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Abstract
Background: Comparative methods have been the standard techniques for in silico protein
structure prediction. The prediction is based on a multiple alignment that contains both reference
sequences with known structures and the sequence whose unknown structure is predicted.
Intensive research has been made to improve the quality of multiple alignments, since misaligned
parts of the multiple alignment yield misleading predictions. However, sometimes all methods fail
to predict the correct alignment, because the evolutionary signal is too weak to find the
homologous parts due to the large number of mutations that separate the sequences.

Results: Stochastic sequence alignment methods define a posterior distribution of possible
multiple alignments. They can highlight the most likely alignment, and above that, they can give
posterior probabilities for each alignment column. We made a comprehensive study on the
HOMSTRAD database of structural alignments, predicting secondary structures in four different
ways. We showed that alignment posterior probabilities correlate with the reliability of secondary
structure predictions, though the strength of the correlation is different for different protocols.
The correspondence between the reliability of secondary structure predictions and alignment
posterior probabilities is the closest to the identity function when the secondary structure
posterior probabilities are calculated from the posterior distribution of multiple alignments. The
largest deviation from the identity function has been obtained in the case of predicting secondary
structures from a single optimal pairwise alignment. We also showed that alignment posterior
probabilities correlate with the 3D distances between Cα amino acids in superimposed tertiary
structures.

Conclusion: Alignment posterior probabilities can be used to a priori detect errors in comparative
models on the sequence alignment level.

Background
Due to the increasing speed and number of genome
sequencing projects, the gap between the number of
known structures and the number of known protein

sequences keeps increasing. As a result, demand for relia-
ble computational methods today is higher than ever,
while in silico estimation of protein structures remains one
of the most challenging tasks in bioinformatics.
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The central assumption of comparative bioinformatics
methods for proteins is that the structures of proteins are
more conserved than their amino-acid sequences. This
allows homology modelling, namely, mapping the struc-
ture of a sequence onto homologous sequences. As inser-
tions and deletions separating two homologous
sequences accumulate, homologous characters in the two
sequences will occupy different positions, which causes a
non-trivial problem of identifying homologous positions.
This problem can be solved by sequence alignment algo-
rithms [1-4], which maximise the similarity between
aligned positions while also minimise the insertions and
deletions needed to align the sequences.

The relationship between gap-penalties and similarity
scores can be set such that they maximise the number of
correctly aligned positions in a benchmark set of align-
ments [5,6]. By contrast, stochastic models are capable to
calibrate their parameters by applying a Maximum Likeli-
hood approach even if no benchmark set is available. Hid-
den Markov Models were the first such stochastic models
which have appeared in bioinformatics more than ten
years ago [7]. Thorne, Kishino and Felsenstein introduced
time-continuous Markov models for describing insertion
and deletion events [8,9], and they showed on simulated
data that the Maximum Likelihood method could cor-
rectly estimate the insertion-deletion as well as the substi-
tution parameters with which the simulated data had
been generated. The TKF models have subsequently been
improved [10,11], and have been tested for alignment
accuracy on biological data [11]. Above automatic param-
eter estimation, the other main advantage of stochastic
models is that such models can provide posterior proba-
bilities for each estimated alignment column as well as for
the whole alignment, and these posterior probabilities
correlate with the probability for the alignment column
being correctly aligned [11-13].

The uncertainty in the sequence alignment can be slightly
reduced when more than two sequences are simultane-
ously aligned together, and hence, much effort has been
put in developing accurate multiple sequence alignment
methods. Although efficient algorithms exist for any type
of pairwise alignment problem, the multiple sequence
alignment problem is hard. It has been proved that the
optimal multiple sequence alignment problem under the
sum-of-pairs scoring scheme is NP-hard [14], and it is
strongly believed that the statistical approach to multiple
sequence alignment is algorithmically not simpler than
score-based approaches. Since it is unlikely that fast algo-
rithms exist for any type of exact multiple sequence align-
ment problem, heuristic approaches have become
widespread. Profile-HMM methods [15,16] align
sequences to a profile-HMM instead of each other, and the
multiple sequence alignment is obtained by aligning

sequences together via a profile-HMM. Since the jumping
and emission parameters of the HMM are learned from
the data, this approach needs many sequences for param-
eter optimisation. Nevertheless, profile-HMMs do not
consider evolutionary relationships amongst sequences,
and hence, they cannot handle properly over-representa-
tion of evolutionary groups.

Iterative approaches have been introduced for score-based
methods in the eighties [17,18] and have recently been
extended for stochastic methods [13,19] using the trans-
ducer theory [20,21]. The drawback of iterative
approaches is that in each iteration, they consider only a
single, locally optimal alignment that might not lead to a
globally optimal alignment. Moreover, as they consider
only locally optimal partial solutions, they naturally
underestimate the uncertainty of posterior probabilities.

The Markov chain Monte Carlo (MCMC) method repre-
sents a third way to attack the multiple stochastic align-
ment problem. It was first introduced for assessing the
Bayesian distribution of evolutionary parameters of the
TKF91 model aligning two sequences [22], and has subse-
quently been extended to multiple sequence alignment
[23-28]. The general theory of Markov chain Monte Carlo
[29,30] states that the Markov chain will be in the pre-
scribed distribution after infinite number of random
steps. Obviously, we cannot wait infinite many steps in
practice, and therefore the success of MCMC methods
depends on fast convergence: if the Markov chain con-
verges quickly to the prescribed distribution, the bias of
samples from the Markov chain after a limited number of
steps will be negligible. The convergence can be checked
by measuring autocorrelation in the log-likelihood trace
or a few other statistics of the Markov chain and by run-
ning several parallel chains with different random starting
points [31].

Since the above mentioned methods for multiple stochas-
tic sequence alignment problems have been introduced
only recently, no large-scale, comprehensive analysis on
the performance of methods for protein structure predic-
tion has been published yet. In this paper, we present a
survey on how stochastic alignment methods can be used
for protein secondary structure predictions. The predic-
tion can be based on pairwise or multiple alignments and
in both cases, either only a single, optimal alignment or
the whole posterior distribution of alignments is used for
prediction. We are interested in the question how much
one can gain by involving more sequences and the poste-
rior distribution of the alignments into the secondary
structure prediction.
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Results
Implementation of the methods
We implemented a stochastic pairwise and a stochastic
multiple sequence alignment method in Java program-
ming language (see Additional file 1), and we made a
study of the methods on the HOMSTRAD database as
described in the Methods section.

The stochastic pairwise alignment method was tested on
all the possible 9494 pairs of sequences belonging to the
same family. The analysis took two days on an Intel Xeon
3.0 GHz computer with SUSE Linux 9.3 operating system
and JVM 1.5.0. The most time-consuming part of the anal-
ysis was the Maximum Likelihood parameter optimisa-
tion, which took approximately 90% of the total running
time.

12 families have been selected for testing the stochastic
multiple sequence alignment method, see Table 1. The
families have been selected such that they reasonably
cover the percentage identity distribtion of the HOM-
STRAD database and they contain relatively many and
approximately the same number of sequences. There are
541 possible pairs of homologous sequences obtainable
from the 12 families, which is 5.7% of the possible
homologous sequence pairs of the HOMSTRAD database.
The analysis was performed on the ZUSE cluster of the
Oxford Supercomputing Centre, each job ran on a dual
Intel Xeon 3.6GHz processor under JVM 1.6.0. 1000000
MCMC steps were taken after convergence on each family.
The running time of the analysis varied between 2.5 hours
(7 sequences, length of 105 amino acids in average) and
two days (11 sequences, 294 amino acids in average). The
convergence has been verified based on the log-likelihood
trace and comparing sampling distributions from parallel
chains with different starting points, see Fig. 1. for an
example.

Post-processing the data
Secondary structure predictions have been given in four
ways:

• Based on the Viterbi alignment (referred to as "Viterbi").
In this case, the most likely – a.k.a. Viterbi – alignment
was obtained for all pairs of sequences and was used to
map the secondary structure of one of the sequences onto
the other sequence.

• Based on the posterior distribution of pairwise align-
ments using the Forward-Backward algorithm ("For-
ward"). In this case, the posterior probabilities that two
amino acids are aligned together were obtained for all
pairs of sequences and all pairs of amino acids. The sec-
ondary structure of one of the sequences was mapped
onto the other sequence in a fuzzy way using the posterior
probabilities.

• Based on the Maximum Posterior Decoding estimation
from samples of a Markov chain Monte Carlo (MCMC)
stochastic multiple alignment ("MPD"). In this case, the
Maximum Posterior Decoding (MPD) alignments were
predicted from MCMC samples and were used to map the
secondary structure of one of the sequences onto the other
sequences. The MPD alignment maximizes the product of
the posterior probabilities of its alignment columns. See
the Methods section for an explanation why the MPD
alignment can be more accurately estimated from MCMC
samples than the Viterbi alignment.

• Based on the posterior distribution of multiple align-
ments obtained by MCMC stochastic multiple alignment
("Bayesian"). In this case, the posterior probabilities that
two amino acids are aligned together were estimated from
the MCMC samples for all pair of sequences choosable
from a multiple alignment and all pair of amino acids.
The secondary structure of one of the sequences was

Table 1: Selected families from the HOMSTRAD database for testing the performance of stochastic multiple sequence alignment 
methods

Family name Class Number of sequences Average length Average sequence id

Xylose isomerase Alpha beta barrel 6 388 69%
Annexin All alpha 6 317 57%

Calcium-binding protein – parvalbumin-like All alpha 7 107 56%
Starch binding domain All beta 8 105 52%

Glycosyl hydrolase family 22 (lysozyme) Alpha+beta 12 126 51%
Legume lectin All beta 12 234 50%

Papain family cysteine proteinase Alpha+beta 13 223 40%
Subtilase Alpha/beta 11 294 40%

Src homology 2 domains Alpha+beta 11 105 35%
C-type lectin Alpha+beta 8 126 27%

Halo-peroxidase Alpha/beta 9 286 25%
Response regulator receiver domain Alpha/beta 13 122 25%
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Maximum Posterior Decoding estimations for the multiple sequence alignment of the subtilase family in the HOMSTRAD data-baseFigure 1
Maximum Posterior Decoding estimations for the multiple sequence alignment of the subtilase family in the HOMSTRAD data-
base. The two estimations were given based on samples from two Markov chains with different starting points. The similarity 
between the two independent estimations shows good convergence and mixing of the Markov chain.
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mapped onto the other sequence in a fuzzy way using the
posterior probabilities.

Amino acid sequences were divided into 100 categories
based on their alignment posterior probabilities in the
case of pairwise sequence alignments – or on their poste-
rior structure prediction probabilities (see Methods, Eqn.
1.) in the case of Viterbi and Forward estimations, respec-
tively. The 100 categories were evenly distributed on the
[0, 1] interval. For each category and the three general
types of secondary structures (alpha helices, beta sheets
and 310 helices), the percentage of the correctly estimated
secondary structure types was calculated and plotted on
Fig. 2. In the case of the Viterbi alignments, this means the
ratio of the number of true positives and the number of all
predictions of the given type. In the case of the Forward
prediction, it is the number of amino acids of a given sec-
ondary structure type that fall in a particular category
divided by the number of all amino acids in the category.

Amino acid sequences of the selected 12 families were
divided into 10 categories based on their alignment pos-
terior probabilities in the case of multiple sequence align-
ments – or on their posterior structure prediction

probabilities (see Methods, Eqn. 2.) in the case of MPD
and Bayesian estimation, respectively. The 10 categories
were evenly distributed on the [0, 1] interval. For each cat-
egory and the three general types of secondary structures,
the percentage of the correctly estimated secondary struc-
ture types was calculated and plotted on Fig. 3. In the case
of the Maximum Posterior Decoding estimation, this
means the ratio of the number of true positives and the
number of all prediction of a given secondary structure
type. In the case of Bayesian estimation, it is the number
of amino acids of a given secondary structure type that fall
in a particular category divided by the number of all
amino acids in the category.

For a fair comparison, we repeated the pairwise sequence
comparison protocols on the selected 12 families, the gen-
erated statistics are shown on Fig. 4. The statistics
obtained from the 12 selected families show similar
behavior than those obtained from the whole HOM-
STRAD database: all the six curves have similar shapes in
both cases.

Our results indicate that methods predicting secondary
structures based on a single alignment are over-pessimis-
tic about their performance on alpha helices and beta
sheets, namely, the posterior probabilities associated to

Posterior probabilities of correctly predicting secondary structure types with stochastic pairwise alignment methods as a function of alignment posterior probabilitiesFigure 2
Posterior probabilities of correctly predicting secondary 
structure types with stochastic pairwise alignment methods 
as a function of alignment posterior probabilities. The black 
diagonal shows the identity function. The statistics have been 
generated on the whole HOMSTRAD database, 'Viterbi' 
means estimation based on a single, optimal alignment 
obtained by the Viterbi algorithm, 'Forward' means estima-
tion based on the posterior distribution of alignments 
obtained by the Forward algorithm.
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Posterior probabilities of correctly predicting secondary structure types with stochastic multiple sequence alignment methods as a function of alignment posterior probabilitiesFigure 3
Posterior probabilities of correctly predicting secondary 
structure types with stochastic multiple sequence alignment 
methods as a function of alignment posterior probabilities. 
The black diagonal shows the identity function. The statistics 
have been generated on 12 families from the HOMSTRAD 
database, see Table 1.
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the prediction are lower than the actual probability that
the prediction is correct. Methods that predict structures
based on the whole distribution of sequence alignments
are less pessimistic – the alignment posterior probabilities
better approximate the observed probabilities that the
prediction is correct. All pairwise alignment methods
proved to be over-optimistic estimating the reliability of
their predictions for alpha helices and beta sheets with
posterior probability above 0.8.

Predicting the correctness of 310 helix predictions turned
out to be the toughest of all secondary structure types.
Each method except the Bayesian estimation on multiple
sequence alignments is much over-optimistic on their
power of predicting 310 helices. MPD is less optimistic
than pairwise methods.

Among all methods studied, Bayesian estimation based
on multiple alignments was the only one that was able to
correctly predict its prediction power of all secondary
structure types, including 310 helices, which makes
MCMC-based multiple alignment methods successful
candidates for promotion to a fundamental tool in pro-
tein structure prediction.

To show that the alignment posterior probabilities corre-
late not only with the goodness of secondary structure
predictions but they also correlate with the similarities in
the 3D structures, we calculated from the HOMSTRAD
superimposed 3D structures the 3D distances between the
Cα atoms for each aligned pair of amino acids. The align-
ment posterior probabilities were evenly divided into 10
categories, and the average 3D distances as well as the low
and high quartiles have been plotted for each category.

Fig. 5. shows the results for Viterbi alignments, both for
the entire database and for the 12 selected sequence fam-
ilies. Fig. 6. shows the results for the MPD alignments of
the 12 selected families. Finally, we present on Fig. 7. the
classical sensitivity values for the Viterbi and MPD align-
ments. Not only the posterior goodness probabilities cor-
relate with the alignment posterior probabilities but also
the sensitivity values. If secondary structure predictions
are restricted for those alignment columns that have 0.8
alignment posterior probabilities or greater, then the sen-
sitivity of alpha helix and beta-sheet predictions are
greater than 80%, and about 50% for 310 helices.

Discussion
Comparing predictions on different secondary structure 
types
The differences between the predictions of different sec-
ondary structure elements can be explained by their gen-

Posterior probabilities of correctly predicting secondary structure types with stochastic pairwise alignment methods as a function of alignment posterior probabilitiesFigure 4
Posterior probabilities of correctly predicting secondary 
structure types with stochastic pairwise alignment methods 
as a function of alignment posterior probabilities. The black 
diagonal shows the identity function. The statistics have been 
generated on 12 families from the HOMSTRAD database, 
see Table 1.
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3D distances between the aligned Cα amino acids as a func-tion of pairwise alignment posterior probabilitiesFigure 5
3D distances between the aligned Cα amino acids as a func-
tion of pairwise alignment posterior probabilities. The 3D 
distances were calculated from the HOMSTRAD pdb files 
containing the superimposed structures of sequence families. 
Pairwise alignments were obtained by the Viterbi algorithm 
on the entire HOMSTRAD database (black) as well as on the 
12 selected families described in Table 1. (light green). Boxes 
show the average distances, lines show the range between 
the low and high quartiles.
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eral attributes. Alpha helices are typically formed by 10
amino acids or more. Substitutions are frequent in alpha
helices and they are surrounded by loop sequences where
insertions and deletions often occur, therefore stochastic
alignment methods realise some uncertainty, which yields
relatively low posterior probabilities when aligning these
regions. However, since alpha helices are relatively long,
and the substitutions that occur in them rarely change the
chemical behaviour of the affected amino acids, the long
runs of chemically similar amino acids in the two
sequences to be aligned give a strong statistical signal that
helps align alpha helices.

Beta sheet elements are typically shorter than alpha heli-
ces, and are also surrounded by non-structured fragments
accumulating insertions and deletions, which also yields
relatively low alignment posterior probabilities. However,
beta sheet elements are more likely to be misaligned, since
their short length keeps them from carrying a statistical
signal that alpha helices do.

The 310 helices are the least conserved secondary structure
elements. Even if the actual amino acid sequence does not
change, mutations at other parts of the sequence might
indicate a conformation change that can shift the 310 helix
or transform it into a different structure type, see for exam-
ple, Fig. 8. Such conserved parts are assigned high align-
ment posterior probabilities, and they increase the false
positive ratio when this 310 structure is mapped onto
other sequences that do not contain this secondary struc-

ture motif. The fact that different secondary structure
motifs can build up the same region of a functional pro-
tein implies that the given region might not be crucial to
maintaining the structure and function of the protein and
thus mutations can accumulate in the vicinity of the given
region. Stochastic multiple sequence alignment can reveal
the uncertainty in aligning that region, which explains
why multiple alignment methods improve in predicting
their predicting power on 310 helices.

There is a similar explanation for the overoptimism in the
region of 0.8 and higher posterior probabilities in the case
of alpha helices and beta sheets: slight structural changes
might shift the position where an alpha helix or a beta
sheet starts or ends, even if the amino acids in the posi-
tions of question do not change. Fig. 8. also shows exam-
ples of such variations of secondary structure elements.
For instance, the first alignment column is indicated to
have a beta sheet structure in some sequences while it is
non-structural in others.

Comparing predictions of different protocols
Predictions based on a single, optimal pairwise or multi-
ple alignment are over-pessimistic: alignment columns
from both the Viterbi alignments and the MPD multiple
alignments are labelled with posterior probabilities that
are typically lower than the actual probability that the sec-

3D distances between the aligned Cα amino acids as a func-tion of multiple alignment posterior probabilitiesFigure 6
3D distances between the aligned Cα amino acids as a func-
tion of multiple alignment posterior probabilities. The 3D 
distances were calculated from the HOMSTRAD pdb files 
containing the superimposed structures of sequence families. 
Multiple alignments are MPD estimations for the 12 selected 
families described in Table 1. based on MCMC samples. 
Boxes show the average distances, lines show the range 
between the low and high quartiles.
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Sensitivity of secondary structure predictions as a function of alignment posterior probabilitiesFigure 7
Sensitivity of secondary structure predictions as a function of 
alignment posterior probabilities. Sensitivity is defined as TP/
(TP + FN) where TP stands for the true positive estimations 
and FN stands for the false negative estimations. The Viterbi 
alignments were obtained for all possible homologous pairs 
in the HOMSTRAD database, the MPD alignments were esti-
mated for the 12 selected families in Table 1.
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ondary structure predictions are correct for these columns.
When the whole posterior ensemble of alignments is the
basis of the secondary structure prediction, the posterior
probabilities are closer to the actual probabilities that the
prediction is correct. One main difference between the
two strategies – prediction based on a single optimal
alignment and prediction based on the posterior distribu-
tion of alignments – is that in the latter case posterior
probabilities of all secondary structure types are given for
each amino acid, while in the former case, the Viterbi or
MPD alignment assigns at most one secondary structure
element to each amino acid. This suggests the hypothesis
that prediction methods based on the posterior distribu-
tion of alignments are less over-pessimistic due to possess-
ing such false positive predictions with small posterior
probabilities that are not part of a Viterbi or MPD align-
ment-based estimation.

To test this hypothesis, we predicted alpha helices and
beta sheets from the posterior distribution of pairwise
alignments in an alternative way. In this alternative pre-
diction, each amino acid has been assigned to at most one
secondary structure element that had maximal posterior
probability (if the posterior probability of not harbouring
a secondary structure type was maximal, then no second-
ary structure has been associated to the amino acid in
question).

The correlation between alignment posterior probabilities
and probabilities of correctly predicting a secondary struc-
ture type is obviously the same under the two different
protocols if the posterior probability is greater than 0.5,
since an event having probability greater than 0.5 must be
the most likely event. The two types of curves split very
soon below 0.5 (data not shown), and the second type of

prediction protocol (considering at most one secondary
structure type prediction for an amino acid) gets less over-
pessimistic than the other protocol. This means that there
are more true positive predictions than false positive pre-
dictions with non-maximal posterior probabilities.

This result is just the opposite of what our hypothesis sug-
gested, therefore we also plotted the number of false pos-
itive and true positive predictions for each secondary
structure type and prediction methods, see Fig. 9. This
analysis confirms that explanation for methods based on
the posterior distribution of alignments being able to pre-
dict their prediction power better than methods based on
a single, optimal alignment is that they have more false
positive predictions with alignment posterior probabili-
ties below 0.5. The pairwise and multiple alignment
methods show a different behaviour for alignment poste-
rior probabilities greater than 0.5. While the Forward
method has only slightly more true positive predictions
and significantly more false positive predictions in this
region than the Viterbi method, the Bayesian method has
more true positive predictions and approximately the
same false negative predictions as the Maximum Posterior
Decoding method.

Correlation between 3D structure similarities and 
alignment posterior probabilities
High alignment posterior probabilities indicate that the
aligned residues are close to each other in the superim-
posed 3D structures. The average 3D distance between the
aligned residues increases as the alignment posterior
probability decreases. However, the distribution of resi-
due distances become flatter for small alignment posterior
probabilities, namely, a small alignment posterior proba-

Part of the HOMSTRAD subtilase alignment in JOY formatFigure 8
Part of the HOMSTRAD subtilase alignment in JOY format. In the middle of the alignment, the TSA motif might be both alpha 
helix and 310 helix.
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Number of true positive and false positive predictions as function of the alignment posterior probabilitiesFigure 9
Number of true positive and false positive predictions as function of the alignment posterior probabilities.
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bility does not necessarily mean that the aligned residues
are far from each other. For example, 0.5 alignment pos-
terior probability in a pairwise alignment means that
there is still about 25% probability that the aligned resi-
dues are closer to each other than the average distance
between amino acids that are aligned together with more
than 0.9 posterior probability. The distance distribution is
even flatter in case of multiple alignments. One possible
explanation is that the alignment posterior probabilities
are calculated for multiple alignment columns while dis-
tances are calculated for all possible pairs of amino acids
in alignment columns. A small alignment posterior prob-
ability indicates possible differences in the 3D structures,
however, some of the 3D structures might be still similar.
Averaging the 3D distances in alignment columns natu-
rally makes the distribution more centred (data not
shown).

Conclusion
In this paper, we studied how posterior probabilities of
aligning characters in pairwise or multiple alignments
might indicate whether secondary structure predictions
based on the alignments in question are correct. We found
that pairwise alignment methods are over-pessimistic on
predicting alpha helices and beta sheets, namely, poste-
rior probabilities of alignment columns are lower than the
actual probability that the structure prediction based on
the alignment column is correct, while they are overopti-
mistic on predicting 310 helices, i.e., posterior probabili-
ties for these alignment columns are greater than the
probabilities that the secondary structure prediction for
these amino acids is correct. Multiple alignment methods
provide slightly more reliable predictions about their reli-
ability of secondary structure predictions – they are less
overoptimistic on 310 helix predictions.

Secondary structure predictions can be given based on sin-
gle, optimal pairwise or multiple alignments and also
based on the posterior ensemble of alignments. In the lat-
ter case, posterior probabilities are closer to the probabil-
ities that the secondary structure prediction is correct,
especially when the structure prediction is based on the
posterior distribution of multiple sequence alignments.

The multiple sequence alignment is the Holy Grail of bio-
informatics [32] since what "one or two homologous
sequences whisper ... a full multiple sequence alignment
shouts out loud" [33]. Our experiments show that multi-
ple sequence alignments not only highlight conserved
positions better than pairwise alignments, but they also
more reliably indicate the reliability of their prediction
capabilities. This extra information could be exploited in
3D protein structure prediction: high posterior probabili-
ties indicate the regions of the sequence alignment where
the alignment accuracy is significantly better than the

average alignment accuracy, see Figs. 5 and 6. These parts
can be used as a reliable scaffold in homology modelling.
On the remaining, unreliable parts, homology modelling
is expected to have a low quality, and hence the 3D struc-
ture of these regions should be predicted with alternative
methods, like ab initio threading methods [34-36].

It is worth mentioning that the alignment methods we
applied in this work do not consider any information
about how secondary structures evolve. It is well-known
that different secondary structure elements follow differ-
ent substitution processes, and this difference in the sub-
stitution pattern can be used for secondary structure
prediction [37]. It is fairly straightforward to incorporate
into current alignment methods a priori knowledge on the
substitution, insertion and deletion processes of second-
ary structures, and we expect that such combined
approaches will have a better performance in structure
prediction. Nevertheless, secondary structures can be pre-
dicted not only in a comparative way, but also using a sin-
gle sequence, based on the statistical properties of the
amino acids in different secondary structure types [38,39].
Potential prior distributions for secondary types elements
might be derived from such statistics and might be used in
Bayesian analysis.

The running time of the methods obviously increases with
the complexity of the background models, and analyses
utilising such combined methods currently take too long
to be applicable for everyday use on personal computers.
However, the speed of processors keeps increasing expo-
nentially following Moore's law, and will soon reach a
level when it won't pose barrier to such combined
approaches. Nevertheless, there are also promising chan-
nels to improve the running time of the methods. The
standard approach for statistical multiple alignment is
going to be MCMC, and current implementations make
use of very basic tricks only, like the alignment window
cut algorithm described in the Methods section. Several
groups are working on making MCMC alignment meth-
ods more efficient and quickly mixing, and significant
improvements are expected in the coming years.

Methods
The HOMSTRAD database [40] has been downloaded and
was used as a benchmark set for the methods we tested. As
of December 2007, the database contains 1032 families of
sequences, each family shares a common 3D structure.
Each sequence in the database is annotated in JOY format
[41] that, among other information, describes the second-
ary structure type of each amino acid (one of alpha helix,
beta sheet, 310 helix or none). We predicted the secondary
structures of the sequences as described below.
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Pairwise sequence alignments
The stochastic model
We used a simplified version of the TKF92 model [9] as
presented in [11]. The simplified model can handle long
insertions and deletions technically introduced as a birth-
death process of unbreakable sequence fragments. Unlike
the original TKF92 model, our model does not consider
slowly and quickly evolving fragments, all fragments
evolve with the same rate. Our model has a pair-HMM
representation, see Fig. 10., in which a one-to-one corre-
spondence between HMM paths and alignments exists
such that the probability of any path in the pair-HMM
equals the probability of the corresponding alignment in
the modified TKF92 model. We used an optimised version
of the Dayhoff rate matrix [42] for modelling the substitu-
tion process as described in [11,43].

Predicting secondary structure based on a single optimal alignment 
("Viterbi")
For each family in the HOMSTRAD database, each pair of
sequences has been aligned using the above described
pair-HMM. Since the jumping probabilities in the pair-
HMM are interdependent via common parameters, the
usual EM algorithm [12] cannot be applied, instead, we
made use of the conjugate gradient method [44] to get the
numerical approximation of the Maximum Likelihood
parameters for each pair of sequences. The Viterbi align-

ment [12] has been obtained for each sequence pair using
the ML parameters, and for each alignment column in the
Viterbi alignment, posterior probabilities have been calcu-
lated with the Forward and Backward algorithms [12]. The
Viterbi alignment was used to map the secondary struc-
ture of one sequence to the other.

Predicting secondary structure based on the distribution of 
alignments ("Forward")
We also predicted secondary structures based on the dis-
tribution of alignments in the stochastic model. Posterior
probabilities for each pair of characters from the two
sequences have been obtained with the Forward and Back-
ward algorithms using the Maximum Likelihood parame-
ters. The posterior probability Ps(ai) that a particular
amino acid ai from sequence A has a secondary structure s
given that it is related to sequence B is calculated as

where m is the length of sequence B, P (ai, bj) is the poste-

rior probability that characters ai and bj are aligned, and

 is 1 if the known secondary structure of character bj

is s, 0 otherwise.

Multiple sequence alignment methods
Bayesian model for sequence alignments, evolutionary trees and 
model parameters
The transducer theory [20] has been used to construct a
multiple-HMM along an evolutionary tree from pair-
HMMs. The same pair-HMM described in the previous
section was used in the construction, and the so-obtained
multiple-HMM gives the likelihood of a multiple align-
ment and an evolutionary tree. This multiple-HMM
describes sequence evolution as independent events on
the branches of the evolutionary tree. This means that the
sequence fragmentation on an edge of the evolutionary
tree is not inherited on descending branches. Moreover,
the fragmentations on sibling branches are independent
from each other. Uninformative, exponential priors with
expectation 1 have been used as priors for edge lengths
and insertion-deletion parameters in the TKF92 model.
All tree topologies were equally probable a priori. These
priors together with the likelihood of a tree and multiple
alignment on the tree define the joint posterior distribu-
tion of multiple sequence alignments, evolutionary trees
and model parameters.

Markov chain Monte Carlo inferring of sequence alignments
Since the joint distribution of alignments, trees and
parameters is a high dimensional distribution that is too
complicated for direct, analytical inferring, Markov chain
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j
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The TKF92 model [9], presented as a Hidden Markov ModelFigure 10
The TKF92 model [9], presented as a Hidden Markov Model. 
λ is the insertion rate, µ is the deletion rate, r is the parame-
ter of the geometric distribution of inserted and deleted frag-

ments, . Emission probabilities are given by the 

time-continuous substitution model of the TKF92 model, the 
probability of joint emission of two characters equals the 
joint observation probability of two characters under the 
substitution model, single emissions follow the equilibrium 
distribution of the substitution process.
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Monte Carlo [29,30] has been used for sampling from the
posterior distribution. One of the key questions here is
how far we can go with the analytical calculations. For the
biologically less reliable, but computationally more trac-
table TKF91 model [8], we developed a fast algorithm
[24,25] that calculates the likelihood of an evolutionary
tree and a multiple sequence alignment of observed
sequences. Such fast algorithm in the case of the TKF92
model is unknown, and hence, more data augmentation
is necessary. This data augmentation includes sequences
associated to the internal nodes and pairwise sequence
alignments of neighbour nodes associated to the edges of
the evolutionary tree. Since the likelihood of substitution
events can be efficiently calculated with Felsenstein's algo-
rithm [45], we only store the distribution of conditional
likelihoods – also known as "Felsenstein's wildcards" [23]
– at internal nodes of the evolutionary tree. We call this
structure extended alignment.

The Markov chain performs a random walk on the space
comprising the following components:

• Edge lengths of the tree

• Model parameters

• Extended alignment, described above

• Tree topology

We applied Metropolis-Hastings moves to change one of
the components randomly, each component selected with
a fixed, prescribed probability that was chosen to maxim-
ise the mixing of the Markov chain. Standard techniques
were used for modifying edge lengths and parameters in
the model, for a reference, see [25].

Changing the alignment is the most time-consuming
event, since the running time of proposing a new align-
ment is proportional to the product of the lengths of the
aligned sequences. A possible solution is modifying only
a part of the alignment ("subalignment"), which
decreases the running time of this type of proposal.
Although it also decreases the mixing of the Markov chain,
the overall performance of the Markov chain in terms of
total computational time improves [22,25]. The subalign-
ment is specified by a subtree and by the first and last col-
umn of the selected alignment region ("window") of the
root node of this subtree. This window is extended to all
nodes on the subtree, thus selecting a partial multiple
alignment which would then be altered. However, since
we have an extended alignment in the Markov chain, it is
a non-trivial question how to propose a random subalign-
ment in a way to maintain the reversibility of the move,
which is required by the Metropolis-Hastings algorithm.

The trick lies in the observation that if the borders of the
selected window at the root node are marked with the
neighbouring Felsenstein wildcards that are not within the
window, then regardless of insertions or deletions at the
beginning or end of the new alignment, the same window
will be available for selection and this way the original
alignment for (back)proposal. However, if the borders of
the window were indicated by the first and last Felsenstein
wildcards within the window, the proposal might not
always be reversible – for an example, see Fig. 11 a). The
distribution of window lengths is set such that the
expected running time of an alignment changing step in
the Markov chain grows approximately linearly with the
lengths of the sequences.

Sequences are iteratively realigned on the selected subtree
within the selected window. In each iteration, the new
alignment is drawn by the Forward-Backward sampling
algorithm [12] with a pair-HMM with ancestral states
("HMM3"), see Fig. 12. We opted not to use the pair-
HMM corresponding to the background model, since that
would have seven non-silent states, while the model
applied has only four after null-cycle elimination. This
reduction of the number of states causes a speed boost of
a factor of four to the calculation of proposal probability
of the alignment change. The deviation from the TKF92
model did not cause low acceptance ratio for the align-
ment changing moves.

We used nearest neighbour interchanges (NNI) for alter-
ing the topology as described in [46], which transform a
rooted subtree in the way shown on Fig. 13. Since the

a) If the window borders are indicated by the first and last ancestral Felsenstein wildcard within the window (indicated as underlined), a proposed alignment could lead to a situation from which the original alignment could not be obtained by the same rulesFigure 11
a) If the window borders are indicated by the first and last 
ancestral Felsenstein wildcard within the window (indicated 
as underlined), a proposed alignment could lead to a situation 
from which the original alignment could not be obtained by 
the same rules. b) If the window borders are indicated by 
neighbouring ancestral Felsenstein wildcards that are not 
within the window and will not to be realigned, no possible 
alignment will lead to such a situation, the original alignment 
will always be proposed back with a positive probability.
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alignment looses its validity after a topology change, the
six affected sequences on the quartet are realigned after
each nearest neighbour interchange move – the five pair-
wise alignments are obtained by first aligning C and F to
D using the HMM3 shown above, then E and D to B the
same way and last B to A using the pair-HMM.

Because the MCMC analysis is time-consuming, we
selected 12 families from the HOMSTRAD database, see
Table 1., on which we performed an MCMC analysis. The
convergence was verified based on the log-likelihood trace
and one million steps were taken in each Markov chain
after its burn-in period. Each chain was sampled each 100
steps, so 10000 samples have been collected from each
chain. In a few cases, alternative chains with different
starting points were set up, and the MPD alignment has
been estimated from both chains, see Fig. 1.

Predicting secondary structures based on the MPD estimation of 
multiple sequence alignment ("MPD")
In an earlier work [25], we showed that the maximum a
posteriori (MAP) estimation from an MCMC sample is
unstable, since there are many suboptimal alignments,
and typically almost all sampled alignments from a
Markov chain will be different. The same alignment show-
ing up occasionally in multiple samples is merely due to
the non-optimal mixing of the Markov chain, and such an
alignment cannot be regarded as the most probable in the
posterior distribution in any sense. Instead, we estimated
the Maximum Posterior Decoding (MPD) alignment
[12,47] that maximises the product of the posterior single-
column probabilities. This method offers a significantly
more reliable result since many alignments share particu-
lar columns. The estimation for the MPD alignment from
an MCMC sample can be obtained by the simple dynamic
programming algorithm which first creates a directed acy-
clic graph whose vertices are the alignment columns of the
MCMC samples, and then estimates the posterior proba-
bility for each alignment column by the relative frequen-
cies of alignment columns in the sample. The MPD
estimation is the path that maximises the product of the
relative frequencies. The MPD alignment is used to map
the secondary structure of one of the sequences onto other
sequences.

Predicting secondary structures based the posterior distribution of 
multiple alignments ("Bayesian")
We also predicted secondary structures based on all the
alignments sampled from the Markov chain. The estima-
tion for the posterior probability for a particular amino
acid ai from sequence A having a secondary structure s
given that it is related to sequence B is

where N is the number of alignments in the Markov chain,
fk(ai) is the amino acid in sequence B with which ai is
aligned in the kth alignment, and δs,x is 1 if the known sec-
ondary structure of character x is s, otherwise 0.
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The pair-HMM that is used to realign sequences of the selected subtreeFigure 12
The pair-HMM that is used to realign sequences of the 
selected subtree. In all runs, p was set to 0.99 and q was set 
to 0.6. Emission probabilities followed the corresponding 
substitution model.

Effect of a single NNI step on a rooted subtreeFigure 13
Effect of a single NNI step on a rooted subtree. A, C, E and F 
may or may not be leaf nodes.
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