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Abstract

Background: Information obtained from diverse data sources can be combined in a principled
manner using various machine learning methods to increase the reliability and range of knowledge
about protein function. The result is a weighted functional linkage network (FLN) in which linked
neighbors share at least one function with high probability. Precision is, however, low. Aiming to
provide precise functional annotation for as many proteins as possible, we explore and propose a
two-step framework for functional annotation (1) construction of a high-coverage and reliable FLN
via machine learning techniques (2) development of a decision rule for the constructed FLN to

optimize functional annotation.

Results: We first apply this framework to Saccharomyces cerevisiae. In the first step, we
demonstrate that four commonly used machine learning methods, Linear SVM, Linear Discriminant
Analysis, Naive Bayes, and Neural Network, all combine heterogeneous data to produce reliable
and high-coverage FLNs, in which the linkage weight more accurately estimates functional coupling
of linked proteins than use individual data sources alone. In the second step, empirical tuning of an
adjustable decision rule on the constructed FLN reveals that basing annotation on maximum edge
weight results in the most precise annotation at high coverages. In particular at low coverage all
rules evaluated perform comparably. At coverage above approximately 50%, however, they diverge
rapidly. At full coverage, the maximum weight decision rule still has a precision of approximately
70%, whereas for other methods, precision ranges from a high of slightly more than 30%, down to
3%. In addition, a scoring scheme to estimate the precisions of individual predictions is also
provided. Finally, tests of the robustness of the framework indicate that our framework can be

successfully applied to less studied organisms.

Conclusion: We provide a general two-step function-annotation framework, and show that high
coverage, high precision annotations can be achieved by constructing a high-coverage and reliable

FLN via data integration followed by applying a maximum weight decision rule.
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Background

Computationally based functional inference can be con-
sidered a two step process: (1) finding functional correla-
tion between annotated and unannotated proteins by one
or more experimental or computational methods, and (2)
formulating a decision rule for transferring the function of
annotated proteins to unannotated proteins. In general
one can expect that the stronger the correlation, the
greater the precision of transfer; similarly, one expects that
the more data sources by which a correlation is found, the
greater the precision. The integration of heterogeneous
data sources by various methods is therefore an important
component of the procedure [1-5].

In the first step, the result of a search for correlations
between all proteins - annotated and unannotated -
using any particular experimental or computational pro-
cedure, is conveniently displayed as a graph, the nodes
representing proteins, and the links (edges) between them
expressing a correlation. The links are generally weighted,
reflecting the degree of correlation or functional similarity
based on various experimental and computational evi-
dence [1,3,6], such as physical interactions detected by
yeast two hybrid experiments [7,8], correlated gene
expression by microarray [9-11], and correlated phyloge-
netic profiles [12]. If the average number of links per pro-
tein is sufficiently large, the result will be a network of
interactions, a so-called functional linkage network
(FLN).

Although an FLN can be constructed by any of the above
sources, different sources usually vary in reliability and
coverage. For instance, while microarray and yeast two
hybrid experiments can provide a great deal of informa-
tion about the functional relationships between genes,
they are noisy and subject to high false positive rates.
While sophisticated statistical frameworks have been uti-
lized to improve functional inference based on individual
data sources [13-17], the coverage and reliability of single
data source are inherently limited as one data type illumi-
nates only limited aspects of the underlining biological
mechanisms. To overcome these drawbacks, multiple data
sources are often utilized and integrated using machine
learning procedures, such as Bayesian methods, Neural
Network, and Decision Tree. Previous integration results
indeed support the intuitive expectation that such inte-
grated FLNs can be more reliable than FLNs based only on
a single data source [1,3,18-21].

After FLN construction, the second step is network based
functional inference [5,22-24]. Some methods have been
developed which first identify network modules of related
proteins [25-31] followed by annotation of these modules
based on the known functions of its members. Alterna-
tively, various decision rules can be employed to directly
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infer a protein's function based on its connections in the
network. The simplest decision rule, standard guilty by
association (SGA), casts the annotations of all neighbors
to the unknown protein so long as the linkage weight
exceeds a threshold [32-34]. Although SGA usually
assigns at least one correct annotation to a target, the
number of false positives is high due to lack of a selection
metric to weight candidate annotations. Two factors could
be considered as selection metrics to weight annotation
predictions for a target protein: (1) occurrence frequency
of an annotation among the neighbors (2) weights of the
relevant links contributing to a particular annotation. To
improve SGA, another decision rule, "majority rule"
(MR), first applies SGA, and then weights the annotations
in accordance with their occurrence frequencies [35]. It
thus converts the annotations made by SGA into a rank
ordered list. The performance of this method is dependent
on where the list is truncated. Recently McDermott et al
[36] suggested a generalization in which annotations are
weighted by the sum of linkage weights. This "neighbor-
hood weighting" (NW) procedure therefore considers
both linkage frequency and weight. The above decision
rules are illustrated in Fig 1. In addition to SGA, MR and
NW which base annotation on local network connectivity,
other algorithms are based on global network connectiv-
ity. Some methods repeat the application of MR or NW
until the entire network reaches an extreme of some target
function, for example (1) a minimum in the number of
links connecting proteins with disparate functions, or (2)
a maximum in the weighted sum of links connecting pro-
teins sharing the same functions [6,37,38]. Another
framework exploiting global network connectivity applies
a Markov random field (MRF) model by calculating the
probability that a protein has a function given the func-
tions of all other proteins in the network [39,40]. Addi-
tionally, a flow based method has also been developed,
which simulates the functional annotation of proteins as
the spreading of functional flow in a FLN [41].

In a weighted FLN, network based functional inference
can achieve high precision when using a stringent network
linkage weight cut-off, but that comes at the price of low
proteome coverage. Alternatively, when a less stringent
linkage weight cut-off is used, frequency-based inference
rules can achieve good coverage, but at the expense of a
high false positive rate. To address this challenge, using
Saccharomyces cerevisiae as a model organism, we explore a
two-step function-annotation framework: (1) construc-
tion of a high-coverage and reliable FLN through the inte-
gration of heterogeneous data sources using machine
learning methods; (2) development of a matching deci-
sion rule for the constructed FLN to optimize functional
annotation. The goal of this study is to provide precise
functional annotation for as many proteins as possible by
combination of both steps. We choose KEGG [42,43] as
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Functional annotation decision rules. (A): Local network representation of annotated neighboring proteins (rectangles)
with weighted links to the unannotated target (circle). Color coding indicates the pathways in which the annotated proteins
participate. Two metrics can be considered when determining annotation predictions of a target protein: (1) occurrence fre-
quency of an annotation in the neighbors (2) weights of the relevant links contributing to a particular annotation. MR employs
occurrence-frequency metric alone and weights a candidate annotation by counting neighbors having that annotation; e.g. for
the grey annotation, the score is 5% = 5. NW emploits both metrics and uses a weighted sum of the links for the relevant
annotation; e. g., for the grey annotation, the score is 0.1 + 0.4 + 0.2 + 0.3*2 = |.3. MW employs linkage-weight metric alone
and weights the annotations by the maximal linkage weight among all the linkages contributing to a particular annotation; for
the grey annotation, the score is Maxf = 0.4. Table (B) shows the annotation ranking lists in descending order.

our functional ontology because its endpoint, pathway
presence, is relatively well defined. GO is also useful and
has been employed extensively [1,34,36,44-46], but the
inherent variance in GO tree depth for different functional
families can complicates test statistics. In the first step, we
find that various machine learning methods can all com-
bine diverse sources to construct a high-coverage and rel-
atively reliable FLN with comparable quality. In the
second step, we introduce an adjustable decision rule.
Empirical tuning of this adjustable rule for the con-
structed FLN results in a relatively simple maximum weight
(MW) rule, which uses maximum linkage weight to assign
functional annotation. We find that MW increases the pre-
cision over other methods, and at high coverage it can be
up to 2.5 fold more precise than MR and NW, and up to a
25 fold more precise than SGA. We also develop a scoring
scheme to estimate annotation precision for individual
predictions.

Results and discussion

General procedure

The overall procedure (Fig 2) consists of two steps. The
first step combines various data sources by a machine
learning method to construct a high sensitivity network
such that for any node (protein), at least some nearest
neighbors are likely to be functionally related. In the sec-
ond step, various decision rules are then explored for the

ability to prune the set of functional linkages to obtain
high precision annotation while still covering a large
number of proteins.

FLN construction by machine learning classifiers

A machine learning classifier is applied to assign linkage
weights, a measure of tendency of pathway sharing, to
protein pairs by incorporating information from multiple
data sources as described in Methods section. The result is
a functional linkage network (FLN). A high-quality FLN
would have both high linkage precision and high pro-
teome coverage 3], where the number of "covered" pro-
teins is the maximum number of proteins that can be
annotated. We expect that a principled integration of mul-
tiple information sources will result in performance that is
better than for any single source. A comparison of per-
formance between integrated sources obtained using a lin-
ear SVM (support vector machine with a linear kernel)
and single sources, clearly confirms this expectation (Fig
3A). In addition to linear SVMs, we use Linear Discrimi-
nant Analysis, Naive Bayes, and Neural Network, and find
that all four have comparable integration performance
(Fig 3B).

Decision rules for prediction of protein function
Given a network of linked proteins and correlations
assigned to each link based on integrated data sources, the
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Overview of methodology. The framework can be divided into two steps: (1) construction of an integrated functional link-
age network (FLN) (2) development of a decision rule for the constructed FLN to optimize functional annotation. Green boxes
denote data inputs or products; purple boxes denote actions. In step one six data sources are used as inputs to one or another
learning algorithm, to find functionally associated pairs of proteins. The linked proteins identified thus comprise a weighted
functional linkage network. In step two, proteins of unknown functions are then annotated based on the collective properties
of neighboring annotated proteins, using one or another decision rule. Performance, which we measure by a combination of
precision and coverage, is evaluated as described below, using doubly annotated protein pairs.

problem is to assign unannotated proteins to KEGG path-
ways, with a high precision. To this end we propose an
adjustable decision rule, with a single parameter alpha.
The rule is such that the score relating a protein to a par-
ticular annotation is the sum of edge weights which link
the unannotated protein to proteins with the given anno-
tation, raised to the power alpha (equation 3, see Meth-
ods). To determine the optimal alpha value for
application to the S. cerevisiae FLN we select three alpha
values which correspond to special instances of the deci-
sion rule. First, we select an alpha value of zero, which is
equivalent to the previously described majority rule deci-
sion rule (MR) [35]. With the MR rule, annotation fre-
quency among neighboring proteins is used to determine
the annotation score. Second, we select an alpha value of
one, which is equivalent to the previously described
neighborhood weighting rule (NW) [36]. With NW, both
the edge weights and frequency of annotation are consid-
ered, as the sum of the edge weights of neighbors belong-
ing to a particular annotation category determine the
score for that category. Finally, we test a maximum weight
rule (MW), which is the rule approached as alpha
becomes infinitely large. With the MW rule, an annota-

tion score for a particular annotation category is deter-
mined by the maximum edge weight among neighbors
belonging to that category. In addition to the MR, NW,
and MW rules derived from our adjustable decision rule,
we also evaluate the naive standard guilt-by-association
(SGA) [32-34], where all annotations of neighbors are
assigned without considering edge weights or frequency.

Rank and linkage weight cut-off affect annotation performance

The performances of MR and NW were previously indi-
cated to be determined by two parameters, linkage weight
cut-off and rank cut off (i.e. for the same target protein all
predicted annotations exceeding a prespecified rank are
assigned) [36]. These two factors also determine the per-
formance of annotation precision-coverage characteristic
curve (APCC) obtained using MW (Fig 4). In particular,
for each linkage weight cut-off, the candidate annotations
of all neighbors of a protein are listed in descending order
according to equation 2. A cut-off of 1 means only the
highest ranked annotation is used; a cut-off of 2 means
the top 2 annotations are assigned etc. Schwikowski, et al.
applied a similar procedure for selecting predictions with
a fixed rank cut-off [35]. The result clearly shows that the
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Figure 3

Linkage precision against coverage for FLNs. (A): Inte-
grated FLN performance substantially exceeds those
obtained using single data sources. The FLN linkage preci-
sion-coverage curves are plotted by varying the FLN linkage
weight cutoffs as described in method section. PPl and Gl
networks have equal-unit weighted linkages and thus have
only one data point denoting one coverage and one preci-
sion. (B): FLNs integrated by the four classifiers perform
comparably.

best APCC is obtained by using the most stringent rank
cut-off; i.e. the top ranked annotation. As the rank cut-off
drops, MW loses precision, with an increasing number of
false positives, and in the limit gives the same APCC as
SGA.

Comparative performances of decision rules

Linkage weight cut-off and rank are common factors
affecting precision in MR, NW, and MW, though each has
its own criterion of assigning rank, and the best precision
at a given coverage is obtained by assigning only the high-
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Rank and linkage weight cutoff affect annotation pre-
cision in MW. The x axis (fraction of proteins having pre-
dicted annotations) is obtained by varying the FLN linkage
weight cutoff. The family is generated by varying annotation
rank cutoff from | (upper most curve for which only the top
ranked annotation is included) to 10.

est ranked annotation. A comparison of the annotation
precision-coverage curves for the different decision rules
using only the top ranked annotation indicates that (1) as
expected, SGA is worse than the other three at all degrees
of coverage and (2) the other three rules perform compa-
rably at low coverage (less than 0.35), but MW diverges
rapidly from the other two for coverage greater than 0.6,
remaining precise at all degrees of coverage (Fig. 5A).
Comparisons with the top 2 or 3 ranked predictions show
similar trends. These results are obtained using linear
SVM, but similar results are obtained using other classifi-
ers (Fig. S1) [see Additional file 1]. In addition, we also
compare MR, NW, and MW rules by annotation precision-
recall analysis and obtain similar results. At a low linkage-
weight cut-off (a high-coverage and relatively noisy net-
work), MW outperforms NW and MR (Fig. 5B); At a high
linkage-weight cut-off (low-coverage), the three decision
rules have similar performance, all with low recall (less
than 0.4) and high precision (over 0.8) (Fig. 5C). The per-
formances of these decision rules are also evaluated in
random control networks. The results indicate that rela-
tive to performances with the real network, the random
control curves for different annotation methods have
roughly similar poor performances (Fig. 5). Annotation
precision-recall analysis using yeast Gene Ontology slim
terms (downloaded from Saccharomyces Genome Data-
base) as the annotation ontology shows similar trends
(Fig. S3) [see Additional file 1].
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Comparison of decision rules. (A): Comparative performance of MR, NW, MW, and SGA in annotation precision-coverage
analysis. Six data sets are integrated using a linear SVM to construct a weighted FLN. Given a prespecified linkage weight cutoff,
MR, NWV, and MW use the highest ranked predicted annotations for comparison, SGA takes all the candidate annotations as
predictions without ranking. A coverage of | means all 5475 proteins can be assigned at least one function. (B): Comparative
performance of MR, NW, and MW in annotation precision-recall analysis in a high-coverage and relatively noisy FLN com-
posed of 5475 proteins. (C): Comparative performance of MR, NW, and MW in annotation precision-recall analysis at a low-
coverage and relatively confident FLN composed of 1872 proteins. In all the figures, the same evaluations are repeated in ran-
dom control networks as dashed lines with error bars denoting one standard deviation of 10 repeating runs.

The superior performance of MW can be understood by  the linkage weight is proportional to linkage precision
considering the properties of the integrated FLN and the  (assessment of tendency of pathway sharing of linked pro-
effect of decreasing the linkage cut-off in an attempt to  teins) (Fig. 3A). Therefore a low linkage weight cut-off
increase proteome coverage. In the FLN derived from inte-  generates a high-coverage and relatively noisy network,
gration of multiple data sources with machine learning,  and a high linkage weight cut-off generates a low-coverage
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and relatively confident network. As the linkage weight
cut-off is decreased, and more low confidence links are
incorporated in the network, MR and NW by definition
consider all these weak links in determining the ranks of
different annotations (equation 1). Furthermore, MR
weights strong and weak links equally and thus performs
worse than NW. MW on the other hand, selectively uses
only the highest quality link contributing to each relevant
annotation, to rank different annotations (equation 2 and
Fig. 1) and therefore acts as a better noise filter on a high-
coverage and relatively noisy FLN.

To fix ideas, consider the unannotated yeast protein
YKL154W, which is linked to 18 annotated neighbors par-
ticipating in 10 pathways (Fig. 6A). SGA, by definition,
chooses the annotations of all neighbors. The other 3
methods prune the results in accordance with rank cut-off.
At a weight cut-off of 0.58 (a sparse and accurate network,
Fig. 6B), all methods choose "protein export" as the only
prediction. However, when the much less stringent link-
age weight cut-off of 0.29 is used (a dense and noisy net-
work), the top ranked prediction for MW is "protein
export”, while NW and MR choose "ribosome proteins”
due to its high occurrence frequency. Although YKL154W
is not annotated in KEGG, it is annotated in SGD,
described as "Signal recognition particle (SRP) receptor
beta subunit; involved in SRP-dependent protein target-
ing; anchors Srp101p to the ER membrane". In KEGG
database, SRP (signal recognition particle) dependent

http://www.biomedcentral.com/1471-2105/9/119

protein targeting process is defined to belong to "protein
export" pathway. SRP receptor beta subunit is not part of
the ribosome complex, thus "protein export" is the most
appropriate prediction. Only MW ranks "protein export"
as the top prediction independent of the network quality.

Above we have compared MW with MR and NW, which
are special instances of our adjustable decision rule, with
specific values of the alpha parameter. To make sure that
there is not some intermediate alpha value which is in fact
optimal, we empirically test a range of alpha values and as
shown in Fig. 7 and the result shows that performance
increases with alpha, indicating that MW is the optimal
rule.

An obvious question to consider is how performance of
the MW decision rule varies with choice of classifiers. As is
evident from Fig. 8, the annotation precision-coverage
curves generated using MW with different classifiers are
virtually super imposable. So at least for the 4 classifiers
considered in this paper, which one is used is more or less
irrelevant - all that matters is the decision rule.

Generation of final predictions and estimate prediction
precisions using MW scores

Although the four classifiers show similar performance in
combination with MW decision rule, we have some pref-
erence for using a linear SVM classifier because (1) it is lin-
ear and therefore simpler (linearity rules out neural nets)

A 0.29 0.30 0.30 .30 B
0.29 0.29
0.29 0.29
0.58 YKL154W 0.29 0.58
0.29 0.29
0.29 0.29
0.29 0.29 Protein export Cell cycle
0.29 0.29 ) Ribosome proteins Glutamate metabolism
) ) P urine metabolism AminoacyHRNA biosynthesis
P yrimidine metabolis Phe, tyr, and trp biosynthesis
RNA polymerase N-Glycan biosynthesis
Figure 6

Local network representation of annotated neighboring proteins (rectangles) linked to the unannotated
YKL 154W (circle). Color coding indicates the pathways in which the annotated proteins participate. (A): A linkage weight
cutoff of around 0.29 generates a dense and noisy FLN. (B): A linkage weight cutoff of 0.58 generates a sparse and accurate net-

work.
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MW decision rule is the end result of carefully tuning
an adjustable decision rule. The adjustable decision rule
(equation 3) is tuned to optimize function-annotation per-
formance for the integrated FLN by empirically testing a
range of alpha values. MR, NW, and MW rules are special
cases derived from this adjustable rule, with alpha set to be 0,
I, and infinity, respectively. When alpha is equal or above |0,
the optimal performance is obtained, which is approximates
to the performance of MW. The performances are evaluated
by the annotation precision-coverage curves.

and (2) Naive Bayes and Linear Discriminant Analysis
require additional assumptions about input data [see
Additional file 1].

Although the best overall precision is obtained by assign-
ing the top ranked annotation only, and full coverage can
be achieved with high precision, proteins have multiple
functions, and many of these will be missed. A more
informative procedure would be to choose the top few
annotations, evaluate the precision of each, and then pick
those annotations that exceed a prespecified precision. In
particular, we begin with a low weight cut-off of 0.2 to
obtain a full-coverage FLN, and then choose an arbitrary
rank cut-off, for example top 5, to assign up to 5 annota-
tions per protein, with each annotation associated with a
MW score. Finally we estimate a specific annotation preci-
sion for each prediction by calibrating the MW scores
against annotation precision [18] (Fig. 9).

The calibration curve is obtained by binning the MW
scores, assigning a precision estimate to each bin by com-
paring the predicted annotations and the original annota-
tions for known proteins (equation 4a), and then fitting
the results to a logistic regression function. The result is

http://www.biomedcentral.com/1471-2105/9/119
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Performances of MW using different machine learn-
ing methods to construct functional linkage networks
(FLNs) are comparable. Performance of MW using each
of the machine learning methods to construct a weighted
functional linkage network (FLN) as input is evaluated in
annotation precision-coverage analysis.

shown in Fig 9, using 50 equal bins. The good match
between the binning results and the fitted curve suggests
that the MW score is positively correlated with annotation
precision and can be used to estimate the latter. For
instance, for YKL154W (Fig. 6A), only the most appropri-
ate prediction, "protein export”, has a high estimated pre-
cision of above 0.7, all other predictions are less than 0.1.
More examples are also provided [see Additional file 2].
We list pathway predictions for all the proteins covered in
input data sources, each associated with a precision esti-
mate [see Additional file 3].

We summarize our prediction results by filtering the pre-
dictions with increased MW score cutoffs and evaluating
the predictions based on proteins with known annota-
tions (Table 1). For instance, at precision of 0.6 and recall
of 0.53 (calculated based on equation 4a and equation
4b), with 1161 proteins among 99 pathways as annota-
tion source, 638 unannotated proteins are assigned into
1499 specific pathways. We are able to assign multiple
pathways to a protein: from precision of 0.4 to 0.9, up to
5 pathways can be assigned to a protein and the average
number of pathways per protein is larger than 1.4. Our
predictions cover large number of pathways. Even at high
precision of 0.8, our method still enriches 59 pathways,
and as the KEGG database continues to expand, we expect
methods such as those developed here to provide increas-
ingly comprehensive understanding of protein function
and pleiotropy.
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Figure 9

Calibration curve for estimating annotation preci-
sions from MW scores. The x axis denotes MWV scores;
the y axis denotes annotation precision. The predictions are
binned into 50 equally spaced intervals based on associated
MW scores. Annotation precision for each bin is calculated
based on the comparisons of the predicted annotations and
the original annotations for known proteins. The purple dots
denote the binning results. The red curve shows curve fitting
results with a two parameter logistic regression function, y =
exp(a + b*x)/(1+ exp(a + b*x)). a =-6.71 and b = 13.57 (with
95% confidence bounds).

Evaluation of framework robustness and potential for
applicability to less well studied organisms

We have demonstrated that our framework performs well
in yeast. Similarly, we have applied linear SVM in combi-
nation with MW rule in E. coli and we find that the frame-
work also performs well (Fig. S2) [see Additional file 1].
While these results are encouraging, we are aware that our
MW rule is a linkage weight based local decision rule, i.e.
uses only immediate network neighbors for functional
prediction. As a local decision rule, MW will tend to per-
form best with a network where on average unannotated
proteins are well connected to annotated proteins with
high precision links. For an integrated FLN, these network
properties are primarily dependant on the number of

Table I: Prediction result summary
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annotated proteins in the network and the availability of
diverse data sources. With our analysis in yeast and E. coli,
our FLNs meet these ideal criteria, with the level of anno-
tation being relatively high, and multiple high quality
data sources being integrated using machine learning.

However, less studied organisms likely won't have as
many annotated proteins or data sources available. In
order to more rigorously assess whether our framework is
likely to meet with success when applied to less studied
organisms, we have performed analyses in yeast and E. coli
to test how the performance is affected by (1) decreasing
the number of annotated proteins in the network and (2)
reducing data sources to include only those which are
likely to be available for most organisms [see Additional
file 1]. We find that using just 500 annotated proteins
(less that half of the total available annotated KEGG pro-
teins) as annotation source, the precision at various
degrees of coverage is still over 0.58 in yeast and over 0.48
in E. coli (Fig. S5a and S5b) [see Additional file 1]. Addi-
tionally in yeast, we leave out high-throughput PPI (pro-
tein-protein physical interaction) and GI (genetic
interaction) data as those data are not available for most
eukaryotes. Using only sequence based phylogenetical
profile, domain fusion, and sequence similarity as well as
expression data, the precision remains over 0.6 at various
degrees of coverage in yeast (Fig. S5c) [see Additional file
1]. In E. coli, using only sequence based data sets (e.g. phy-
logenetic profiling, fusion, chromosomal proximity, gene
cluster, and sequence similarity), as these data sets will be
readily available for any sequenced prokaryote, the preci-
sion remains over 0.7 at various degrees of coverage,
although the coverage does drop to 0.75 (Fig. S5d) [see
Additional file 1]. In both tests the performance reduction
is small relative to the overall performance for both spe-
cies, and it is therefore likely that our framework can be
applied to less studied organisms.

Although these analyses demonstrate some degree of
robustness in our framework, in a very poorly annotated
organism with few available data sources, most unanno-
tated nodes will on average have few annotated neigh-
bors, resulting in relatively little additional annotation. In

MW score cutoff Annotation Precision  Recall Number of KEGG Number of Average predicted Unique pathways in
unannotated proteins  predictions for KEGG  pathways per protein predictions
covered unannotaed proteins
0.33 0.4 0.68 2176 6200 2.85 97
0.38 0.5 0.6l 1218 3176 2.61 93
0.43 0.6 0.53 638 1499 235 8l
0.47 0.7 0.46 347 739 2.13 64
0.50 0.8 0.39 242 493 2.04 59
0.58 0.9 0.22 87 173 1.99 36
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such a situation methods that use new (inferred) annota-
tions as they are assigned, could increase performance
[6,37,40,41], The reliability of the final annotated net-
work will, however, be critically dependent on the quality
of local inferences; i.e. the local decision rule remains cru-
cial. The approach we have taken here, which uses KEGG
annotations, starts with a relatively sparsely annotated
network, since only around 20% of Saccharomyces cerevi-
siae genes are KEGG annotated. Many genomes of interest
exceed this annotation percentage, so even in its present
form of being strictly local, we can expect a fair degree of
general applicability, despite the fact that there may
indeed be FLNs in which a global decision rule is prefera-
ble.

To demonstrate the importance of the local decision rule,
we have compared the annotation performance of the
MW rule with the previously published functional flow
method [41], using the integrated yeast FLN as the test
network. The functional flow method exemplifies global
decision schemes, as node annotation includes the itera-
tive application of a local rule as a means to propagate
annotation from non-adjacent nodes. As a first step in our
analysis, we compare MW to functional flow, with propa-
gation limited to the adjacent node (Fig. S4 (d = 1)) [see
Additional file 1]. This is in effect a comparison of MW to
the local decision rule used by functional flow, as there is
no propagation of information beyond neighboring
nodes. As the local decision rule underlying the functional
flow algorithm is a variant of the NW rule, we find that
unsurprisingly, MW shows performance increases similar
to those seen in the previous comparison to standard NW
at high coverage. Additional comparisons in which func-
tional flow is implemented with varying propagation dis-
tances show similar results, indicating that the benefit of
global propagation is unable to compensate for the use of
a suboptimal local decision rule. Despite this comparison,
we expect that a method which incorporates the optimal
local decision rule into a global framework will result in
further improvement in results, and will be a subject of
future work.

Additional considerations for future application of the
proposed framework

In addition to potential performance improvements
achieved by embedding our local decision rule in a global
framework, we also expect that small improvements can
be gained in the future with more sophisticated data han-
dling. Specifically, some data sources such as PPI and gene
expression are noisy, which has the potential to result in
spurious linkage weights. Although our machine learning
based data integration substantially improves the reliabil-
ity and coverage of linkages when compared to linkages
based on individual data sources (Fig. 3), it is possible
that if we adopted some of the more sophisticated meth-
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ods used to remove noise and improve functional infer-
ence with microarray and PPI measurements [13-17], we
might further improve performance. Our currently analy-
sis and conclusion about MW are based on experiments in
yeast and E. coli. In the future, we plan to further explore
the application and extension of the framework in other
species, especially higher eukaryotes such as human.

Conclusion

In this study, we have developed a general two-step func-
tion-annotation framework, and show that high coverage,
high precision annotations can be achieved by construct-
ing a high-coverage and reliable FLN through integrating
multiple data sources using a machine learning method,
followed by the application of an adjustable decision rule.
For FLN construction, we demonstrate four commonly
used machine learning techniques all show comparable
performance. For decision rule selection, MW rule is iden-
tified as optimal for the integrated FLN after the tuning of
the adjustable decision rule. Taking advantage of the cor-
relation between MW score and prediction precision, a
scoring scheme to estimate the precisions of individual
predictions is also provided. Finally, we also test the
robustness of our framework and find that our framework
can likely be applied to less studied organisms.

Methods

Machine learning classifiers to construct FLN

We use supervised procedures that learn to recognize
whether protein pairs are in the same pathway based on
six features: sequence similarity, protein domain fusion,
correlated phylogenetic profiles, expression profiles,
physical interactions and genetic interactions. For the pur-
pose of exploring network-based functional annotations
after FLN construction, similar as Barutcuoglu, et al.[47],
we use unthresholded outputs for a machine learning
classifier, i.e. all the outputs are unbounded real values
instead of binary labels. Specifically, the output is a vector
each of whose elements weights the tendency of pathway
sharing of a pair of proteins in the input set, with the
weights normalized between 0 and 1. The details for link-
age weight calculation are described using linear SVM as
an example [see Additional file 1].

We compare the performance of four common machine
learning classifiers for building FLNs including linear ker-
nel Support Vector Machine (linear SVM), Linear Discri-
minant Analysis, Naive Bayes, and a feed-forward Neural
Network with one hidden layer [see Additional file 1]. We
train our soft maximum margin SVM using the SPIDER
package, with a wide range of penalty functions for mis-
classification [48]. All other classifiers are from PRTools
package implemented with default parameters.
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Gold standard (GS)

The input set includes only protein pairs for which both
members have RefSeq protein sequences and microarray
expression measurement since the sequence data and
expression data have the largest proteome coverage. This
ensures the integration by providing at least four input
features, three sequence based features and one expres-
sion correlation feature. The final set consists of 5475 pro-
teins, or nearly 15 million pairs. Of these, 26,920 co-occur
in at least one KEGG pathway, and we take them as our
gold standard for true positives (GSP). We define our true
negative gold standard (GSN) as the collection of pairs
that: (1) are annotated in KEGG; (2) never occur in the
same KEGG pathway based on current knowledge; (3) are
found experimentally to be in different subcellular loca-
tions. There are 234,141 such pairs. Franke et al used sim-
ilar criteria for selecting GSN [49].

Data sources for encoding input features

Each of the six sources, sequence similarity, protein
domain fusion, phylogenetic profile, microarray expres-
sion, protein-protein interaction, genetic interaction, con-
tributes one component to the feature vector
characterizing a protein pair.

(1) Sequence similarity

We download protein sequences from RefSeq [50,51] and
use blastp in blast2.2.13 to perform an all against all blast
within the proteome. Pairs are filtered by requiring that
their best alignment has an E-value exceeding 0.1 and the
smaller protein aligns to the larger in at least 50% of its
length. A total 10,868 pairs involving 3264 proteins pass
this filter, and their E-value serves as the input feature.
Pairs not passing the filter take the default E-value of 1.0.

(2) Protein domain fusion

Some protein pairs with similar functions fuse into differ-
ent domains of one single protein in other species [52].
We implement the domain fusion method as described in
the Prolink database and calculated a P-value denoting
the probability of a fusion event occurring by chance as
the input feature [53]. Total 9618 fusion pairs among
1554 proteins were generated. Pairs not having fusion
events take the default P-value of 1.0.

(3) Phylogenetic profile

The presence and absence of a protein across a set of
genomes can be represented by a binary string, its phylo-
genetic profile. Proteins with sufficiently similar profiles
tend to be functionally related [12,54]. As a measure of
correlation, mutual information is used as the input fea-
ture [54]. Pairs not having correlated phylogenetic profiles
take the default value of 0. Total 2,384,295 pairs have non
zero mutual information in 2187 proteins.

http://www.biomedcentral.com/1471-2105/9/119

(4) Microarray expression

Expression data are from the three major yeast datasets [9-
11], composed of 6206 proteins in 551 experimental con-
ditions. These gene expression datasets consist of log
transformed expression level ratios. We choose genes
included in all the three datasets and combined the exper-
imental conditions. The final data set is composed of
6206 genes in 551 experimental conditions. The missing
values were estimated by KNN imputation [55]. Next we
normalized the data such that the mean of measurements
from each array is 0 and standard deviation is 1. We com-
pute the Pearson correlation coefficient for every pair as
the input feature for integration [2,5,30].

(5) Protein-protein interactions (PPI)

Tyers et al. recently published two large yeast interaction
data sets, one for protein-protein interactions and other
for genetic interaction [56]. We use the union of high-
throughput PPI and literature curated PPI as inputs. All
the PPI subtypes (Two-hybrid, Affinity Capture-MS, Affin-
ity Capture-Western, and Co-purification) are included,
except for co-localization, which is used to establish a true
negative gold standard. In total 20,121 pairs among 4659
proteins are included with self interaction and redundant
interactions removed. A binary value serves as the input
feature denoting existence or absence of an interaction.

(6) Genetic interactions (Gl)

All the subtypes of genetic interaction data including syn-
thetic lethality, synthetic growth defect, dosage lethality,
dosage growth defect are included, for a total of 13,340
pairs among 3052 proteins [56]. We also use a binary
value as the input feature.

Training/classification/validation procedures

For each of the four machine learning methods we train
30 individual classifiers, followed by aggregation for final
predictions.

(1) Trainingl/classification of individual classifiers and classifier
aggregation

Typically a classifier can be constructed simply by training
a learning algorithm on the entire set of GS proteins. A
cross validated functional linkage network is then built by
applying the trained algorithm to all other available pro-
tein pairs. This strategy is appropriate when the final result
is only the FLN. There are several considerations which
prompt us to use a more sophisticated design. Firstly, per-
formance characteristics for the FLN and validation of the
annotation decision rule are desired. To provide a fair
evaluation of the annotation step, all of the links in the
FLN should be based on out-of-sample pairs. i. e., weighted
links between proteins will be retained in the FLN only
when those proteins are not in the training set. Our
method addresses this issue by repeatedly splitting the
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gold GS pairs into individual training segments to train
individual classifiers, and aggregating the predictions of
those individual classifiers on the left-out pairs as final
predictions. Specifically, for each protein pair in the input
set, the final prediction is determined by taking the
median value of the predictions of only those individual
classifiers for which neither member of the pair is
included in the relevant training set. Barutcuoglu et al.
[47] used a similar approach. Details are also provided
[see Additional file 1].

(2) Performance characteristics of the FLN

For each machine learning method, the final output after
classifier aggregation is a vector each of whose elements
weights the tendency of pathway sharing of a protein pair
in the input set, for both non-GS and GS pairs, the latter
being used to assess performance characteristics. Specifi-
cally, similar to Lee et al., [3] we evaluate linkage precision
against coverage by varying the linkage weight cut-off to
differentiate positive from negative predictions.

FLN linkage precision: given a prespecified linkage weight
cut-off, precision is the fraction of all positive predictions
that are correct; i.e. the pairs sharing at least one pathway.
This precision is estimated by comparing the predictions
of GS pairs and their original class labels.

Coverage: since we use annotated neighbors to assign func-
tions to unknown proteins, coverage is defined as the frac-
tion of proteins linked to at least one annotated neighbor,
i.e. the fraction of proteins for which a functional assign-
ment can be made.

Network-based protein function predictions

The following network-based decision rules assign func-
tions to unannotated proteins in a FLN, using the concept
of guilt by association, i.e. proteins tend to have functions
similar to those of their interacting partners. As annota-
tion source, we use KEGG pathways, which include 1161
proteins among 99 specific pathways in our FLN.

Decision rules (Fig I)

(1) Standard Guilt by association (SGA)

SGA assigns all annotations of each neighbor whose link
to the target protein exceeds a prespecified cutoff without
differentiation [32-34].

(2) Neighborhood weighting (NW) [36]
Let w; be the weight of the ith neighbor that has annota-
tion v. Then the score for annotation v is

Sy=iwi (1)

i=1
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where N is the number of neighboring proteins having
annotation v. NW weights the annotations returned by
SGA by S,

(3) Majority Rule (MR)
SGA outputs are weighted by S, in equation 1 with all w;
set to 1[35].

(4) Maximum weight (MW)

Candidate annotations are assigned in accordance with
the maximal weight of the links contributing to a specified
annotation.

S,=Max{w}i=12,.,N (2)

(5) Adjustable decision rule
The adjustable decision defines the annotation score as
equation 3.

N
Syzizw? 0O<w;<1,a>0 3)

i=1
a is an ajustable integer parameter to be tuned to optimze
performance for a particular input FLN. As described in
background section, two factors can be considered regard-
ing selection metrics when annotating a target protein: (1)
occurrence frequency of an annotation in the neighbors
(2) weights of the relevant links contributing to a particu-
lar annotation. Continuously increasing « from 0 allows
to flexibly adjusting the contributions of the two such that
lower weighted links have smaller impact on dermining
the final annotation score. Consiquently a broad spec-
trum of decsion rules are generated, ranging from soley
frequency based MR (« = 0) rule at one end to solely link-
age weight based MW rule (when ¢ is infinitly large) at the
other end. NW is a special case (« = 1) emploiting both

factors in the middle.

Assessment of annotation performance

The annotation performance of a decision rule is evalu-
ated in a leave-one-out setting using the annotated pro-
teins, i.e. every protein with known annotations is held
out as the target protein for function prediction based on
the annotations of all other proteins by a decision rule
[57]. The annotation precision and sensitivity (or recall) are
estimated by comparing the original annotations and the
predicted annotations. In particular [57], for protein i, let
n,;be the number of known annotations; m; the number of
predicted annotations, and k; the overlap count between
the predicted and true annotations. Then

Annotation precision = 2 k; / 2 m;
i i

(4a)
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Sensitivity(recall) = 2 ki/z n; (4b)
1 1

We also use Coverage, the fraction of the set of 5475 pro-
teins (total number of yeast proteins covered in the six
input data sources) having at least one prediction in the
FLN at a given linkage weight cutoff as another assess-
ment, i.e. proteins linked to at least one annotated neigh-
bor in the FLN. An overall coverage of 1 indicates that all
of the 5475 proteins are linked to at least one annotated
protein and thus have at least one predicted annotation.
Annotation coverage increases as the linkage weight cutoff
becomes less stringent because more links are being
included in the network.

Since our goal is to assign precise annotations to as many
as possible proteins. We use annotation precision-coverage
curve for comparing different decision rules as described
below [3,24,36,54]. First, using data integration tech-
niques, we calculate the functional linkage weights for all
protein pairs covered by the six input data sets (5475 pro-
teins in total). These links are then filtered by different
linkage weight cut-offs, which has the effect of generating
functional linkage networks (FLN) with different pro-
teome coverages. At each linkage weight cutoff a given
annotation method is applied to generate a ranked list of
putative annotations for each protein and top 1 ranked
annotations are used to evaluate different annotation
methods. The reason we evaluated the methods using
only the top 1 ranked annotation for each protein is
because the top ranked predictions have the highest anno-
tation precision (Figure 4) and thus we are comparing the
best predictions made by each method. Since we have
only one prediction for each protein after selecting top 1
ranked predictions, based on the definition of Equation
4a, the annotation precision at a given cut-off is then
determined by calculating the fraction of KEGG proteins
whose top ranked prediction matched their actual anno-
tation. Coverage is calculated as described above for each
tested linkage weight cut-off.
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Additional material

Additional File 1

Supplemental material. Supplemental material provides additional detail
descriptions about the following. (1) Brief descriptions of the four
machine learning classifiers. (2) training/classification of individual clas-
sifiers and classifier aggregation. (3) Compare decision rules based on
FLNs constructed by the other classifiers in yeast. (4) Detailed descrip-
tions about two more prediction examples. (5) Compare the four decision
rules for functional annotation in E. coli using linear SVM integrated
FLN. (6) Compare decision rules in annotation precision-recall analysis.
(7) Compare MW decision rule and functional flow algorithm. (8) Test
robustness of the framework by reducing data sources or annotation
sources. (9) Perform random control experiments for each evaluated
annotation method.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-9-119-S1.pdf]

Additional File 2

Prediction examples. Predicted annotations of un-annotated proteins not
covered by KEGG pathways are defined as novel predictions, though some
might have annotations in other databases such as SGD or MIPs [58,59].
We list more examples to show that our novel predictions with high esti-
mated precisions represent appropriate pathway assignments using anno-
tations in MIPs as supporting references. ORF names of proteins,
predicted KEGG pathways by MW decision rules, estimated precisions
based on the curve fitting function in figure 9, and annotations from MIPs
database as supporting references are listed.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-9-119-S2 xls]

Additional File 3

Function-annotation predictions in yeast. List of predictions. Column 1:
ORF name; column 2: predicted pathway annotation in KEGG pathway
ID; column 3: MW score; column 4: estimated annotation precision; total
number of proteins: 5475; total number of predicted annotations: 27,319;
up to 5 annotations are predicted for each protein.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-9-119-83.txt]
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