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Abstract
Background: The risk of common diseases is likely determined by the complex interplay between
environmental and genetic factors, including single nucleotide polymorphisms (SNPs). Traditional
methods of data analysis are poorly suited for detecting complex interactions due to sparseness of
data in high dimensions, which often occurs when data are available for a large number of SNPs for
a relatively small number of samples. Validation of associations observed using multiple methods
should be implemented to minimize likelihood of false-positive associations. Moreover, high-
throughput genotyping methods allow investigators to genotype thousands of SNPs at one time.
Investigating associations for each individual SNP or interactions between SNPs using traditional
approaches is inefficient and prone to false positives.

Results: We developed the Polymorphism Interaction Analysis tool (PIA version 2.0) to include
different approaches for ranking and scoring SNP combinations, to account for imbalances between
case and control ratios, stratify on particular factors, and examine associations of user-defined
pathways (based on SNP or gene) with case status. PIA v. 2.0 detected 2-SNP interactions as the
highest ranking model 77% of the time, using simulated data sets of genetic models of interaction
(minor allele frequency = 0.2; heritability = 0.01; N = 1600) generated previously [Velez DR, White
BC, Motsinger AA, Bush WS, Ritchie MD, Williams SM, Moore JH: A balanced accuracy function
for epistasis modeling in imbalanced datasets using multifactor dimensionality reduction. Genet
Epidemiol 2007, 31:306–315.]. Interacting SNPs were detected in both balanced (20 SNPs) and
imbalanced data (case:control 1:2 and 1:4, 10 SNPs) in the context of non-interacting SNPs.

Conclusion: PIA v. 2.0 is a useful tool for exploring gene*gene or gene*environment interactions
and identifying a small number of putative associations which may be investigated further using
other statistical methods and in replication study populations.
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Background
In the absence of highly penetrant, rare, genetic muta-
tions, the risk of common diseases, such as cancer, is likely
determined by a complex interplay between several
genetic and environmental factors. Common genetic var-
iation, in the form of single nucleotide polymorphisms
(SNPs), are believed to modulate cancer susceptibility
[1,2]. However, only a fraction of association studies
examining single loci have replicated [3,4]. One reason
for the lack of replication of SNP studies, in particular
when considering the complexity of pathways of carcino-
genesis, may include a failure to consider complex
gene*gene or gene*environment interactions [5,6]. Oth-
ers include chance, poor design, insufficient power, or
population stratification [7,8].

With the advent of high-density SNP arrays and genome-
wide association studies, the amount of genetic data avail-
able gives researchers unprecedented opportunities to
explore complexity of common diseases. Using tradi-
tional methods of data analysis, such as logistic regression
modeling, it is difficult to detect complex interactions due
to the sparseness of data in high dimensions [9,10]. More-
over, as the number of genetic factors being investigated
increases, the number of potential interactions exponen-
tially increases. For pair-wise interactions, the number of
possible interactions is N!/[2! (N-2)!], where N is the
number of SNPs or factors. Therefore, if examining 10
SNPs, there are 45 possible pair-wise interactions. Testing
each interaction independently would be inefficient and
subject to concerns regarding multiple comparisons.
Informatic tools may be used to prioritize or select SNP
interactions of interest to follow up in further study. Sta-
tistical and computational methods have not kept pace
with the available data [11].

A recent review examined several different approaches for
studying complex genetic interactions [12]. The authors
concluded that while none of the current methods is
ideal, the optimal approach is to implement several meth-
ods of analysis and validate results from each method. We
hypothesized that the most efficient way to detect com-
plex genetic interactions, for follow up in future study, is
to compare results using several different methodologies.
We, therefore, expanded our original program, Polymor-
phism Interaction Analysis (PIA version 1.0) [5], to
include several approaches for ranking and scoring differ-
ent SNP combinations (PIA version 2.0). In addition, PIA
v. 2.0 was written to account for missing data and imbal-
ances between case and control ratios, to stratify on partic-
ular factors, and to examine user-defined pathways. In
this report, we describe the modified PIA, now known as
version 2.0, and evaluate the performance of PIA v. 2.0
identifying interacting alleles in simulated and experi-
mental data sets.

Methods
Algorithm
PIA v. 2.0 was developed as a method of feature selection.
In a data set of a large number of SNPs or features, PIA
v.2.0 can be implemented to sift through the large
number of interactions to aid in the selection of SNPs for
future study. We theorized that no single test or informatic
approach is optimal for detecting complex interactions in
all situations. Therefore, PIA v. 2.0 was intended to pro-
vide several opportunities for internal validation of
observed genetic interactions by examining SNP data
using multiple approaches. The program is designed to
simultaneously use up to seven scoring metrics for each
SNP combination (to estimate quality of SNP associa-
tions), make each metric as independent as possible,
account for imbalances in the number of cases and con-
trols, and present results for the top 100 SNP combina-
tions for each scoring function and for an overall scaled
summation of all scores. Other options included in the
PIA program include the ability to incorporate pathway
assignments for SNPs to explore associations of particular
pathways with a phenotype and an option to allow strati-
fied analysis of SNP associations. PIA also explores the
number of times particular SNPs or SNP-pairs are
observed in larger combinations of SNPs (triplets or quar-
tets).

PIA uses a case-based exclusion for missing SNP data, i.e.
only those subjects that have all SNPs (in a particular
combination) identified are used in the analysis. PIA v.
2.0 is a non-parametric combinatorial method [11],
meaning that all combinations of a selected number (N,
1st–4th order) of categorical exposure variables (SNPs,
haplotypes, environmental factors, race) are examined.
Since SNPs represent the majority of the features exam-
ined, for the remainder of this discussion, all categorical
variables, or features, to be analyzed for interactions with
PIA will be denoted as SNPs.

For a given SNP combination, the scoring first involves
assigning the phenotypes (i.e. case vs. control status) for
each of the possible genotypes or genotype combinations.
In the case of pair-wise SNP interactions, this involves
placing a sample into the appropriate cell of a 9 × 2 table
(9 genotypes and 2 phenotypes) as shown in the geno-
type-phenotype table in Figure 1. The seven possible scor-
ing metrics and the equations for scoring are listed in
Table 1. The user may use all scoring metrics, or only spe-
cific metrics of interest.

For scoring functions 1–5, an N-fold cross validation (user
defined N) is implemented and this can be run multiple
times. In each run, the order of the samples is scrambled
before division into training and testing sets. The geno-
type-phenotype table for the training set is used for the
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Description of Method for Scoring Functions 1–5Figure 1
Description of Method for Scoring Functions 1–5. In this example, a study consists of 200 cases and 200 controls and a 
10-fold cross-validation is performed. Only two SNPs are examined: A (with alleles A and a) and B (with alleles B and b) in this 
example. The order of samples is scrambled before training. In (a) training samples (180 cases and 180 controls) are assigned to 
the 9 × 2 genotype-phenotype table (classification). The genotype-phenotype table is the distribution of phenotypes (i.e. case 
vs. control) for all possible genotype combinations for the SNPs examined. The genotype-phenotype table is used for classifica-
tion of SNPs. In this example, PIA v. 2.0 designates AABB and AABb as case-genotypes, aaBB as an undetermined-genotype, 
and the remaining six genotypes as control-genotypes. If the training data is selected to contribute to scoring (if the Jackknife 
analysis, LOO is selected), a contingency data is generated using the training data (b). The contingency table compares the 
observed genotype-phenotype distribution to the expected based on the genotype assignments in (a). The testing data is placed 
into the appropriate cells of the genotype-phenotype table (c). The contingency table for testing data (d) is generated using 
genotype assignments from the training data (a). Since the AABB genotype represents a case-phenotype (based on training 
data), the seven case samples are added to the number of true positives (NTP) and the three control samples are added to the 
number of false positives (NFP) in the contingency table (d). Conversely, AaBB is a control-phenotype, so the five controls are 
added to the number of true negatives (NTN) and the three cases are added to the number of false negatives (NFN). If a test-
ing sample is assigned to an undetermined-phenotype (aaBB), PIA counts the assignment as half-right and half-wrong. There-
fore, the three cases cause NTP and NFP to be increased by 1.5; the two controls increase NTN and NFN by 1.0. After 
processing all testing samples, the corresponding contingency table is shown in (d). The process is then repeated for the 
remaining 9 sets of testing and training samples, and all contingency tables arising from the testing samples are summed.

(a) Genotype-Phenotype 
(Classification) 
Training Data 

  Cases Controls 

AABB 60 35 

AABb 35 28 

AAbb 4 6 

AaBB 40 55 

AaBb 25 26 

Aabb 3 8 

aaBB 10 10 

aaBb 2 8 

aabb 1 4 

 (b) Contingency Table (Scoring) 
Training Data 

Predicted 
  

Cases Controls 

Cases 95 85 
Observed

Controls 84 96 

(c) Genotype-Phenotype  
Testing Data 

  Cases Controls 

AABB 7 3 

AABb 4 3 

AAbb 0 1 

AaBB 3 5 

AaBb 2 3 

Aabb 0 1 

aaBB 3 2 

aaBb 1 2 

aabb 0 0 

(d) Contingency Table (Scoring) 
Testing Data 

Predicted 
  

Cases Controls 

Cases 12.5 7.5 
Observed

Controls 7 13 
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assignments of genotypes. Genotype combinations with a
larger number of cases than controls are considered case-
genotype combinations, while combinations with more
controls than cases are considered control phenotypes.
When there are an equal number of cases and controls for
a particular genotype combination, the combination is
considered an undetermined phenotype.

After assignment of genotypes in the training samples,
scoring for the first five metrics requires the formation of
a 2 × 2 contingency table (Figure 1) where the number of
expected cases and controls with each genotype combina-
tion (based on assignments) versus the number of cases
and controls observed with a genotype combination (in
the testing set, or the set used for scoring) are compared.
A unique feature of PIA v. 2.0 is the handling of ties. In
PIA v 2.0, for those genotype combinations that are evenly
distributed among cases and controls (assigned as unde-
termined) in the genotype-phenotype table, the genotype
combination is considered as half-right and half-wrong,
i.e. count as 1/2 number of true positive (NTP) + number
true negative (NTN) and 1/2 number of false positive
(NFP) + number false negative (NFN) in the contingency
table. This scoring procedure is repeated for the remaining
sets of training and testing samples (in the example of 10-
fold cross-validation, 9 additional times), and all contin-
gency tables arising from the testing samples are summed.
PIA v. 2.0 allows this scrambling and multi-fold cross-val-
idation to be run several times; the resulting testing con-
tingency table is the sum of all contingency tables
produced by the testing samples. The more times the
scrambling and multi-fold cross-validation procedure is
performed, the more stable the observed associations
(data not shown). In this described method for scoring
functions 1–5, assignments are based on the training sets
and scoring is based on the testing data using 10 runs of
10-fold cross-validation.

An alternative option in PIA v. 2.0 is to allow the training
data to be included in the formation of the contingency
table for scoring. This is done by performing a Jackknife
(leave-one-out cross-validation, LOO) or maximum like-
lihood analysis of the training genotype-phenotype table.
Allowing the user to include the training data was imple-
mented as an option to increase the power for datasets
with a small number of samples, as used in other pro-
grams such as MDR [10,13].

Scoring functions 6 and 7 are based on the distribution of
all participants in the cells of the genotype-phenotype
table. Therefore, using these functions, a cross-validation
procedure is not implemented and the entire population
is used. If the number of SNPs is very large, running mul-
tiple cycles of multi-fold cross-validation may be compu-
tationally prohibitive. Therefore, PIA v. 2.0 also allows a
single examination of all data to be used to construct the
contingency table. Therefore, a single pass through all of
the data can be performed for all scoring functions.

Often in case-control studies, the case/control ratio is
imbalanced, or the study consists of more controls than
cases. PIA v. 2.0 includes options for accounting for
imbalances in populations with particular phenotypes, or
differences in case to control ratios. Using the default PIA
v. 2.0 options, if the number of samples in one phenotype
is significantly larger than the number of samples in the
other, it is likely that all genotypes will be assigned to the
more populous phenotype, resulting in biased estimates.
For example, in studies with case to control ratios of 1:4,
SNP combinations will be weighted towards control asso-
ciations, because most genotype combinations would
have a higher number of controls than cases. To circum-
vent this, PIA v. 2.0 allows for fractional occupations, or
percents of cases/controls associated with each genotype
combination, to be used in the genotype-phenotype table
to determine the phenotype of each genotype. For exam-

Table 1: Definition of the seven scoring functions used in PIA v. 2.0.

Metric Description Formulaa

1 %Correct (NTP + NTN)/(NTP + NFN + NFP + NTN)
2 Sensitivity + Specificity [NTP/(NTP+NFN)] + [NTN/(NFP+NTN)]
3 Positive Predictive Value (PPV)+ Negative Predictive Value (NPV) [NTP/(NTP+NFP)] + [NTN/(NFN+NTN)]
4 Risk Ratio [(NTP)(NFP+NTN)]/[(NFP)(NTP+NFN)]
5 Odds Ratio [(NTP)(NTN)]/[(NFP)(NFN)]
6 Gini Indexb GINIparent - GINIsplit

GINI(k) = 1.0 - ∑j = 1, J [p(j|k)]
GINIsplit = ∑k = 1, K [(nk/n) GINI(k)]

7 Absolute Probability Differencec Σk = 1, K |P1(k) - P2(k)|

a NTP, Number of true positives; NTN, number of true negatives; NFN, number of false negatives; NFP, number of false positives.
b Gini Index is used in CART decision trees [25]. The scoring for Gini index is described under "Algorithm."
c Scoring is the probability of finding a case (P1) in cell, k, minus the probability of observing a control (P2) in cell, k, summed over all the K cells in the 
genotype-phenotype table.
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ple, if there are 90 cases and 180 controls in the training
data and a genotype combination contained 12 cases and
20 controls, the fractional occupations would be 13.3%
(12/90) and 11.1% (20/180), respectively, which results
in a case-phenotype. The training contingency table then
has the property that (NTP+NFN) = (NFP+NTN) = 1.0.
The resulting contingency table from the testing data in an
N-fold cross-validation has (NTP+NFN) = (NFP+NTN) =
1/(N-1), so that the training contingency table is still (N-
1) times larger than the testing contingency table.

As described, scoring functions 6 (Gini Index) and 7
(Absolute Probability Difference) are based on the distri-
bution of all samples in the genotype-phenotype table.
The scoring for metric 6 uses the Gini Index formula,
which is used in CART decision trees [12]. The Gini Index
for a given genotype (k) is GINI(k) (Table 2). P(j|k) is the
relative frequency of class j (i.e. case or control) in geno-
type k. If there are a total of n samples in the study, and nk
samples are have genotype k, the Gini Index for the distri-
bution of the table is given by the GINIsplit formula. A
better separation of cases and controls by a genotype com-
bination results in a reduction of the value of GINIsplit. In
order to maximize the formula, scoring is based on
GINIparent-GINIsplit, where GINIparent is the un-sepa-
rated state with all subjects in the same cell. Scoring func-
tion 7 is the sum of the absolute difference in probabilities
of finding the cases and controls across all genotypes.
Since both scoring functions 6 and 7 do not require N-
fold cross-validation or formation of the contingency
table, these are well suited for studies with a large number
of SNPs or features.

It should be noted that if the number of cases is equal to
the number of controls, scoring metrics 1 (% Correct) and

2 (Sensitivity + Specificity) produce identical results.
Therefore, if the number of samples, as opposed to frac-
tional occupations, in the genotype-phenotype table is
used for the assignment of phenotypes, all seven metrics
are used. If fractional occupations are used, the first qual-
ity metric is dropped and only metrics 2 through 7 are
used since metrics 1 and 2 will produce identical results.

PIA v. 2.0 stores the top 100 SNP combinations for each
scoring metric used. The strength of examining multiple
SNP combinations, as observed previously [5], is that
while one model may perform best, the score of the top
model may be only slightly higher than the models below
it. In complex chronic diseases, it is likely that several
genetic pathways are related to disease susceptibility.
Therefore, selecting only the highest scoring model may
result in reduced sensitivity of detecting interactions in
multiple pathways. Once the PIA analysis is completed,
the quality scores are linearly scaled so that the highest
score has a value of 50. The scores are added for each SNP
combination, resulting in a total score over all scoring
functions. We theorized that averaging over all scoring
functions would be superior to using any individual scor-
ing function when examining SNP-SNP interactions since
it would reduce the effect of false-positives identified by a
single method or reduce the possible bias generated by
any single method. SNP combinations are then ordered
according to the total score. It is important to note that if
there are fewer than 100 SNPs, there will be fewer than
100 1-SNP models.

The original version of PIA (v. 1.0) contained five differ-
ent scoring functions, but only two were used in practice
(% Wrong, which is analogous to % Correct in the current
version, and Gini Index). The current version has incorpo-

Table 2: Number of times interacting alleles were observed as highest scoring model (rank = 1) or second (rank = 2) using PIA 2.0a for 
2-SNP interactions using balanced simulated data sets.

Scoring Function
Model Numberb Rank %Correct Sensitivity 

+Specificity
PPV+NPV Risk Ratio Odds Ratio Gini Index Probability 

Difference
Total (Overall)c

55 1 66 66 50 36 50 83 67 79
2 4 4 14 11 14 10 15 6

56 1 55 55 46 33 46 84 58 68
2 3 3 10 11 9 2 5 5

57 1 58 58 52 19 52 82 66 78
2 7 7 10 12 10 8 7 9

58 1 88 88 76 58 76 96 89 92
2 1 1 11 18 11 3 4 5

59 1 50 50 45 36 45 64 48 61
2 13 13 13 16 12 10 14 11

a Data were generated using cell counts to assign case versus control status (IFRACT = 0) and excluded the training data when scoring and running 
10 10-fold cross-validations for functions 1–5 (ITRAIN = 0, FRACT = 0.1, NTIME = 10). Results including training data in scoring are presented in 
Additional file 1, Table S1.
b Simulated data sets were described previously [14] and were obtained from Dr. Moore by request.
c Total score is the summation over all scoring functions after linearly scaling the score for each individual function such that the top score is 50.0.
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rated several additional functions, but it is possible to
select functions used in the original version. In addition to
more methods of ranking SNP combinations, handling of
ties (genotype combinations assigned to undetermined
phenotypes), missing data, and combining testing and
training data is modified in PIA v. 2.0. PIA v. 1.0 required
that only one scoring function be used in a given run,
while the current version ranks the SNP combinations for
each of the seven scoring functions in a single run. In
addition, overall ranks of SNP combinations are deter-
mined using the combined score across these seven func-
tions by storing the top 100 SNP combinations for each
scoring function and then linearly scaling their scores so
that the best combination has a score of 50.0. The overall
score for a given SNP combination is then the sum of the
scores it receives across the seven functions.

PIA v. 2.0 lists the number of times SNPs and SNP-pairs
(in SNP triplets or quartets, if they are examined) appear
in the top 100 combinations for each scoring metric and
overall, both as counts and using the scaled scores, as long
as they appear more times than expected on average.
When studying the complex 3-SNP and 4-SNP interac-
tions, investigating the SNP-pairs that appear frequently
in higher order combinations may provide some addi-
tional clues about combinations of genes with a role in
disease risk. Moreover, by studying pairs, it is possible to
examine interactions with a particular gene of interest, i.e.
explore what additional genes or SNPs are often observed
in combination with the gene/SNP of interest.

Finally, PIA v. 2.0 determines the number of times each
gene pathway appears in the top 100 combinations if the
user-defined pathway information for each gene is present
in the allele file. Scores for each pathway are derived from
the individual scores for each combination. Expected
scores are based on random distribution of pathways
among SNP combinations, accounting for the number of
SNPs in each pathway within the data set. Observed and
expected scores for each pathway are tabulated.

Simulation data
Simulated data sets that model genetic interaction were
created as described previously [14] and obtained from
Dr. Moore. Each data model had 2 interacting alleles in
the context of non-interacting SNPs (20 total SNPs for
Balanced data sets, 10 for Imbalanced sets). Seventy differ-
ent penetrance functions were generated with several dif-
ferent heritabilities and minor allele frequencies and
probability models. For each of the seventy functions, 100
data sets were generated. Balanced data sets were available
in population sizes of 400, 800, and 1600. Imbalanced
data sets were created by randomly sampling cases and
controls from within the larger simulated data sets to
obtain the 1:2 or 1:4 case control ratios [14].

To demonstrate the ability of PIA to detect interactions,
we examined SNP-pairs and determined the number of
times the interacting alleles were observed as the highest
or second highest scoring model across the 100 data sets.
The percent of times the interacting alleles were correctly
observed represents the power of PIA to detect interac-
tions (or the efficiency under the alternative hypothesis).
This approach was used previously to estimate power of
MDR [14]. Our analysis was limited to the population size
of 1600 because study populations less than 1600 are
underpowered to detect gene*environment interaction.
Our analysis was also limited to penetrance functions of
heritability models of 0.01 and minor allele frequency
(MAF) of 0.2, or models 55–59 in the Velez manuscript,
where MDR had the lowest sensitivity at detecting the
interacting SNPs [14]. The lower heritability assumes a
weaker genetic effect on variation in phenotype. The low
MAF is likely more representative of common genetic var-
iation typically measured in population-based genetic
epidemiology studies, and requires a more powerful tool
for detection.

Example data
PIA v. 2.0 was used to evaluate SNP combinations and
interactions in a case-control study of colon cancer in a
population 216 male cases and 255 male controls from
the greater Baltimore area as described previously [5].
Genotyping data was available on 94 SNPs in 7 user-
defined pathways (1-apoptosis, 2-inflammation, 3-DNA
repair, 4-hormone metabolism, 5-metabolism, 6-angio-
genesis, 7-other). The complete list of polymorphisms, rs
numbers, and description of quality control for genotyp-
ing was reported previously [5]. All SNPs and assays may
be found in the SNP500 database [15,16].

Results
Simulation results
Using the simulated data sets of balanced case:control
ratios with a population size of 1600, heritability of 0.01
and MAF of 0.2, the highest scoring 2-SNP interactions
were investigated using PIA v. 2.0. When only the testing
data was used to construct the contingency table for the
first five scoring functions, the interacting SNPs were iden-
tified as the highest total scoring 2-SNP model (average
score over all scoring functions) in 76% of the balanced
data sets (Table 2). The interacting SNPs were observed as
either the 1st or the 2nd model in 82% of the data sets using
the total scoring. Results were similar when the training
data also contributed to the contingency table using either
a leave-one out procedure or maximum likelihood proce-
dure for the balanced data sets (Additional file 1). When
using simulated data sets generated with a higher herita-
bility ratio (0.3), the interacting SNPs were observed as
the top model in 100% of the data sets (data not shown).
Page 6 of 12
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We examined the power of PIA v.2.0 to detect interactions
over several scoring functions. The total score performed
better than most of the other scoring functions, except for
the Gini Index. The Gini Index was the highest performing
function across the balanced data sets. The worst perform-
ing function was the Risk Ratio function. Note that the %
Correct and Sensitivity + Specificity are identical in the sit-
uation with the same number of cases and controls.

The commonly observed interacting pairs in 3-SNP mod-
els were examined in the balanced data sets using PIA v.
2.0 (Table 3). The interacting alleles were present in many
of the top scoring 3-SNP models. They were observed as
the highest rank in the top 10 triplets in 72% of the data
sets. The interacting SNPs were observed in the 1st or 2nd

ranking of pairs in the triplets in 80% of the data sets.

To deal with imbalanced data, PIA v. 2.0 includes the
option of using fractional occupations for scoring func-
tions 1–5. PIA v. 2.0 was applied to imbalanced data sets
with case:control ratios of 1:2 and 1:4 and 10 total SNPs.
When using the option of fractional occupations (IFRACT
= 1), scoring functions % Correct (1) and Sensitivity +
Specificity (2) reduce to the same function. Therefore, for
the analysis of the imbalanced data only the Sensitivity +
Specificity function was included. Using fractional occu-
pations, PIA v. 2.0 was able to detect the interacting SNP
as the 1st ranking 2-SNP model in 80% (1:2) and 68%
(1:4) of the data sets (Table 4). The interacting SNPs were
in the 1st or 2nd rank of 2-SNP models in 88% (1:2) or
77% (1:4) of the data sets. Results were similar when
using both the training and testing data in scoring by
using either a leave-one out procedure or maximum like-
lihood procedure for the imbalanced data sets (Additional
file 1). As in the balanced datasets, the interacting SNP-

pair was also frequently observed in many of the highest
scoring 3-SNP models (Additional file 1). In contrast to
the results obtained on the imbalanced data sets using
fractional occupations, using cell counts alone with
model 55 resulted in the interacting SNPs being observed
13 times (1st rank) and 46 times (2nd rank) in the 2-SNP
models.

When comparing the performance of the different scoring
functions at predicting the interacting SNPs in the imbal-
anced data sets, as with the balanced data, the Gini Index
was the most powerful function at scoring interactions
and the total scoring function performed better than all
the other functions (Table 4, Additional file 1). The fre-
quency of detecting the interacting SNPs was almost the
same using the Gini Index, or the total scoring function.
However, in some data sets, the total scoring function
detected the interacting SNPs slightly better than the Gini
Index. Unlike scoring functions 1–5, the Gini Index uses
the distribution in the entire data set and does not require
cross-validation. Given that the interacting SNPs were
most frequently detected using the Gini Index, we exam-
ined the detection of the interacting SNPs using only a sin-
gle run of the data, instead of using the 10 cycles of 10-
fold cross-validation. Results were similar using only a
single run of the data (data not shown).

Example application
The top scoring SNP combinations for all combinations
of containing 1–4 SNPs associated with colon cancer are
shown (Table 5). The models with highest scores, or best
predictors, were similar across the scoring functions. For
example, the top model, with the highest average score,
for the 2-SNP combinations was CASP8_03 plus
GSTT1_02. This combination was the highest scoring

Table 3: Number of times interacting alleles were observed as highest (rank = 1) or second highest (rank = 2) pairs in the top 10 
triplets using PIA 2.0a for 3-SNP interactions using balanced simulated data sets

Scoring Function
Model Numberb Rank %Correct Sensitivity 

+Specificity
PPV+NPV Risk Ratio Odds Ratio Gini Index Probability 

Difference
Total (Overall)c

55 1 73 73 79 58 79 81 67 63
2 9 9 5 9 5 7 15 12

56 1 61 61 62 50 62 79 51 68
2 10 10 6 8 6 6 10 8

57 1 72 72 71 47 71 78 55 75
2 7 7 10 12 10 8 15 7

58 1 92 92 90 85 90 96 86 92
2 3 3 2 4 2 2 4 3

59 1 57 57 55 52 55 61 42 60
2 10 10 10 8 10 10 9 10

a Data were generated using cell counts to assign case versus control status (IFRACT = 0) and excluded the training data when scoring and running 
10 10-fold cross-validations for functions 1–5 (ITRAIN = 0, FRACT = 0.1, NTIME = 10). Results including training data in scoring are presented in 
Additional file 1, Table S1.
b Simulated data sets were described previously [14] and were obtained from Dr. Moore by request.
c Total score is the summation over all scoring functions after linearly scaling the score for each individual function such that the top score is 50.0.
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combination for 3/7 of the scoring functions. The associ-
ation of this combination with colon cancer using several
different methods of scoring provides further evidence for
the importance of this combination of SNPs in colon can-
cer risk. IL1B_01 plus IL1B_03 was the highest-ranking 2-

SNP combination using only the Gini Index scoring func-
tion.

When examining the top 10 most commonly observed
SNP-pairs from among the 3-SNP combinations, several
SNP pairs were observed more commonly than expected

Table 4: Number of times interacting alleles were observed as highest scoring model (rank = 1) or second (rank = 2) using PIA 2.0a for 
2-SNP interactions using imbalanced simulated data sets

Scoring Function
Model 

Numberb
Case:Control 

Ratio
Rank Sensitivity 

+Specificity
PPV+NPV Risk Ratio Odds Ratio Gini Index Probability 

Difference
Total 

(Overall)c

55 1:2 1 72 72 69 72 81 74 82
2 6 7 7 7 9 8 6

1:4 1 56 50 50 50 61 63 67
2 9 13 10 13 11 11 7

56 1:2 1 69 67 59 67 83 73 79
2 8 10 10 10 11 9 10

1:4 1 45 43 38 43 62 52 62
2 10 11 12 11 15 12 11

57 1:2 1 63 62 45 62 82 69 76
2 6 7 12 7 7 14 8

1:4 1 51 49 34 49 67 53 66
2 10 8 16 8 10 14 9

58 1:2 1 87 86 79 86 96 92 95
2 7 5 8 5 4 4 4

1:4 1 73 70 66 69 84 79 84
2 8 8 15 9 10 8 7

59 1:2 1 64 61 62 61 72 72 70
2 6 9 12 9 7 7 10

1:4 1 54 50 45 50 48 60 61
2 8 10 15 10 19 8 13

a Data were generated using fractional occupations to assign case versus control status (IFRACT = 1) and excluded the training data when scoring 
and running 10 10-fold cross-validations for functions 1–5 (ITRAIN = 0, FRACT = 0.1, NTIME = 10). Training data is included in Additional file 1, 
Table S2.
b Simulated data sets were described previously [14] and were obtained from Dr. Moore by request.
c Total score is the summation over all scoring functions after linearly scaling the score for each individual function such that the top score is 50.0.

Table 5: Highest scoring SNP combinations associated with colon cancer using PIA v. 2.0a

Number of 
SNPs

Scoring Function Total 
(Overall)b

%Correct Sensitivity 
+Specificity

PPV+NPV Risk Ratio Odds Ratio Gini Index Probability 
Difference

1 GSTT1_02 GSTT1_02 PTGS2_11 PTGS2_11 PTGS2_11 IL4_01 GSTT1_02 PTGS2_11
2 CASP8_03 CASP8_03 TGFB1_02 TGFB1_02 TGFB1_02 IL1B_01 CASP8_03 IL1B_01

GSTT1_02 GSTT1_02 PTGS2_11 PTGS2_11 PTGS2_11 IL1B_03 GSTT1_02 IL1B_03
3 MTRR_01 ESR1_03 TGFB1_02 TGFB1_02 TGFB1_02 IL1B_01 IL4_01 IL4_01

IL1B_03 GPX1_03 CDC25A_02 CDC25A_02 CDC25A_02 IL1B_03 MTRR_01 MTRR_01
SOD2_01 GSTT1_02 PTGS2_11 PTGS2_11 PTGS2_11 SOD2_01 DIO1_04 DIO1_04

4 race race CHEK1_02 CHEK1_02 CHEK1_02 WRN_03 IL4R_02 ESR1_03
IL1B_01 IL1B_01 TGFB1_02 TGFB1_02 TGFB1_02 IL5_02 SOD2_01 GPX1_06
IL1B_03 IL1B_03 TNF_02 TNF_02 TNF_02 IL10_02 GSTT1_02 CYP19A1_06
MTHFR_02 MTHFR_02 CDC25A_02 CDC25A_02 CDC25A_02 CYP19A1_06 CYP19A1_09 GSTT1_02

a Data were generated using cell counts to assign case versus control status (IFRACT = 0) and excluded the training data when scoring and running 
10 10-fold cross-validations for functions 1–5 (ITRAIN = 0, FRACT = 0.1, NTIME = 10).
b Total score is the summation over all scoring functions after linearly scaling the score for each individual function such that the top score is 50.0.
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by chance, including GSTT1_02 with CASP8_03 (Table 6).
If the top 100 3-SNP combinations were randomly
selected, a given SNP pair should appear 0.470 times, or
about 3.3 times across the seven scoring functions. There-
fore, these SNP-pairs were observed more frequently than
expected by chance. Interaction between GSTT1_02 with
CASP8_03, observed previously [5], was more clearly
demonstrated in PIA v. 2.0 by examining SNP pairs
among triplets using several different scoring functions
(Table 6).

Discussion
Molecular epidemiology is entering a new era owing to
advancements in genotyping technology and annotation
of variation in the human genome. Few established statis-
tical and bioinformatics tools exist for studying complex
interactions underlying common diseases such as cancer
and cardiovascular diseases. There is no a priori way to
determine which method would be best to identify com-
plex interactions in experimental datasets with variable
minor allele frequencies and unknown heritability. There-
fore, we developed a method to explore complex interac-
tions. PIA v. 2.0 incorporates several different scoring
functions for cross-validation. PIA v. 2.0 also deals with
imbalances between case and control ratios, a common
design feature of case-control studies. Moreover, PIA v. 2.0
allows stratification to determine if particular combina-
tions of SNPs are associated with a phenotype (i.e. case vs.
control) only in a particular subgroup of individuals.
Finally, PIA v. 2.0 allows examinations of associations of
user-defined pathways (based on SNP or gene) with a par-
ticular phenotype.

In this study, we applied PIA v. 2.0 to simulated data sets
with 2 interacting SNPs in the context of non-interacting
SNPs for a total of 10 (imbalanced) or 20 (balanced)

SNPs and examined the power of PIA v. 2.0 to detect the
interacting SNPs. The genetic model for these data sets
assumed a modest genetic association with phenotype
(MAF of 0.2 and heritability of 0.01). PIA v. 2.0 detected
the interacting SNPs as the highest-ranking model in 77%
of the data sets, and using some models, detected the
SNPs in over 90% of the data sets. These results indicate
that PIA is a powerful tool for detecting interactions.

A variety of approaches for studying complex interactions
exist [5,10,17-19], but clearly additional methods are
needed [11]. Multiple approaches should be imple-
mented when examining complex data to reduce the like-
lihood of false positive associations [11,12,18]. PIA v. 2.0
was designed incorporating several scoring functions in
order that SNP-SNP interactions may be validated over
several functions, and ranked according to a total score.
Using the simulated data, the total scoring function in PIA
v. 2.0 performed better than all of the scoring functions
other than the Gini Index. In addition, the interacting
SNPs were observed in the 1st model using PIA v. 2.0 more
frequently than when using MDR [14]. As shown with the
example colon cancer data, CASP8_03 plus GSTT1_02 was
the highest scoring 2-SNP combination overall, while
IL1B_01 plus IL1B_03 was the highest-ranking 2-SNP
combination using only the Gini Index scoring function,
indicating that each function may have strengths in differ-
ent contexts or datasets. Of note, IL1B_01 and IL1B_03 are
in linkage disequilibrium [5].

The interacting SNPs in the simulated data sets were most
frequently detected using the Gini Index scoring function,
compared with the total score. The reason for this is
unclear, but may be due to the fact that the Gini Index
uses the entire data set in scoring, instead of dividing the
population into testing and training data. It is possible,

Table 6: Top 10 most frequently observed SNP-pairs in the 100 highest scoring triplet SNP combinations associated with colon 
cancera.

SNP Pair Frequency of SNP Pair Observed in Each Scoring Function and Overall
SNP-1 SNP-2 %Correct Sensitivity 

+Specificity
PPV+NPV Risk Ratio Odds Ratio Gini Index Probability 

Difference
Total 

(Overall)

IL1B_01 IL1B_03 9 7 0 0 1 71 3 91
CASP8_03 GSTT1_02 20 21 4 0 4 0 3 52
CHEK1_02 TGFB1_02 0 0 14 17 14 0 0 45
MTRR_01 SOD2_01 9 9 3 0 3 4 11 39
CDC25A_02 PTGS2_11 0 0 10 12 10 0 0 32
CHEK1_02 CDC25A_02 0 0 10 11 10 0 0 31
CHEK1_02 PTGS2_11 0 0 8 8 8 0 0 24
CHEK1_02 ALOX5_07 0 0 7 7 7 0 0 21
IL4_01 XRCC1_1 4 7 3 0 3 1 2 20
MTRR_01 DIO1_04 3 3 1 0 1 3 9 20

a Top 100 triplet SNP combinations were generated using cell counts to assign case versus control status (IFRACT = 0). The training data were 
excluded in scoring and running ten 10-fold cross-validations for functions 1–5 (ITRAIN = 0, FRACT = 0.1, NTIME = 10). If the SNPs were 
randomly assigned to the top 100 triplet models, a given pair is expected to be observed 3.3 times overall.
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with the balanced data the scoring is biased based on the
counting of the same function twice. In the balanced data
sets, the number of cases and controls were the same. In
this situation, the % Correct and Sensitivity scoring func-
tions reduce to the same formula. However, even with the
imbalanced data, where fractional occupations are used
and the % Correct function is excluded for the scoring, the
Gini Index performed better than the total score.

In addition to examining the highest scoring SNP models,
to increase sensitivity, we suggest that several of the top
scoring models should be investigated [5]. The difference
in score between the 1stranking and 2nd ranking SNP mod-
els may be modest. Only studying the highest scoring
model may result in missing relevant associations [5]. For
example, when reviewing the results of the 2-SNP interac-
tions, the evidence for the IL1B_01 plus IL1B_03 (1st scor-
ing 2-SNP model) and the GSTT1_02 plus CASP8_03 (2nd

highest scoring model, data not shown) interactions are
similar, both were high scoring models using multiple
scoring functions. In this report, using the simulated
genetic data, the interacting SNPs were frequently
observed in the 2nd ranking SNP models (~10% of data
sets).

In addition to exploring the 1–4 SNP combinations most
strongly associated with outcome, PIA v. 2.0 allows the
user to examine the most commonly occurring SNP pairs
among the top scoring 3-SNP models. The interacting
SNPs were frequently detected as pairs when using PIA to
examine the 3-SNP models using the simulated genetic
data. Therefore, using PIA v. 2.0, there are multiple
approaches to exploring 2-SNP interactions. It is unclear
at present, which approach is the more sensitive
approach. However, it should be noted that the data sets
used in this paper, while appropriate for testing the ability
of PIA v. 2.0 to detect interacting SNPs, might not accu-
rately represent the situation in complex diseases. In com-
plex diseases, multiple genes interact in complex
pathways, as opposed to only 2 interacting SNPs in the
context of non-interacting SNPs – i.e. in real data there are
likely many competing interactions and alternative path-
ways. In this context, if an investigator is interested in 2-
SNP interactions, it may be more appropriate to study the
commonly occurring pairs in the 3-SNP models. Until the
better approach is determined, we suggest that both look-
ing at the 2-SNP models and the pairs observed in the 3-
SNP models is the optimal approach.

Dealing with imbalances in case:control ratios is a chal-
lenge using multi-locus approaches for examining
gene*gene interactions [14]. Using fractional occupa-
tions, PIA v. 2.0 detected the interacting SNPs in 70–80%
of the imbalanced data sets (1:2 and 1:4 ratios), if only
considering the 1st ranking 2-SNP models. In contrast, if

cell counts were used for imbalanced data, PIA v. 2.0 per-
formed poorly. As a result, using the option of fractional
occupations, PIA v. 2.0 may be applied to imbalanced
case-control data to explore interactions.

Overall, PIA v. 2.0 is a robust method for detecting SNP-
SNP interactions, as exemplified by the ability of PIA to
detect the two interacting SNPs in the context of non-
interacting SNPs using the simulated genetic data. PIA v.
2.0 detected the interacting SNPs more frequently than
MDR using both the balanced and imbalanced data sets
[14]. Moreover, PIA was more efficient at detecting inter-
actions than exploring interactions (one at a time) using
traditional methods. Different methods may be stronger
in different contexts or datasets. It should be noted that
PIA v. 2.0 was designed to be highly sensitive at detecting
modest interactions. Therefore, even in absence of inter-
acting SNPs, PIA v. 2.0 will identify top scoring models.
To reduce false positive associations, users should care-
fully examine output produced by PIA v. 2.0 for consistent
associations by investigating the detection of interactions
using multiple scoring functions and the top pairs in 3-
SNP or 4-SNP models and replicate observed associations
using alternative methods (including traditional
approaches). Furthermore, the results generated using
simulated data should be interpreted with caution. PIA v.
2.0, and other methods for examining complex interac-
tions, are likely less powerful in the context of competing
interactions or alternative pathways. Further research is
needed to evaluate PIA v. 2.0 in this context.

Several studies examined association of genetic variation
with disease using large-scale multi-locus approaches.
Previously, PIA was implemented in a study of colon can-
cer to examine complex interactions using 94 SNPs in 67
genes [5]. CART decision trees were used in a study of 16
SNPs in breast cancer [20], and 44 SNPs in bladder cancer
[21]. Multifactor Dimensionality Reduction (MDR) was
used to investigate 51 SNPs in 36 genes in multiple sclero-
sis [22], 36 gene variants in a nested case-control study
within the EPIC cohort to study of bladder cancer, lung
cancer and myeloid leukemia [23], and seven DNA repair
SNPs in bladder cancer [24]. Another study explored the
association of 16 genetic variants in 11 genes with Crohn's
Disease using regularized least squares [19]. All of these
studies observed complex genetic interactions associated
with disease.

PIA v. 2.0 incorporates some aspects of the more common
approaches implemented in other studies of complex
genetic interaction, CART decision trees and MDR. The
Gini Index, one of the PIA v. 2.0 scoring functions, is used
for splitting branches in CART decision trees [25]. PIA v.
2.0 uses a form of dimensionality reduction, like in MDR,
in the assignment of the genotype-phenotype table in Fig-
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ure 1. The % Correct scoring function is similar to the
scoring function used in MDR [10]. A reason for using a
percent score (as in PIA v. 2.0), compared to the number
correctly classified (as in MDR) for scoring of genotype
combinations, is that it accounts for different sized popu-
lations when scoring cells; i.e. if a phenotype has a smaller
population size but 50% of samples are still misclassified,
the score is the same as if a phenotype had a larger popu-
lations size with 50% misclassification.

With the advent of genome wide association studies
(GWAS), it is possible to genotype over 500,000 SNPs on
a single individual. In complex diseases, there are likely
many genes that interact in pathways that are related to
disease susceptibility. As a result, in GWAS, there is an
interest in exploring complex gene*gene interactions.
Investigating complex gene*gene interactions is a chal-
lenge due to the computational time required with such a
large amount of genotyping data. We observed, using PIA
v. 2.0, that a single run of cross-validation was powerful at
detecting the 2-SNP interactions similar to 10 rounds of
10-fold cross-validation. Further, the Gini Index and the
Absolute Probability Difference functions, which both
only implement a single run of the data, were robust at
detecting the 2-SNP interactions. PIA also allows for the
incorporation of user-defined pathways in the analysis of
SNP interactions, which may be used to explore the asso-
ciation of global pathways, or gene ontologies with dis-
ease outcome. Therefore, while PIA v. 2.0 currently can
only be used for up to 1400 SNPs, using a single run of the
data or scoring functions 5 and 6, are a possible approach
to be implemented to reduce computational time and
may eventually be applied to analysis of GWAS.

In this paper, we describe a new method for exploring
genetic interactions, but some of the limitations should
be considered. In classifying genotype combinations asso-
ciated with disease, PIA, as other dimensionality reduc-
tion methods, effectively dichotomizes exposure as "low"
or "high" risk. Such a simplification of genotype combina-
tions results in a loss of information, because in reality
each SNP combination may be associated with levels of
risk. In addition, PIA v. 2.0 is not equipped for continuous
variables, such as age or years of smoking exposure. These
types of variables may only be analyzed using PIA if split
into a maximum of five categories. While PIA v. 2.0 is
more powerful that traditional methods, when studying
higher order interactions, associations become less stable
due to the reduced number of individuals in each cell.
Therefore, PIA does not eliminate the need to conduct
studies of large sample sizes and to confirm findings with
more traditional statistical methodologies.

Conclusion
In conclusion, when evaluating a large number of genetic
factors associated with disease, a strategy for focusing on
only select complex interactions is more efficient and
results in fewer comparisons. PIA v. 2.0 is a useful tool for
exploring these interactions, generating hypotheses for
gene*gene or gene*environment interaction, which may
be investigated further using other statistical methods and
in replication study populations.

Availability and requirements
PIA v. 2.0 must be implemented on a Windows PC using
the command window. The following documents and
programs for use of PIA v. 2.0 in the zip file PIA2-distribu-
tion.zip: PIA2_Guide.doc, the user's manual;
PIA2_examples.doc, step by step instructions with exam-
ple data; test.csv, example data; csv2pia2.exe, converts csv
files to pia files; csv2pia2.list, program that controls the
conversion of the csv file to run csv2pia2.exe; pia2.exe,
executable PIA v 2.0 program; pia2.list, control file to
direct pia2.exe; pia2html.exe, program to generate PIA
output in html format; pia2html.list, program to run
pia2html.exe. PIA is available for download from the fol-
lowing website http://www3.cancer.gov/intra/lhc/PIA2-
distribution.zip.

Implementation
PIA v. 2.0 was written in Fortran and is available for
implementation on PC platforms from the following
website [26] with detailed descriptions and examples.
Two files are required to run PIA v. 2.0, an allele file that
contains the data to analyze and a control file that deter-
mines the type of analysis to be conducted. This latter file
must be named pia2.list. The allele file includes all geno-
types (SNPs, haplotypes), exposures, phenotypes (case vs.
control; long vs. short survivorship) and potential con-
founders, and optional pathway numbers (if a user wants
to investigate pathways). All variables must be categorical,
with at most five categories for each variable numbered as
any set of non-negative sequential integers. The control
file specifies which allele file to be analyzed and the
parameters to be implemented (Additional file 1, Table
S6). PIA v. 2.0 may be used to analyze up to 1400 SNPs
(or factors), in up to 1000 subjects, and up to 4th order
interactions (or combinations of factors associated with
phenotype).

Authors' contributions
LM and JG contributed to the design of the method and
interpretation of data; BL developed method, wrote soft-
ware for PIA and aided in interpretation; SC developed
and conducted genotyping assays; CH conceived of the
study. All authors read and approved the final manuscript.
Page 11 of 12
(page number not for citation purposes)

http://www3.cancer.gov/intra/lhc/PIA2-distribution.zip
http://www3.cancer.gov/intra/lhc/PIA2-distribution.zip


BMC Bioinformatics 2008, 9:146 http://www.biomedcentral.com/1471-2105/9/146
Additional material

Acknowledgements
This research was supported by the Intramural Research Program of the 
NIH, NCI and CCR. The authors thank Dorothea Dudek-Creaven for edi-
torial and Karen MacPherson for bibliographic assistance. We thank Dr. 
Moore and Dr. White for providing the simulated genetic data sets for this 
study. This project has been funded in whole or in part with federal funds 
from the National Cancer Institute, National Institutes of Health, under 
Contract NO1-CO-12400. The content of this publication does not neces-
sarily reflect the views or policies of the Department of Health and Human 
Services, nor does mention of trade names, commercial products, or 
organizations imply endorsement by the United States Government.

References
1. Chen YC, Hunter DJ: Molecular epidemiology of cancer.  CA

Cancer J Clin 2005, 55:45-54.
2. Balmain A, Gray J, Ponder B: The genetics and genomics of can-

cer.  Nat Genet 2003, 33 Suppl:238-244.
3. Ioannidis JP, Ntzani EE, Trikalinos TA, Contopoulos-Ioannidis DG:

Replication validity of genetic association studies.  Nat Genet
2001, 29:306-309.

4. Lohmueller KE, Pearce CL, Pike M, Lander ES, Hirschhorn JN: Meta-
analysis of genetic association studies supports a contribu-
tion of common variants to susceptibility to common dis-
ease.  Nat Genet 2003, 33:177-182.

5. Goodman JE, Mechanic LE, Luke BT, Ambs S, Chanock S, Harris CC:
Exploring SNP-SNP interactions and colon cancer risk using
polymorphism interaction analysis.  Int J Cancer 2006,
118:1790-1797.

6. Moore JH: The ubiquitous nature of epistasis in determining
susceptibility to common human diseases.  Hum Hered 2003,
56:73-82.

7. Chanock SJ, Manolio T, Boehnke M, Boerwinkle E, Hunter DJ, Tho-
mas G, Hirschhorn JN, Abecasis G, Altshuler D, Bailey-Wilson JE,
Brooks LD, Cardon LR, Daly M, Donnelly P, Fraumeni JF Jr., Freimer
NB, Gerhard DS, Gunter C, Guttmacher AE, Guyer MS, Harris EL,
Hoh J, Hoover R, Kong CA, Merikangas KR, Morton CC, Palmer LJ,
Phimister EG, Rice JP, Roberts J, Rotimi C, Tucker MA, Vogan KJ,
Wacholder S, Wijsman EM, Winn DM, Collins FS: Replicating gen-
otype-phenotype associations.  Nature 2007, 447:655-660.

8. Colhoun HM, McKeigue PM, Davey SG: Problems of reporting
genetic associations with complex outcomes.  Lancet 2003,
361:865-872.

9. Hahn LW, Ritchie MD, Moore JH: Multifactor dimensionality
reduction software for detecting gene-gene and gene-envi-
ronment interactions.  Bioinformatics 2003, 19:376-382.

10. Ritchie MD, Hahn LW, Roodi N, Bailey LR, Dupont WD, Parl FF,
Moore JH: Multifactor-dimensionality reduction reveals high-
order interactions among estrogen-metabolism genes in
sporadic breast cancer.  Am J Hum Genet 2001, 69:138-147.

11. Thornton-Wells TA, Moore JH, Haines JL: Genetics, statistics and
human disease: analytical retooling for complexity.  Trends
Genet 2004, 20:640-647.

12. Heidema AG, Boer JM, Nagelkerke N, Mariman EC, van der ADL,
Feskens EJ: The challenge for genetic epidemiologists: how to
analyze large numbers of SNPs in relation to complex dis-
eases.  BMC Genet 2006, 7:23.

13. Ritchie MD, Hahn LW, Moore JH: Power of multifactor dimen-
sionality reduction for detecting gene-gene interactions in

the presence of genotyping error, missing data, phenocopy,
and genetic heterogeneity.  Genet Epidemiol 2003, 24:150-157.

14. Velez DR, White BC, Motsinger AA, Bush WS, Ritchie MD, Williams
SM, Moore JH: A balanced accuracy function for epistasis mod-
eling in imbalanced datasets using multifactor dimensional-
ity reduction.  Genet Epidemiol 2007, 31:306-315.

15. Packer BR, Yeager M, Burdett L, Welch R, Beerman M, Qi L, Sicotte
H, Staats B, Acharya M, Crenshaw A, Eckert A, Puri V, Gerhard DS,
Chanock SJ: SNP500Cancer: a public resource for sequence
validation, assay development, and frequency analysis for
genetic variation in candidate genes.  Nucleic Acids Res 2006,
34:D617-D621.

16. 2008 [http://snp500cancer.nci.nih.gov/home_1.cfm].
17. Chatterjee N, Kalaylioglu Z, Moslehi R, Peters U, Wacholder S: Pow-

erful multilocus tests of genetic association in the presence
of gene-gene and gene-environment interactions.  Am J Hum
Genet 2006, 79:1002-1016.

18. Coffey CS, Hebert PR, Ritchie MD, Krumholz HM, Gaziano JM, Rid-
ker PM, Brown NJ, Vaughan DE, Moore JH: An application of con-
ditional logistic regression and multifactor dimensionality
reduction for detecting gene-gene interactions on risk of
myocardial infarction: the importance of model validation.
BMC Bioinformatics 2004, 5:49.

19. D'Addabbo A, Latiano A, Palmieri O, Maglietta R, Annese V, Ancona
N: Regularized Least Squares Classifiers may Predict
Crohn's Disease from Profiles of Single Nucleotide Polymor-
phisms.  Ann Hum Genet 2007, 71:537-549.

20. Gerger A, Langsenlehner U, Renner W, Weitzer W, Eder T, Yazdani-
Biuki B, Hofmann G, Samonigg H, Krippl P: A multigenic approach
to predict breast cancer risk.  Breast Cancer Res Treat 2006,
104:159-164.

21. Wu X, Gu J, Grossman HB, Amos CI, Etzel C, Huang M, Zhang Q,
Millikan RE, Lerner S, Dinney CP, Spitz MR: Bladder cancer predis-
position: a multigenic approach to DNA-repair and cell-
cycle-control genes.  Am J Hum Genet 2006, 78:464-479.

22. Motsinger AA, Brassat D, Caillier SJ, Erlich HA, Walker K, Steiner LL,
Barcellos LF, Pericak-Vance MA, Schmidt S, Gregory S, Hauser SL,
Haines JL, Oksenberg JR, Ritchie MD: Complex gene-gene inter-
actions in multiple sclerosis: a multifactorial approach
reveals associations with inflammatory genes.  Neurogenetics
2007, 8:11-20.

23. Manuguerra M, Matullo G, Veglia F, Autrup H, Dunning AM, Garte S,
Gormally E, Malaveille C, Guarrera S, Polidoro S, Saletta F, Peluso M,
Airoldi L, Overvad K, Raaschou-Nielsen O, Clavel-Chapelon F, Lin-
seisen J, Boeing H, Trichopoulos D, Kalandidi A, Palli D, Krogh V,
Tumino R, Panico S, Bueno-De-Mesquita HB, Peeters PH, Lund E,
Pera G, Martinez C, Amiano P, Barricarte A, Tormo MJ, Quiros JR,
Berglund G, Janzon L, Jarvholm B, Day NE, Allen NE, Saracci R, Kaaks
R, Ferrari P, Riboli E, Vineis P: Multi-factor dimensionality reduc-
tion applied to a large prospective investigation on gene-
gene and gene-environment interactions.  Carcinogenesis 2007,
28:414-422.

24. Andrew AS, Nelson HH, Kelsey KT, Moore JH, Meng AC, Casella DP,
Tosteson TD, Schned AR, Karagas MR: Concordance of multiple
analytical approaches demonstrates a complex relationship
between DNA repair gene SNPs, smoking and bladder can-
cer susceptibility.  Carcinogenesis 2006, 27:1030-1037.

25. Breiman L, Friedman JH, Olshen RA, Stone CJ: Classification and
Regression Trees. Wadsworth.  Belmont, CA 1984.

26. 2008 [http://www3.cancer.gov/intra/lhc/PIA2-distribution.zip].

Additional file 1
Supplemental Tables. Simulation results applying different options in PIA 
2.0 and parameter descriptions.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-146-S1.doc]
Page 12 of 12
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2105-9-146-S1.doc
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15661686
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12610533
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12610533
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11600885
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11600885
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12524541
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12524541
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12524541
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16217767
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16217767
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16217767
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14614241
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14614241
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17554299
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17554299
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12642066
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12642066
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12584123
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12584123
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12584123
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11404819
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11404819
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11404819
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15522460
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15522460
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16630340
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16630340
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16630340
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12548676
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12548676
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12548676
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12548676
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17323372
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17323372
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17323372
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381944
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381944
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381944
http://snp500cancer.nci.nih.gov/home_1.cfm
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17186459
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17186459
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17186459
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15119966
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15119966
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17359494
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17359494
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17359494
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17058024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17058024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16465622
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16465622
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16465622
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17024427
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17024427
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17024427
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16956909
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16956909
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16956909
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16311243
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16311243
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16311243
http://www3.cancer.gov/intra/lhc/PIA2-distribution.zip

	Abstract
	Background
	Results
	Conclusion

	Background
	Methods
	Algorithm
	Simulation data
	Example data

	Results
	Simulation results
	Example application

	Discussion
	Conclusion
	Availability and requirements
	Implementation
	Authors' contributions
	Additional material
	Acknowledgements
	References

