) cleavage site, as many of those proteins are retained in
the cell membrane as N-terminally anchored membrane proteins. Moreover, most of the SCL classifiers
are based on the classification of the Swiss-Prot database and consequently inherited the inconsistency of
that SCL classification. As accurate and detailed SCL prediction on a genome scale is highly desired by
experimental researchers, we decided to construct a new SCL prediction pipeline: LocateP.

Results: LocateP combines many of the existing high-precision SCL identifiers with our own newly
developed identifiers for specific SCLs. The LocateP pipeline was designed such that it mimics protein
targeting and secretion processes. It distinguishes 7 different SCLs within Gram-positive bacteria:
intracellular, multi-transmembrane, N-terminally membrane anchored, C-terminally membrane anchored,
lipid-anchored, LPxTG-type cell-wall anchored, and secreted/released proteins. Moreover, it distinguishes
pathways for Sec- or Tat-dependent secretion and alternative secretion of bacteriocin-like proteins. The
pipeline was tested on data sets extracted from literature, including experimental proteomics studies. The
tests showed that LocateP performs as well as, or even slightly better than other SCL predictors for some
locations and outperforms current tools especially where the N-terminally anchored and the SPIase-
cleaved secreted proteins are concerned. Overall, the accuracy of LocateP was always higher than 90%.
LocateP was then used to predict the SCLs of all proteins encoded by completed Gram-positive bacterial
genomes. The results are stored in the database LocateP-DB http://www.cmbi.ru.nl/locatep-db[1].

Conclusion: LocateP is by far the most accurate and detailed protein SCL predictor for Gram-positive
bacteria currently available.
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Background
In bacteria, secreted proteins are involved in stress sens-
ing, substrate binding, cell communication, microbe-host
interaction, adhesion, and other essential processes rele-
vant to the environment and life style of the organisms.
The secreted proteins are exported via various mecha-
nisms and are retained by the bacterial cell via various
interactions or released to the medium (Figure 1A). To
identify the "secretome" [2] on a genome scale, subcellu-
lar proteomic studies have been carried out [3-7].
Although these experimental methods have contributed
greatly to our knowledge of the subcellular location (SCL)
of a variety of proteins, until now their scope has
remained limited. In contrast, high-throughput computa-
tional methods for prediction of SCL sequence character-
istics can be easily applied to every species whose genome
has been sequenced.

Computational methods have gained considerable preci-
sion in the past decades. Initial tools focussed on detect-
ing the presence, type and location of protein
transmembrane segments, including signal peptides for
targeting and translocation of proteins. One of the very
first SCL prediction methods was introduced by Kyte and
Doolittle [8] in 1982 with their amino acid hydropathy
index. Since the late 90's machine-learning methods
became more prominent, including neural networks [9-
11], hidden Markov models (HMM) [12-14], support vec-
tor machines [2,15-23], Bayesian networks [24,25], and
combined algorithms [26-33]. Moreover, present studies
tend to combine different resources and methods [34-37].
For example, Chou et al. [38] combined gene ontology
and functional domain databases, Shatkay et al. [39] com-
bined text search and sequence data, and Marcotte et al.
[40] combined protein homology and phylogenetic pro-
files in their studies.

Unfortunately, as a result of the trade-off between specifi-
city and accuracy, computational methods will always be
prone to error. Moreover, the number of false predictions
increases even further when the SCL-related sequence
characteristics have not been properly identified. For
instance, among the Sec-dependent exported proteins,
current predictors have severe difficulties to distinguish
the proteins that are cleaved from the cell membrane by
the type I signal peptidase (SPIase) – in this paper we will
refer to these proteins as "secreted" – from a relatively
large group of membrane-anchored proteins that also
contain a putative SPIase-cleavage site but are not cleaved
– in this paper we will lump these proteins in the category
"N-anchored" [41-43].

As knowledge on the precise SCL of a protein is especially
important to judge the biological nature and role of its
activity, we constructed a new SCL prediction pipeline

called LocateP. Our pipeline is geared to identify the
detailed SCL of bacterial proteins by combining existing
and novel prediction tools. Special effort was made to
increase the accuracy of the prediction of N-anchored pro-
teins. The version of LocateP presented here focuses on
SCL prediction of proteins from Gram-positive bacteria.

Results
The construction of the SCL-prediction pipeline LocateP
A major drawback of most current sub-cellular location
(SCL) predictors is that they are not aimed at the predic-
tion of very specific SCLs but merely at the rather broad
locations intracellular, membrane bound/associated and
extracellular, in line with the Swiss Prot classification sys-
tem. We therefore constructed a SCL predictor pipeline
LocateP, that distinguishes 7 SCLs and 3 targeting path-
ways that can be identified in Gram-positive bacteria, with
a focus on extracellular SCLs (see Figure 1A).

The LocateP pipeline was designed such that it mimics the
protein secretion process in Gram-positive bacteria. The
pipeline structure can be categorized as follows: (1) secre-
tion pathway prediction, (2) transmembrane-segment
detection, (3) signal peptide identification, and (4) cleav-
age and retention signal recognition. The LocateP pipeline
employs existing SCL prediction tools (Table 1) as well as
our own new and more accurate methods for the predic-
tion of lipoproteins, Tat-secreted, N-terminally anchored,
C-terminally anchored and secreted proteins (see Meth-
ods). LocateP uses at least 2 prediction methods for each
SCL, in order to increase prediction accuracy. The selec-
tion criteria imposed on these methods were derived from
literature. The LocateP pipeline is depicted in Figure 2; its
construction is described in more detail in the "Methods"
section and in the legend of Figure 2. A detailed flow chart
is presented in Additional file 1.

Making the distinction between N-anchored and secreted 
proteins containing a SPI-cleavage site
In the past, the sequence corresponding to the signal pep-
tide has been subdivided into three distinct regions: the N,
H and C regions [28,44-46] (Figure 1B). Most of the mem-
brane proteins with a single N-terminal TM anchor are
easily identified as they do not have a predicted cleavage
site for signal peptidases. However, as mentioned above,
the prediction of SCL of proteins containing a putative sig-
nal peptidase type I (SPIase) cleavage site appears particu-
larly difficult for current SCL predictors. Although many
Sec-exported proteins are cleaved by the SPIase, a consid-
erable number of proteins is not cleaved and remains
membrane-anchored via the N-terminus [41].

To identify the features that determine cleavage, the mul-
tiple sequence alignments of the signal peptides from
experimentally validated N-anchored and secreted pro-
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(A): Classification of protein SCLs in Gram-positive bacteriaFigure 1
(A): Classification of protein SCLs in Gram-positive bacteria. The secreted proteins can be divided into the following 
subgroups: (i) N-terminal hydrophobic tail anchored (N-anchored), (ii) C-terminal hydrophobic tail anchored (C-anchored), 
(iii) covalent lipid-anchored, (iv) covalently/non-covalently cell-wall anchored, (v) secreted/released (defined as proteins that 
are Sec-/Tat-secreted and cleaved by the signal peptidase I), and (vi) non-classically secreted/released proteins via minor path-
ways [120, 163]. Based on the Swiss Prot classification system the SCLs could be categorized into: Cytoplasmic, Membrane 
(multi-transmembrane, N-/C-anchored), Cell wall (LPxTG-anchored) and Extracellular (lipid-anchored, secreted, bacteriocin-
like) proteins. (B): The structure of known signal peptides. The overall structure of Tat- and Sec-dependent signal pep-
tides is commonly conserved as distinct consecutive N, H and C regions. The N region is the start of the protein containing 
positively charged residues. The H region follows the N region and is a string of consecutive hydrophobic residues which can 
form an α-helix in the membrane. The C region contains the signal peptidase cleavage signals. Known cleavage/retention signals 
include the AxAA type I SPase cleavage site [163, 172], the L-x-x-C (so-called lipobox) type II SPase cleavage site [157] and the 
AxA Tat-substrate cleavage site [88, 90, 173]. The LPxTG-type motif is a C-terminal sorting signal which is involved in the cov-
alent attachment of proteins to the peptidoglycan of the cell wall. The signal peptide of proteins targeted for minor secretion 
pathways does not follow the N-H-C structure [2, 125, 163].
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teins [41] containing a putative SPI cleavage site in Bacillus
subtilis were analyzed. To enhance the signal, orthologous
sequences from other Bacilli were added in the analysis
(see Materials and Methods). The Weblogos [47] of the
two collections of sequences are given in Figure 3A. No
distinguishing pattern could be detected by eye. There-
fore, a series of HMMs were constructed based on the
sequence alignments of the N-anchored and secreted pro-
teins. Nine pairs of HMMs were built for sequences sur-

rounding the putative SPI cleavage site. Different numbers
of residues on either side of the putative cleavage site were
included in the models in order to investigate the roles of
the H-region and the C-region in cleavage-site recogni-
tion. When the HMM pairs were applied to the two respec-
tive sets of sequences, it appeared that the HMM pair
containing an equal number of residues on either side of
the putative cleavage site performed best in predicting cor-
rectly whether the cleavage site was genuine or not (Figure

Table 1: Recent methods for protein SCL prediction

Speciality Tool Reference

Membrane protein predictor a TMHMM [12]
Both transmembrane helices and signal peptide predictor a Phobius [14]
Signal peptide predictor a SignalP [18]

a Predisi [98]
Signal peptidase type I cleavage site motif [41]

Lipoprotein predictor b LipoP [151]
a Signal peptidase type II cleavage site motif [41, 157]

Tat-secreted protein predictor b TatP [86]
a Tat-find.v.1.2 [174]

Protein subcellular location classifier b Psortb.v.2.0 [17]
b CELLO [20]
b Gpos-PLoc [28]

Augur [27]
Minor pathway secreted protein predictor a Bagel [149]

SecretomeP 2.0 [128]
Mycobacteria protein SCL predictor b TBpred [95]

a, Tools included in the LocateP pipeline
b, Tools used for comparison and validation of LocateP

Flowchart of the LocateP pipelineFigure 2
Flowchart of the LocateP pipeline. Firstly, the possibility of being secreted by the Tat pathway was calculated by combin-
ing Tat-find v1.2 [91] and our Tat-specific HMMs (RR-HMM, CS-HMM). Bacteriocin-like proteins were identified using Bagel 
[149]. Secondly, Phobius [14], PrediSi [98], SignalP 3.0 [18] and TMHMM 2.0 [12] were combined to identify transmembrane 
regions. Those proteins without any predicted TM segments were considered intracellular, whereas those with TM segments 
were divided into multi-TM membrane proteins, N-anchored membrane proteins or secreted/released proteins (single N-ter-
minal TM segment, possibly signal peptide), and C-anchored membrane proteins (signal peptide and single C-terminal TM seg-
ment). Thirdly, a sortase-substrate HMM [165] was used to distinguish LPxTG-type peptidoglycan-anchored proteins from C-
anchored membrane proteins. Subsequently, signal peptidase type II (SPII) substrates were predicted by combining existing 
lipoprotein motif models [41, 157] and new lipoprotein HMMs. The remaining proteins were classified into the categories 
secreted/released or N-anchored membrane proteins. See Methods and additional file 1 for more details. Abbreviation: A-S = 
Anchored-Secreted; TMS = TransMembrane Segment; SP = Signal Peptide; C/N-TM = C/N-terminally transmembrane 
anchored; LPxTG = LPxTG cell-wall anchored.
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3B). The individual HMMs were not mutually exclusive
for either of the two sets of sequences. However, when the
scoring of the two HMMs of the pair was combined into a
scoring matrix, the experimentally determined non-
cleaved and cleaved sequences could be distinguished
almost perfectly. The scoring matrix was included in
LocateP; details of the matrix are described in the legend
of Figure 3 and in the "Methods" section.

Initial validation of LocateP
Ideally, the performance of the LocateP pipeline should
be checked with large experimentally validated data sets.
Unfortunately, the availability of such large data sets is
rather limited. LocateP was tested first with the experi-
mental data set of Tjalsma et al. [41] which was used to
create the HMM pair that distinguishes the N-anchored
and secreted proteins containing a putative SPI-cleavage
site. LocateP was able to distinguish these proteins with an
accuracy of >90%. Then the performance of LocateP was
tested on ten other data sets. These sets were extracted

from literature describing other SCL prediction tools.
LocateP performed extremely well on these sets, as the
prediction accuracy was always higher than 90% (Table
2).

A second check was done with data collected from Trans-
portDB [48]. Based on expert knowledge on the composi-
tion and location of various transport systems and their
functional components, the SCL prediction of 1336 trans-
port-related proteins from Bacillus subtilis 168, Bacillus
cereus ATCC14579 and Lactobacillus plantarum WCFS1 was
verified (Table 3). For a difficult group like the substrate-
binding proteins of ABC transport systems, LocateP iden-
tified 113 of 124 proteins in a correct SCL for substrate
binding (96 lipoproteins, 6 secreted and 11 N-anchored
proteins) [49-59]. For the other groups of transport-
related proteins, the predicted SCL fitted the biological
role of the transport proteins in ~98% of the cases.

Distinguishing between secreted and N-anchored proteinsFigure 3
Distinguishing between secreted and N-anchored proteins. Tjalsma et al. [41] have identified 33 N-anchored and 36 
secreted proteins from Bacillus subtilis (by 2D gel electrophoresis) which have a putative SPI-cleavage site motif in the C-region 
that follows the transmembrane helix H-region (see Fig. 1B). (A): A sequence composition chart, made using WebLogo [47], 
based on multiple-sequence alignment of the H- and C-regions (see Fig. 1B) of the N-anchored and secreted protein sets. The 
red arrow indicates the cleavage position of true SPI-site motifs (see Figure 1B), and the green dashed arrow represents the 
corresponding position in N-anchored proteins that is not cleaved. (B): The specificity of HMMs of different lengths containing 
the putative cleavage site A* = the Alanine after which cleavage takes place. Mod1: residues -9 to A*; Mod2: residues -11 to A*; 
Mod3: residues -14 to A*; Mod4: residues -8 to +3 of A*; Mod5: residues -13 to +10 of A*; Mod6: residues -8 to +17 of A*; 
Mod7: residues -3 to +10 of A*; Mod8: residues -3 to +17 of A*; Mod9: residues +1 to +25.
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A third less quantitative check included a comparison of
the LocateP predictions for all N-anchored and secreted
proteins of the Bacillus subtilis genome with their NCBI
functional annotations (Additional file 2, 3 and 4). Nearly

all of the predictions appeared to make biological sense
according to literature: most of the predicted N-anchored
proteins were annotated to be involved in processes that
are related to the cell-envelope, such as cell division, trans-

Table 2: Comparison of the performance of LocateP with other SCL prediction tools. The entry in each cell indicates the recall of the 
method with respect to the data in the test-set (TS). * indicates that the test data were extracted from experimental studies. N/A 
indicates that a certain tool was not applied to the test sets because that set could not be treated appropriately by the tool. The size of 
the test sets (TS) is indicated in brackets and the relevant literature is mentioned in the Table legend.

Comparison of LocateP and other SCL prediction tools

Methods TS 1 (171) TS 2 (1077) TS 3 (236) TS 4 (36) TS 5 (78) TS 6 (43) TS 7 (47) TS 8 (103)

LocateP 98.8% 99.4% 97.5% 97.2% 91.0% 95.7% 97.9% 98.1%
LipoP N/A 96.8% N/A N/A 89.4% 95.7% N/A
SignalP 3.0-NN 99.3% 98.3% 97.2% 25.6% N/A N/A N/A
SignalP 3.0-HMM 99.4% 96.6% 97.2% 20.5% N/A N/A N/A
Phobius 98.8% 96.6% 97.2% 42.3% N/A N/A 96.1%
Predisi 99.4% 93.2% 94.4% 37.2% N/A N/A N/A
TMHMM N/A 99.3% N/A N/A N/A N/A N/A 97.1%

Psortb v.2.0 N/A N/A 49.2% 36.1% 10.3% (M)
1.3% (E)

18.6% (M)
4.7% (E)

10.6% (M)
4.3% (E)

N/A

Cello N/A N/A 82.6% 80.6% 75.6% (M)
8.0% (E)

61.7% (M)
16.3% (E)

68.1% (M)
27.7% (E)

N/A

Comparison of LocateP, Tat-find v1.2 and TatP in the prediction of Tat-secreted proteins

Methods TS 3+ TS 4 (272) TS 9a (713) TS 9b (632)

TatP 92.8% 99.6% 96.5%
Tat-find v1.2 94.9% 98.6% 93%
LocateP 93.6% 99.9% 98.4%

Comparison of LocateP, Cello and Psortb v2.0 based on data sets extracted from Swiss-Prot

Methods TS10a (196) TS10b(129) TS10c(108) TS10d(14) TS11a (340) TS11b(60) TS11c(402) TS11d(50)

LocateP 98% 97% 80.6%e 84%f 97.4% 96.7% 86.1% 86%g

Psortb v.2.0 93.9% 91.7% 79.6% 50% 89.1% 6.7% 81.1% 80%
CELLOd 97% 99.2% 97.2% 57.1% 94.1% 56.7% (E)

43.3% (M)
87.6% 94%

TBPredh N/A N/A N/A N/A 94.71% 68.33% 87.81% 50%

The test sets are: TS1 [175], TS2 [98]NGP = Cytoplasmic; TS3 [98]PGP, TS4 [41]* = Secreted; TS5 [41]*a = N-anchored; TS6 [157]*, TS7 [151]c [41]b* 
= Lipid-anchored; TS8 [175] = Membrane; TS9a [86]TestRR = Cytoplasmic; TS9b [86]TestRR = Membrane; TS 10a [28]Test,Training = Cytoplasmic; TS 10b 
[28]Test,Training = Membrane; TS 10c [28]Test,Training = Extracellular; TS 10d [28]Test,Training = Cell wall; TS11a [95]Training = Cytoplasmic; TS11b [95]Training 

= Lipid-anchored; TS11c [95]Training = Membrane; TS11d [95]Training = Secreted.
Abbreviations: TS: test set; M: Membrane; E: Extracellular; Test: test set of this article; Training: training set of this article; NGP: negative training set 
containing only Gram-positive bacterial proteins; PGP: positive training set containing only Gram-positive bacterial proteins; RR: the proteins 
contain twin-arginine residues in the initial 35 residues.
a: 30 proteins of this set contained putative SPI-cleavage site and were included in LocateP training process
b: After removing redundancy, 47 proteins were left in this set
c: The set contains both Gram-positive and Gram-negative bacterial proteins
d: Only the predictions with highest score were taken
e: 17 proteins in this test set were either proven to be secreted or they were found to be secreted via minor secretion pathways. LocateP focuses 
on the prediction of major secretion systems, therefore these proteins were predicted as "intracellular", which meant that no classical signal 
peptides were found in these proteins.
f: Most of the proteins in this set are associated on the cell wall via non-covalent interactions such as protein-protein interaction.
g: 23 out of 50 proteins in this set were predicted as "N-anchored" proteins by LocateP, indicating that these proteins could be secreted via Sec-
pathway but remained attached to the cytoplasmic membrane of the cell.
h: among the support-vector machines involved in TBPred only the best performance with the appropriate protein class was taken.
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port, cell-envelope biogenesis, mobility, competence, sig-
nal transduction, protein turnover, etc; most predicted
secreted proteins were indeed known to be secreted
enzymes such as extracellular carbohydrases [60], alkaline
phosphatases [61,62], metalloproteases [63], neutral pro-
teases, and subtilisin-family proteases [64].

Further validation and comparison of LocateP with other 
tools and pipelines
Recently, Gardy et al. [44] have compared most of the cur-
rent SCL classifiers, and some tools showed excellent per-
formance. We compared the performance of LocateP to a
selection of these tools, including the individual SCL pre-
dictors and other general integrative SCL classifiers that
were considered best (Table 2).

On N-anchored, secreted, lipid-anchored and multi-transmembrane 
protein prediction
LocateP and several individual SCL prediction tools were
applied to the same collection of reference data sets.
LocateP showed similar or higher recall to PrediSi, Pho-
bius and SignalP 3.0 at signal peptide detection, respec-
tively (Table 2, test sets 1, 2, 3, 4). LocateP performed
clearly better than all other tools at predicting lipopro-
teins and multi-transmembrane proteins (Table 2, test sets
6, 7, 8). For the group of N-anchored proteins, LocateP
clearly outperformed all other tools with a much higher
prediction specificity and accuracy (Table 2, test set 5).

As has been noted by others [12,14,42], the N-anchored
membrane proteins form an ambiguous group with
respect to the location of their biological activity, i.e. out-
side or inside the cell. Various N-anchored proteins are
actually active at the cytoplasmic side of the bacterial cell
membrane [65-75]. Due to the lack of reliable distin-
guishing algorithms and experimental data, no reliable
prediction methods for these "outside-in" proteins are
available yet [12,29,43,76-78]. As a result, in the current
version of LocateP, proteins are only annotated as "N-ter-
minally anchored"; most are presumed to function out-
side the cell, while some might have intracellular activity.
A few of the known intracellular cases are indicated in
Additional file 2.

On Tat-secreted protein prediction
Recent research pointed out that the Tat-export pathway
plays an important role as a parallel protein secretion

pathway to the Sec-pathway in some Gram-positive
organisms [79-85]. Unfortunately, Sec-signal peptide
detectors have a high false-negative prediction rate on Tat-
substrates [86]. Therefore, we considered it necessary to
include a Tat-secreted protein prediction tool in the
LocateP pipeline, and we combined two newly created
Tat-secreted protein-specific HMMs (see Methods) with
Tat-find v.1.2 for the SCL prediction of these proteins. Tat-
signal peptides are known to have an almost invariable
double Arg or Lys+Arg motif (RR-motif) [87-90] upstream
of the transmembrane segment. It appeared important
that the Tat-secreted protein predictors can discriminate
the Tat-signal peptides from sequences (especially trans-
membrane helices) that contain consecutive positively
charged residues.

We compared the performance of LocateP, TatP and Tat-
find v1.2 on the proteins containing a RR/RK pattern in
their N-terminus (test sets 3, 4 and 9). LocateP clearly per-
formed better than the other two specific tools when
tested with intracellular and membrane proteins sets, and
thus showed an excellent capability of Tat-signal peptide
detection (Table 2). Moreover, it appeared that TatP and
Tat-find v1.2 predicted several proteins to be secreted via
the Tat-pathway in 22 species that apparently lack the rel-
evant pathway genes [91], whereas LocateP did not find
any Tat-pathway substrates in those species. Thus, LocateP
showed the best overall performance among the Tat-path-
way prediction tools for gram positive bacteria.

Comparing LocateP and other integrative SCL classifiers
According to the comparative study of Gardy et al. [44],
CELLO [20] is one of the best SCL classification pipelines.
We therefore evaluated the performance of LocateP as an
integrative SCL classifier by comparing it to CELLO and
the widely used pipeline Psortb.v.2.0 [25]. Other pipe-
lines like SubLoc [92], LOCtree [93], Proteome Analyst
[94], P-CLASSIFIER [33] and PSLpred [36] were not
selected because they either do not provide prediction of
membrane proteins, or are tailored for Gram-negative
bacteria, or in the best case showed similar performance
to Psortb.v.2.0 or CELLO. Recently, a SCL prediction tool
called Gpos-Ploc [28] was published that classifies Gram-
positive proteins. LocateP was not compared to Gpos-Ploc
because its web server accepts only one sequence per
search. Moreover, the overall accuracy of the tool is
reported to be only ~85% [28].

Table 3: Validation of LocateP predictions of transporter systems using the annotation in TransportDB

Species Number of transport-related proteins with identified SCL LocateP accuracy

Bacillus subtilis 168 426 98.2%
Bacillus cereus ATCC14579 571 97.5%
Lactobacillus plantarum WCFS1 373 98.8%
Page 7 of 17
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LocateP had an accuracy lower than CELLO (Table 2)
when tested with data extracted from the Swiss-Prot data-
base (test set 10 [28]). However, when compared using
experimental data (test sets 3, 4, 5, 6, 7), CELLO and
Psortb v2.0 showed dramatically poor prediction rates
(Table 2). This poor performance relates to the fact that
the training data of CELLO and Psortb v.2.0 were from the
Swiss-Prot database (i.e., part of test set 10 and 11). This
database does not distinguish between N-anchored,
secreted and lipoproteins, and at the same time the mem-
bers of these groups are distributed over two general
classes: "membrane" and "extracellular". Thus, in essence
the poor performance of CELLO and Psortv.b.2.0 is a con-
sequence of the less-specific classification in Swiss-Prot
(Table 2). Vice versa, the lower accuracy of LocateP on the
Swiss-Prot data is related to the inconsistency in the clas-
sification.

TBPred [95] is a SCL classifier that was especially designed
for mycobacteria, based on the idea that organism-specific
methods might have higher accuracy [96,97]. We com-
pared LocateP with TBPred using the training data of
TBPred (test set 11). Surprisingly, LocateP showed consid-
erably higher accuracy than TBPred, especially on lipopro-
tein and secreted protein prediction, even though no
mycobacterial proteins were involved in the lipoprotein
prediction training process of LocateP.

Finally, the performance of LocateP was compared to
Augur [27], a computational pipeline that also combines
many existing tools. Augur detects signal peptides and
transmembrane helices using only SignalP and TMHMM,
and consequently the accuracy of N-anchored protein pre-
diction of Augur is much lower than with LocateP. Augur
also falsely predicted 8 lipoproteins out of a test-set of 114
non-lipoproteins (test sets 4 and 5), which implied a
higher false-positive rate than LocateP on lipoprotein pre-
diction.

Comparative analysis of protein subcellular location in 
Gram-positive bacteria
LocateP was applied to the encoded proteins of all com-
plete Gram-positive bacterial genomes available in the
NCBI database. The average distribution of proteins
grouped by predicted SCL was calculated for each
genome. Despite the different genome sizes, Gram-posi-
tive bacteria tend to have a similar distribution of proteins
over certain SCLs independent of class or family, and this
independency also holds for individual Gram-positive
bacterial genomes (Table 4). We note that the fractions of
intracellular and membrane proteins predicted by LocateP
in Gram-positive genomes were consistent with what was
previously estimated by other tools [12,18,24,25]. The
complete genome predictions can be viewed in our data-
base LocateP-DB [1].

Discussion
Although the early SCL-prediction tools performed rather
poorly, current tools perform rather well on specific cate-
gories of signal-peptide containing proteins and mem-
brane proteins [44], reaching an accuracy of 96%.
Nevertheless, for other groups like secreted, N-anchored
and lipoproteins these tools still perform rather poorly. As
the latter groups represent a considerable part of the secre-
tome, we decided to design a new SCL-identification pipe-
line called LocateP.

The performance of LocateP was checked against the best
current tools and it outperformed all of them, particularly
when difficult groups of proteins and SCLs were con-
cerned. The outstanding performance was achieved
though the generation of specific HMMs based on protein
sequences whose cellular fate had been experimentally
tested. For instance, it has long been a problem to identify
secreted and N-anchored proteins from the group of pro-
teins carrying a putative SPI-cleavage site motif. Formerly,
the H-region together with the cleavage site were consid-
ered to be the key elements of SPIase-substrate recogni-
tion. Therefore, previous signal-peptide predictors were
constructed focusing on the H-region and/or on the cleav-
age site [14,18,26,98-100]. However, Carlos et al. [101]
found that the H-region of the SPIase substrate was not
critical for peptidase-cleavage capability but that, in con-
trast, mutations in the C-region of originally non-cleaved
proteins caused alternative cleavage. They therefore
claimed that specific substrate-enzyme interactions
around the C-region should be decisive for SPIase-cleav-
age site recognition. Indeed, our analysis of the signal
sequences of a group of secreted and N-anchored proteins
indicated that the C-region is important, but that at the
same time also the H-region carries properties that deter-
mine the protein's fate (i.e. to be or not to be cleaved). The
fact that the performance of the dedicated HMMs became
worse when the sequence was extended beyond 30 resi-
dues implies that the decisive information is present in
this stretch of sequence. LocateP improved the separation
of N-anchored and secreted proteins from ~40% (by Pho-
bius [41]) to > 90% without disturbing the SCL prediction
of the other types of proteins.

LocateP was designed as a pipeline, and hence could have
performed less well on specific categories than specialized
tools. In particular, the performance would have been
considerably lower if the flow scheme had been chosen
wrongly. However, a comparison of the performance on
lipoproteins, membrane proteins, Sec-secreted and Tat-
secreted proteins with the specialized tools LipoP 1.0,
TMHMM 2.0, Phobius, SignalP 3.0, Predisi, Tat-find v.1.2
and TatP shows that LocateP does not suffer from being a
pipeline tool. Apparently, our choice to mimic the order
in the bacterial secretion process was a correct one. In fact,
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it has been shown by others that the SCL prediction can
be improved considerably by simulating the protein sort-
ing processes [93,102]. Overall, LocateP performed very
well, with an accuracy higher than 95% for nearly all cat-
egories, and only slightly lower in one case (91% for N-
anchored proteins), but still considerably better than all
other tools. LocateP could be used to distinguish 7 SCLs
and 3 sorting pathways and avoided the inconsistent SCL

classification which most SCL classifiers inevitably inher-
ited from Swiss-Prot.

Because of the high prediction accuracy of LocateP on pro-
teins of known biological function (see e.g. Additional file
2), we expect that the SCL prediction of proteins of
unknown function should also be equally reliable. In
principle, the genome-scale SCL predictions made by

Table 4: LocateP-predicted average distribution (%/(STDEV)) of proteins over different SCLs for Gram-positive bacteria

Class/order level

Species Actinobacteria Bacillales Clostridia Lactobacillales Mollicutes

Average genome size 4098 3573 2969 2048 724

Grouped according to LocateP classification

N-anchored (Membrane) 5.0/(1.1) 5.7/(0.6) 6.8/(1.0) 5.8/(0.7) 8.7/(3.1)
C-anchored (Membrane) 0.3/(0.2) 0.1/(0.1) 0.2/(0.1) 0.2/(0.1) 0.3/(0.3)
Multi-transmembrane (Membrane) 16.5/(2.6) 20.3/(1.4) 16.9/(2.8) 17.9/(2.1) 17.1/(2.3)
Intracellular (Cytoplasmic) 74.3/(2.8) 69.8/(2.2) 73.2/(3.6) 72.9/(2.0) 71.4/(3.8)
Lipid anchored (Extracellular) 2.2/(0.5) 2.3/(0.4) 1.6/(0.6) 1.6/(0.5) 1.9/(1.6)
Secreted (Extracellular) 3.0/(0.9) 2.1/(0.5) 2.1/(0.5) 1.8/(0.6) 2.3/(1.3)
Secreted via minor pathways (Extracellular) 0.1/(0.1) 0.1/(0.1) 0.1/(0.1) 0.28/(0.2) 0.04/(0.1)
LPxTG Cell-wall anchored (Cell wall) 0.1/(0.2) 0.4/(0.4) 0.1/(0.2) 0.6/(0.4) 0.03/(0.1)

Grouped according to Swiss-Prot classification

Membrane 21.4/(2.7) 26.2/(1.7) 23.8/(3.4) 23.8/(1.9) 26.1/(3.9)
Cytoplasmic 74.3/(2.8) 69.8/(2.2) 73.2/(3.6) 72.9/(2.0) 71.4/(3.7)
Extracellular 5.4/(1.1) 4.5/(0.7) 3.8/(0.8) 3.7/(0.8) 4.2/(1.9)
Cell wall 0.1/(0.2) 0.4/(0.4) 0.1/(0.2) 0.6/(0.4) 0.03/(0.1)

Species level

Organism Spn Lla Sau Lmo Lpl Cac Bsu STDEV

Total proteins 2105 2321 2656 2846 3009 3672 4105

Grouped according to LocateP classification (%)

N-anchored (Membrane) 4.5 5.9 6.0 4.9 5.2 6.9 6.2 0.8
C-anchored (Membrane) 0.1 0.1 0.1 0.4 0.2 0.2 0.1 0.1
Multi-transmembrane (Membrane) 17.9 18.4 19.5 19.1 20.5 18.1 20.7 1.1
Intracellular (Cytoplasmic) 74.7 72.8 70.5 71.1 70.2 71.3 69.1 1.9
Lipid anchored (Extracellular) 1.7 1.4 2.2 2.0 1.6 1.7 2.0 0.3
Secreted (Extracellular) 1.2 1.9 2.1 1.7 1.9 2.3 2.6 0.4
Secreted via minor pathways (Extracellular) 0.5 0.0 0.1 0.2 0.3 0.1 0.2 0.2
LPxTG cell-wall anchored (Cell wall) 0.5 0.5 0.5 1.5 1.1 0.1 0.1 0.5

Grouped according to Swiss-Prot classification (%)

Membrane 22.4 24.4 25.5 24.4 25.9 25.2 27.0 1.4
Cytoplasmic 74.7 72.8 70.5 71.1 70.2 71.3 69.1 1.9
Extracellular 3.4 3.3 4.4 4.0 3.8 4.1 4.8 0.5
Cell wall 0.5 0.5 0.5 1.5 1.1 0.1 0.1 0.5

Abbreviations: Spn: S. pneumoniae; Lla: L. lactis; Sau: S. aureus; Lmo: L. monocytogenes; Lpl: L. plantarum; Cac: C. acetobutylicum; Bsu: Bacillus subtilis
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LocateP provide an excellent starting point for functional
annotation and experimental analysis of encoded pro-
teins of unknown function, as they provide numerous
clues about where to look for a certain biological activity.

Although LocateP already performs quite well, there is
inevitably room for improvement. For instance, in the
Swiss-Prot database, many of the annotated cell-wall pro-
teins are secreted proteins bound to the cell surface via
non-covalent interactions. Known elements of non-cova-
lent binding include choline-binding domains, LysM
domains, type 2 cell-wall binding domains, GW-modules,
Lysin-binding motifs, ChW-binding motifs, WxL
domains, LPP-region binding, S-layer proteins, and others
[103-117]. The current version of LocateP was designed to
predict only the covalent cell-wall (peptidoglycan) bind-
ing mechanism of proteins by dedicated sortases. For
instance, among the 14 cell-wall proteins in test set 10d
[28], 13 are non-covalently cell-wall bound secreted pro-
teins. LocateP correctly predicted 10 of these as "secreted
proteins", but does not allow for the fact that these pro-
teins could be cell-wall bound via non-covalent mecha-
nisms after secretion (Table 2). Future versions of LocateP
will include non-covalent binding to the cell wall.

Not all mechanisms of protein secretion or modification
are known to date and not all have been included in the
LocateP pipeline yet [118-123]. This is the case for pro-
teins that have been shown to occur at various locations
or those that are secreted via minor pathways. Examples
are proteins that are either cleaved multi-domain proteins
[124], auto-transporters found in both cytoplasmic and
extracellular locations [125], or proteins with various SCL
depending on growth phase and/or specific environment
[124,126]. The multi-compartment proteins and minor-
pathway secreted proteins appear to be rare in most bacte-
ria, and their sorting mechanisms are not completely
understood yet. Therefore, the current version of LocateP
predicts only one SCL for such proteins, which may be
only partially correct. In contrast, Psortb v2.0 and CELLO
were claimed to be capable of multi-location prediction
[126,127]. Both tools employ machine-learning methods
and the predicted multiple locations should represent a
certain statistical significance even without large-scale
experimental evidence. However, both tools inevitably
generate a considerable number of false positives. Simi-
larly, SecretomeP 2.0 [128], which was made to predict
non-classically secreted proteins, was not included in
LocateP because of its high false-prediction rate. The
recent predictors Euk-mPloc [129] and Hum-mPloc [97]
incorporated up-to-date Eukaryotic proteins that were
found to have multiple compartments and the tools
achieved rather satisfying accuracies. Similar tools will be
included or constructed for LocateP when more experi-

mental data on multiple locations of bacterial proteins are
available.

Another group of proteins that is not treated separately by
LocateP is the group that is exported by unknown mecha-
nisms and is known as the Gram-positive periplasmic pro-
teins [130-133]. Carlsson et al. [134] recently reported
that in Gram-positive bacteria the secreted proteins could
be directed to different extracellular regions including a
periplasmic space. In fact, the prediction of a subcellular
location "periplasmic" in Gram-positive was not included
in any published SCL prediction tools for Gram-positive
bacteria, except in Gpos-PLoc [28]. However, the Gpos-
PLoc prediction algorithm was based on only 5 proteins
which were extracted from the Swiss-Prot database.
Indeed, among these 5 proteins, four were expressed in
the E. coli periplasmic space, but no evidence exists that
they are also expressed in the periplasm of a Gram-posi-
tive organism [135-138]. Moreover, one protein
(P29166) was proven to be located inside the cell [139].
LocateP predicted correctly that 4 of the 5 proteins should
be secreted and are located outside of the plasma mem-
brane, while P29166 was predicted to be cytoplasmic, in
line with the experimental evidence.

LocateP was first tailored for the SCL prediction of Gram-
positive bacterial proteins; therefore prediction of the
Gram-negative specific proteins, such as β-barrel mem-
brane proteins, was not yet included in the pipeline.
LocateP was compared to SigTree [140], a signal-peptide
detector based on sets of experimentally verified E. coli
proteins, using the same data set from E. coli (data not
shown). LocateP showed slightly lower accuracy than
SigTree did, which suggests that the sequence composi-
tion of signal peptides from Gram-positive and Gram-
negative bacterial proteins could be different. Future ver-
sions of LocateP will be improved and extended to Gram-
negative bacterial protein SCL prediction by incorporating
Gram-negative specific subcellular-location prediction
tools.

Finally, we must emphasize that in several cases an auto-
matic SCL prediction of a protein will inevitably give an
incorrect prediction using LocateP or any other tool: (i)
when the start codon of a gene encoding a protein with a
signal peptide has been wrongly identified (either too far
upstream or too far downstream), (ii) when a frame shift
in the open-reading frame leads to different fragments of
encoded proteins, and (iii) when an intracellular protein
contains a signal peptide-like hydrophobic helix near the
N-terminus; in this case such helices generally fold into
the interior of the globular protein [141-144].
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Conclusion
As detailed and accurate genome-scale SCL prediction of
encoded proteins is highly desired by scientists in various
biological research areas, numerous existing and newly
developed tools were combined into one pipeline:
LocateP. To date, LocateP is the most detailed protein SCL
predictor for Gram-positive bacterial proteins among all
tools that have been reported, in that it presently distin-
guishes 7 different SCLs and 3 sorting pathways, with
focus on extracellular SCLs. Moreover, it is also the most
accurate SCL predictor, especially on distinguishing N-
anchored and secreted proteins. LocateP was applied on
all completed Gram-positive bacterial genomes from the
NCBI sequence database. The results are updated synchro-
nously with Genbank updates and are publicly available
via the database LocateP-DB [1]. The present version con-
tains SCL predictions for 436,771 proteins in 148
genomes of Gram-positive bacteria. These genome-scale
SCL predictions provide an excellent starting point for
experimentalists to improve the functional annotation of
proteins.

Methods
Sources of sequence information and location data
The genome sequences of Gram-positive bacteria were
extracted from GenBank on May 30th, 2007 ("ORGAN-
ISM" annotation fields: 'Firmicutes' or 'Actinobacteria'),
and were continuously updated since then. Protein
sequences of Bacillus species were collected both from
GenBank on April 1st, 2007 and from the ERGO database
[145] on November 15th, 2006.

Eight different protein data sets of known subcellular
location were selected from literature describing other
tools and describing proteome studies (Table 2 legend).
In order to check the performance of the LocateP pipeline,
the SCL predictions were checked against an expert evalu-
ation of the functional location of transport-related pro-
teins from several Gram-positive bacterial genomes in
TransportDB [48] on May 30th, 2007, and an expert eval-
uation against the protein function annotation as
retrieved from GenBank on August, 10th, 2007.

Sequence analysis and evaluation of performance
Multiple sequence alignments were built with MUSCLE
[146]. HMMs were built with HMMER [147]. Wherever
appropriate, HMMs of varying length and different
regions of the aligned N-terminal sequences of proteins
were made, and the HMM that performed best was
selected. Performance was evaluated using the statistical
measure recall (or sensitivity) which is the number of true
positives divided by the sum of the true positives and the
false negatives.

Bioinformatics tools included in the LocateP pipeline
Many studies have compared and evaluated currently
available transmembrane segment and signal peptide pre-
dictors [41,44,76,98-100,148]. Based on those studies
and our own preliminary trials the following tools were
selected to be included in our SCL prediction pipeline
LocateP: TMHMM 2.0 [12], Phobius [14], SignalP 3.0
[18], PrediSi [98], and Bagel [149] (Table 1). Of these,
TMHMM 2.0 and SignalP 3.0 are the most popular ones
in the field; Phobius was selected for its high specificity on
transmembrane segment identification; PrediSi was
selected because it was trained with comparatively recent
experimental data, and because it slightly outperformed
SignalP 3.0 when applied to Gram-positive bacterial pro-
teins [98]. We also included the predictor Bagel for non-
classically secreted bacteriocin-like proteins [149]. The
membrane protein predictor MemType-2L [150] includes
topology prediction of N-anchored proteins but showed
rather low accuracy with our experimental datasets; there-
fore this tool was not included in LocateP. Some other
tools were not incorporated either because of a high false-
prediction rate (e.g. HMMTOP [13] and SecretomeP 2.0
[128]), a low specificity for Gram-positive bacteria (e.g.
LipoP 1.0 [151]), or simply the lack of stand-alone install-
able software packages (e.g. TatP [86], Signal-3L[152], Sig-
nal-CF[153] and Tat-pred [154]).

Signal peptide detection
LocateP detects signal peptides by scanning the protein N-
terminus, which was defined as the initial 60 amino acids
of the protein, using SignalP 3.0, Phobius and PrediSi.
Some proteins have a signal peptide shortly after these 60
amino acids. These proteins were predicted as "intracellu-
lar", but we added the extra remark of "TMH start AFTER
60" to the annotation indicating that these proteins could
be secreted. No attempt was made to choose alternative
start codons of incorrectly predicted start sites of ORFs.

Specific HMMs to determine the SCL of proteins with a 
putative SPI-cleavage site
Recently, Tjalsma et al. have experimentally determined
the SCL of a large number of Bacillus subtilis proteins [41].
The experimental set contained 66 proteins with a puta-
tive SPI-cleavage site. Of these 36 appeared to be cleaved
and thus secreted, whereas 30 were shown to remain N-
anchored. We named these sets "EXP-secreted" and "EXP-
anchored", respectively, and used them to construct set-
specific HMMs. To enhance the inherent signal, both sets
were expanded by adding orthologous sequences from
other Bacilli. First, homologs were searched with BLASTP
[155] in the ERGO genome database [145] using full-
length sequences. Only the three best BLAST hits were
considered orthologs, when they also showed conserved
gene context and functional annotation, high similarity
and similar protein length. In this way, after removing
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orthologs containing identical N-terminal sequences, 27
secreted and 23 N-anchored orthologs could be added to
the "EXP-" sets.

Pairs of HMMs were built to separate the group of proteins
with a putative SPI cleavage-site into those that are cleaved
(i.e. secreted/released) and those that are not (i.e. N-
anchored). The sequences were aligned around the puta-
tive cleavage site and the length of the HMMs was varied
(length >8). All HMM pairs were applied to both "EXP-"
sets; the E-value was set at 10,000 to assure each protein
gained an HMM score. For each pair the separation
between truly cleaved and truly N-anchored proteins was
analyzed and it appeared that the HMM pair containing
equivalent amounts of H and C region residues achieved
the highest specificity in distinguishing the two sets (see
Figure 3B). The most specific HMM pair had a length of 25
amino acids and ran from residue -14 to +10 relative to
the cleavage site Alanine (see Figure 3A).

The individual HMMs of the selected pair (HMMnon-cleaved,
HMMcleaved) each displayed a relatively high specificity,
but this was increased significantly by combining the two
HMMs. A generic scoring scheme was derived via the fol-
lowing procedure: i) The HMM scores were rounded to
discrete integers and the score distribution for the EXP-
anchored and EXP-secreted protein sets was used to deter-
mine a first cut-off. The discrete HMM scores related to the
HMMnon-cleaved ranged from -19 to +20 with all non-
cleaved (i.e. N-anchored) proteins scoring higher then 3,
those related to the HMMcleaved ranged from -29 to +20
with all cleaved (i.e. secreted) proteins scoring higher then
0. In fact, for both HMMs only in a small scoring range the
two protein groups overlapped. Therefore, all sequences
with a score ≤2 using the HMMnon-cleaved were attributed
the SCL: SEC-secreted, and those with a score ≤-1 using
the HMMcleaved were attributed the SCL: N-anchored. ii)
For those sequences that scored >2 with the HMMnon-

cleaved and >-1 with the HMMcleaved, the score with both
models was compared. In case HMMcleaved > HMMnon-leaved
score, the sequence was considered SEC-secreted,
whereas, in case HMMnon-cleaved ≥ HMMcleaved score, the
sequence was considered N-anchored.

The creation and selection of a specific HMM for 
lipoprotein prediction
The experimental data of Tjalsma et al. [41] indicated that
at least 42 distinct proteins of Bacillus subtilis are lipopro-
teins. This set of proteins was taken and expanded with
orthologs from 18 closely related Bacillus species using an
Inparanoid [156] search for best bi-directional hits. After
removing the sequences which contain identical initial 50
residues, 219 putative orthologous lipoproteins could be
added. As all lipoproteins are anchored to the cell mem-
brane by thioether linkage of the conserved lipobox

cysteine to a diglyceride [41,56,151,157,158], the
sequences were aligned around the lipobox. Eight HMMs
were built based on different N-terminal regions from
these proteins varying in length between 5 and 30 resi-
dues. Each HMM was applied to the original dataset of
Tjalsma et al. and the performance was evaluated. The
HMM with a length of 21 residues (-20 residues to the
lipobox Cysteine) showed the highest specificity when the
T-score was set to 3. Gaps were allowed in this model
except in the region of the lipobox (residue -5 to the
lipobox Cysteine)

The creation and selection of a specific HMM for Tat-
secreted protein prediction
The 105 putative Tat-secreted proteins (according to
Swiss-Prot) from the TatP-positive training set [86] were
taken as the initial set for generating Tat-specific HMMs.
The sequences were aligned either around the double Arg
or Lys+Arg motif (RR-motif) [87-90] upstream of the
transmembrane helix or the putative AxA triplet cleavage
site [86] predicted by TatP downstream of the transmem-
brane helix. Eleven HMMs with different lengths were
generated. A combination of two HMMs was found to be
most specific with the training data, together with the
restriction of an E-value smaller than 10: one HMM con-
tained 2 residues in front and 16 after the twin-arginine
motif, and the other HMM contained 17 amino acids in
front and 1 residue after the triplet cleavage site. Interest-
ingly, these two HMMs partly overlapped each other by
the transmembrane (H) region. According to Taylor et al.
[154], the -3 to +7 residues surrounding the twin-arginine
should be the most characteristic for Tat-secreted protein
identification. This conclusion was reaffirmed by our
HMM model. The current tools Tat-find v1.2 and TatP
both focus solely on the twin-arginine motif and consec-
utive transmembrane helix detection. In the prediction of
the Tat-secretion signal our HMMs were combined with
the Tat-find v1.2 program (in a scoring matrix) and there-
fore more weight was given to the prediction of the twin-
arginine motif and its following hydrophobic region as
Tat identifiers. This combined method was tested with 22
independent experimentally verified Tat-secreted proteins
(20 of them are from E. coli [159-162], while PhoD and
YwbN were from Bacillus subtilis [163,164]). The SCL of 20
of these proteins was correctly identified by LocateP,
including PhoD and YwbN (these 2 proteins were not in
the HMM training set). Using this procedure the false pre-
diction rate was significantly decreased compared to Tat-
find v1.2 and TatP (Table 2). It was suggested that the Tat-
pathway in Gram-positive bacteria is structurally different
from Gram-negative bacteria [80,86,90,120,163,164].
Although the Tat-secreted prediction of LocateP outper-
formed current tools, this part of the tool was trained with
Gram-negative bacterial proteins due to the lack of exper-
imental data from Gram-positive bacteria (see above). In
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order to avoid potential errors, LocateP also scans all pro-
teins assuming them to be Sec-secreted, except for the bac-
teriocin-like secreted proteins. If the Tat-secreted
possibility score of a protein was significant, the final sub-
cellular location of this protein was marked "Possibly Tat-
" as an extra reference.

Specific criteria for LPxTG-anchored and C-anchored 
protein prediction
The following topological criteria were used to identify
LPxTG-type cell-wall anchored and C-anchored mem-
brane proteins. For the selection of LPxTG-anchored pro-
teins, the criteria were [165]: (i) the protein has only one
N-terminal signal peptide/TM segment and only one C-
terminal TM segment, (ii) the C-terminus of the protein
contains an LPxTG-type motif; (iii) the LPxTG-type motif
is followed by the C-terminal transmembrane helix and a
positively charged C-terminal tail. These criteria were val-
idated with 85 experimentally verified LPxTG-anchored
proteins [166-171] and 83 of them were correctly identi-
fied.

The criteria used for predicting C-anchored proteins were:
(i) the protein has only 2 predicted TM helices, one situ-
ated at the N-terminus and one at the C-terminus, (ii) the
protein has a cleaved N-terminal signal peptide, (iii) the
protein has a C-terminal transmembrane helix and a pos-
itively charged C-terminal tail but no LPxTG motif, (iv)
the distance between the N-terminal and C-terminal heli-
ces is larger than 45 residues.
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Click here for file
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Additional file 2
The LocateP predicted N-anchored and secreted proteins with known 
function in Bacillus subtilis.
Click here for file
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Additional file 3
The LocateP predicted N-anchored and secreted proteins of unknown 
function in Bacillus subtilis.
Click here for file
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Additional file 4
Literature references for other experimental evidence (Yes (O)) listed in 
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