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Abstract
Background: The genomewide pattern of changes in mRNA expression measured using DNA
microarrays is typically a complex superposition of the response of multiple regulatory pathways
to changes in the environment of the cells. The use of prior information, either about the function
of the protein encoded by each gene, or about the physical interactions between regulatory factors
and the sequences controlling its expression, has emerged as a powerful approach for dissecting
complex transcriptional responses.

Results: We review two different approaches for combining the noisy expression levels of multiple
individual genes into robust pathway-level differential expression scores. The first is based on a
comparison between the distribution of expression levels of genes within a predefined gene set and
those of all other genes in the genome. The second starts from an estimate of the strength of
genomewide regulatory network connectivities based on sequence information or direct
measurements of protein-DNA interactions, and uses regression analysis to estimate the activity
of gene regulatory pathways. The statistical methods used are explained in detail.

Conclusion: By avoiding the thresholding of individual genes, pathway-level analysis of differential
expression based on prior information can be considerably more sensitive to subtle changes in gene
expression than gene-level analysis. The methods are technically straightforward and yield results
that are easily interpretable, both biologically and statistically.

Introduction
Many of the popular methods for analyzing DNA micro-
array expression data, from clustering [1] to more sophis-
ticated machine-learning approaches [2-5], require
expression data over a large number of different condi-
tions as input. However, it is common to only have
expression data for a few different strains and/or condi-
tions. In this case, what is of interest are the changes in
mRNA abundance for each gene, usually represented as

the logarithm of the fold-change between test and control.
The traditional way of analyzing such data is to first iden-
tify significantly up- and down-regulated genes, and sub-
sequently to characterize these sets in terms of enrichment
for functional annotation [6] or upstream promoter ele-
ments [7-9]. However, by requiring statistically significant
differential expression at the level of individual genes, a
lot of information about differential expression will be
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lost that could have been detected using analysis methods
working at the level of pathways.

To understand this, assume that we are comparing two
conditions and that the measurement error for the fold-
change of individual genes is 20%. Now consider a spe-
cific pathway consisting of 100 genes that are all upregu-
lated by 10%. This level of differential expression is well
within the noise for individual genes, none of which will
therefore be classified as significantly induced. However,
the error in the average expression of 100 randomly chosen

genes will be on the order of 20%/  = 2%. The 10%

change in expression at the level of the whole pathway
therefore corresponds to five units of standard error and is
highly statistically significant.

In recent years, two distinct classes of methods have been
developed that use prior information about how genes
can be viewed as belonging to different regulatory or func-
tional pathways (Figure 1). This information can be used
to score differential expression at the pathway level rather
than at the gene level. The first class of methods represents
pathways as gene sets, to which individual genes either
belong or do not belong. One well-known source of such
gene sets is the Gene Ontology (GO) project [6], where
the classification is based on the function of the proteins
encoded by each gene. The second class of methods takes
a more sophisticated approach by assigning a regulatory
susceptibility to each gene, quantifying how strongly this
gene is expected to respond to a change in the activity of a
specific regulatory pathway. For example, the affinity of a
gene's promoter sequence for a specific transcription fac-
tor (TF) could be predicted using consensus motifs or
weight matrices [10] and be used to predict the response
of that gene to changes in TF activity.

In this review, we describe how such pathway-level analy-
ses can be implemented mathematically. It is helpful to
understand that, in general, information about genes
comes in two different types: categorical information of
boolean type ("true" or "false"), which tells us whether or
not a gene belongs to a specific gene set; and quantitative
information, e.g., the mRNA expression log-ratio between
two conditions for a gene or the ChIP-chip [11] fold
enrichment for the gene's promoter region. Given any two
distinct features characterizing each gene, their genom-
ewide statistical association can be scored using an appro-
priate statistical test (Table 1).

The traditional approach: scoring over-representation of 
predefined gene sets
Suppose that we want to know whether a specific set of
genes of interest is statistically enriched for genes with a
specific annotation in Gene Ontology. In this case, both

features (namely, "does the gene belong to the set of genes
of interest" and "is the gene associated with GO term X")
are categorical, and the appropriate statistic is the overlap
between both gene sets. Let the total number of genes in
set A be a, the total number of genes in set B be b, and the
total number of genes in the genome be n. Furthermore,
let the overlap x denote the number of genes shared
between A and B. If the two sets are chosen randomly and
independently, the average overlap will be:

This makes sense: if a fraction b/n of all genes belongs to
set B then the expected fraction of genes in set A that also
belongs to set B equals x/a. In the case of over-representa-
tion, when x > <x>, the P-value that quantifies how likely
it is to get at least the same number of overlapping genes
by chance, is given by

where H is the hypergeometric distribution given by

and

It is also possible to have significant under-representation
(x < <x>). In that case, the P-value is given by

This use of the cumulative hypergeometric distribution is
also known as "Fisher's exact test." The test is by nature
non-parametric because both input features are non-para-
metric. Under specific conditions the hypergeometric dis-
tribution may be approximated by the binomial or chi-
square distribution. Several implementations of this
approach are reviewed by Khatri and Draghici [12]. Since
typically a large number of gene sets are scored in parallel,
the p-values must be corrected for multiple testing. Gross-
man et al. [13] recently addressed technical complications
arising from the strong overlap between the hierarchically
organized Gene Ontology categories.
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Scoring pathway activity: gene sets versus regressionFigure 1
Scoring pathway activity: gene sets versus regression. Two types of prior information, categorical and quantitative, may 
be combined with non-thresholded genome-wide expression data to derive a statistical measure of pathway-level activity. In 
(A) a pre-defined gene set (gray), such as those annotated by the Gene Ontology project, is scored using a t-test for its expres-
sion response (red = positive, green = negative) compared to all other genes. In (B) estimated interaction strengths (shades of 
gray), such as those derived from regulatory sequence analysis or ChIP-chip experiments, are correlated with the expression 
response of all genes. In both instances the result is a t-value (yellow = positive, blue = negative) that measures the change in 
mRNA expression associated with a category (A) or interaction (B).



BMC Bioinformatics 2007, 8(Suppl 6):S6 http://www.biomedcentral.com/1471-2105/8/S6/S6
An alternative: scoring the distribution of expression levels 
for predefined gene sets
An early example of the use of predefined gene sets to ana-
lyze differential expression at the pathway level can be
found in Lascaris et al. [14]. The authors used a z-score to
represent the difference between the average expression in
a gene set S consisting of n genes and the genomewide
mean μ:

Here  = σ/  is the standard error of the mean, σ
being the standard deviation of the genomewide distribu-
tion of log-ratios. The same metric is used by the "para-
metric analysis of gene expression" (PAGE) method of
Kim and Volsky [15]. For larger gene sets, however, the
standard t-test for the difference between means yields
more accurate results [16]. The t-test, in general, scores the
statistical association between a categorical and quantita-
tive feature. The categorical feature is used to partition the
set of all genes, G, into two complementary subsets S and

S'. The t statistic measures the difference between the
means of the two subsets in units of its standard error:

Here S and  are the mean expression value of genes

in set S and S', respe ctively, and the standard error of
the difference is given by

with σS and σS'  the standard deviation of the expression
values of the genes within set S and S', respectively. Using

a t-distribution with n - 2 degrees of freedom, each t-value
can be converted to a p-value, which should again be cor-
rected for multiple testing.

Figure 2 shows a side-by-side comparison of Fisher's exact
test and the t-test for a specific combination of GO cate-
gory and genomewide differential expression profile.
Fisher's exact test can only be applied once a set of "genes
of interest" has been defined. We thresholded the fold-
induction of individual genes to define this gene set, and
computed GO category enrichment P-values at different
thresholds (solid line/symbols). The smallest, most signif-
icant, P-value is obtained at an individual-gene threshold
significantly below 2-fold induction, satisfied by over 500
genes. In general, the optimal threshold will depend on
both the GO category and the expression data. By con-
trast, the two-sample t-test uses the expression value for all
genes; no threshold for individual genes is required, an
important practical advantage. While the optimal P-value
from Fisher's exact test is slightly smaller than that of the
two-sample t-test (dashed line), this seeming advantage
disappears as soon as multiple-testing correction associ-
ated with the required threshold optimization is taken
into account. Note that at the commonly used threshold
of 2-fold induction, the two-sample t-test performs dra-
matically better.

Other statistical tests have also been used to detect differ-
ential expression of gene sets based on the distribution of
expression values. The original version of the "gene set
enrichment analysis" (GSEA) method [17] used the Kol-
mogorov-Smirnov (KS) statistic to test whether the distri-
bution of expression levels in a specific gene set was
different from that of all genes; this approach was later
found to require a modification to work reliably [18]. The
Wilcoxon-Mann-Whitney test, a non-parametric equiva-
lent of the t-test that uses expression values only to rank
the genes, has also been applied to this problem [19].

Beyond gene sets: approaches based on regression analysis
The assignment of genes to gene sets is categorical: Either
the gene belongs to the set, or it does not. However, gene
sets are often a proxy for regulatory pathways. This is most
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Table 1: When to use which statistical test.

First Feature Second Feature (Non)-Parametric? APPROPRIATE TEST

categorical categorical non-parametric hypergeometric
quantitative quantitative parametric Pearson
quantitative quantitative non-parametric Spearman, Kendall
categorical quantitative parametric two-sample t-test
categorical quantitative non-parametric Wilcoxon-Mann-Whitney, 

Kolmogorov-Smirnov

When analyzing the statistical association between two features across the genome, the choice of statistical test depends on whether the features 
are categorical or quantitative, and whether or not a parametric method can be used. For each case the appropriate test is listed.
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obvious in the case of the gene sets based on ChIP-chip
data [11], which were used by Boorsma et al. [16] to ana-
lyze differential mRNA expression using the t-test. The
strict delineation of "targets" of a given TF based on
thresholding of the ChIP-chip signals is an oversimplifica-
tion. In reality, the degree to which the transcription rate
for a given gene responds to a change in the activity of the
TF depends in a continuous fashion on the binding affin-
ity between the TF and the promoter DNA (as well as
interactions with co-factors, chromatin, etc.). Thus, if an
estimate of this affinity is used as a predictor for changes
in transcription rate (and therefore expression), a single
parameter that quantifies the global change in TF activity
may explain a wide range of transcriptional responses
across the genome. This intuition can be formalized in the
form of a linear regression model:

Ag = C + FNg (9)

where C is an intercept and F a slope estimating the
change in TF activity. The dependent ("response") varia-
ble Ag is the mRNA expression log-ratio of gene g between
conditions. The independent ("predictor") variable Ng
represents the regulatory network connectivity between
the TF and the promoter region of gene g. For given Ag and
Ng, the deviance D between the measured and predicted
expression values

is minimized. The solution is given by

and

C = <A> - F <N>. (12)

where <X> = (1/G) ∑g Xg denotes an average over all genes
and δXg ≡ Xg - <X> denotes the deviation from the genomic
mean, so that <δX2> equals the variance of X. Because we
are dealing with univariate regression (a single independ-
ent variable), the Pearson correlation coefficient between
A and N,

can be directly related to the slope F by the following
equation:

It can furthermore be shown that, in the univariate case,
R2, defined as the fraction of the variance in expression
that can be explained by the linear model, is given by the
square of Pearson correlation:

A transformation of r due to R.A. Fisher

yields a statistic t that is distributed according a t-distribu-
tion with n - 3 degrees of freedom, and can thus be easily
converted to a p-value. Again, multiple testing will need to
be accounted for whenever the association with multiple
features is scored in parallel.

There are many ways in which the regulatory network con-
nectivities Ng can be chosen. The first application of
regression analysis to microarray data, by Bussemaker et
al. [20], used integer motif counts in promoter regions.
Continuous sequence scores based on position-specific
scoring matrices (PSSMs) [21,22] and position-specific
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Scoring GO categories: Fisher's exact test versus two-sample t-testFigure 2
Scoring GO categories: Fisher's exact test versus 
two-sample t-test. We analyzed gene expression data for 
the response to the ergosterol biosynthesis inhibitor Lovas-
tatin as measured by Hughes et al. [27]. The two-sample t-
test reveals that the mean expression level of genes in the 
GO category "ergosterol biosynthesis" is significantly higher 
than expected (dotted line; t = 7.4; P = 1.1·10-13). Fisher's 
exact test can be used to score over-representation of the 
same GO category in the set of most induced genes. How-
ever, this requires one to first define a threshold for the 
expression fold-change of individual genes. The solid line 
shows how the P-value from Fisher's exact test depends on 
this threshold.
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affinity matrices (PSAMs) [23,24] have also been used.
The values for R2 obtained with such sequence-based pre-
dictors are typically in the range of 1–5%. Another possi-
ble choice for N are ChIP-chip enrichment (log-)ratios
[25,26]. As these values are relatively noisy experimental
measurements, the values for R2 observed in this case are
usually smaller (< 1%).

Conclusion
In this work, rather than providing a comprehensive
review of all relevant literature, we have outlined two con-
ceptually different approaches for scoring differential
expression at the pathway level. These methods use prior
information about how different genes relate to each
other to reduce the dimensionality of the problem. This
obviates the need to first obtain gene clusters or modules
from expression data over multiple conditions, and
thereby makes it possible to analyze each differential
expression profile by itself in a condition-specific fashion.

Authors' contributions
HJB drafted the paper, which was edited and proofread by
all authors. LDW and AB prepared Figure 1 and 2, respec-
tively.

Acknowledgements
We thank members of the Bussemaker Lab for valuable discussions, and 
Barrett Foat for a critical reading of the manuscript. This work was sup-
ported by grants HG003008, CA121852, and GM074105 from the National 
Institutes of Health and grant APB.5504 from the Netherlands Foundation 
for Technical Research (STW).

This article has been published as part of BMC Bioinformatics Volume 8 Sup-
plement 6, 2007: Otto Warburg International Summer School and Work-
shop on Networks and Regulation. The full contents of the supplement are 
available online at http://www.biomedcentral.com/1471-2105/8?issue=S6

References
1. Eisen MB, Spellman PT, Brown PO, Botstein D: Cluster analysis

and display of genome-wide expression patterns.  Proc Natl
Acad Sci USA 1998, 95(25):14863-14868.

2. Segal E, Shapira M, Regev A, Pe'er D, Botstein D, Koller D, Friedman
N: Module networks: identifying regulatory modules and
their condition-specific regulators from gene expression
data.  Nat Genet 2003, 34(2166-176 [http://dx.doi.org/10.1038/
ng1165].

3. Beer MA, Tavazoie S: Predicting gene expression from
sequence.  Cell 2004, 117(2):185-198.

4. Friedman N: Inferring cellular networks using probabilistic
graphical models.  Science 2004, 303(5659799-805 [http://
dx.doi.org/10.1126/science.1094068].

5. Middendorf M, Kundaje A, Wiggins C, Freund Y, Leslie C: Predicting
genetic regulatory response using classification.  Bioinformatics
2004, 20(Suppl 1I232-I240 [http://dx.doi.org/10.1093/bioinformat
ics/bth923].

6. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM,
Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-
Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M,
Rubin GM, Sherlock G: Gene ontology: tool for the unification
of biology. The Gene Ontology Consortium.  Nat Genet 2000,
25:25-29 [http://dx.doi.org/10.1038/75556].

7. Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB,
Brown PO, Botstein D, Futcher B: Comprehensive identification
of cell cycle-regulated genes of the yeast Saccharomyces cer-

evisiae by microarray hybridization.  Mol Biol Cell 1998,
9(12):3273-3297.

8. Tavazoie S, Hughes JD, Campbell MJ, Cho RJ, Church GM: System-
atic determination of genetic network architecture.  Nat
Genet 1999, 22(3281-285 [http://dx.doi.org/10.1038/10343].

9. van Helden J, Andre B, Collado-Vides J: Extracting regulatory
sites from the upstream region of yeast genes by computa-
tional analysis of oligonucleotide frequencies.  J Mol Biol 1998,
281(5827-842 [http://dx.doi.org/10.1006/jmbi.1998.1947].

10. Stormo GD: DNA binding sites: representation and discovery.
Bioinformatics 2000, 16:16-23.

11. Harbison CT, Gordon DB, Lee TI, Rinaldi NJ, Macisaac KD, Danford
TW, Hannett NM, Tagne JB, Reynolds DB, Yoo J, Jennings EG, Zei-
tlinger J, Pokholok DK, Kellis M, Rolfe PA, Takusagawa KT, Lander ES,
Gifford DK, Fraenkel E, Young RA: Transcriptional regulatory
code of a eukaryotic genome.  Nature 2004, 431(700499-104
[http://dx.doi.org/10.1038/nature02800].

12. Khatri P, Draghici S: Ontological analysis of gene expression
data: current tools, limitations, and open problems.  Bioinfor-
matics 2005, 21(183587-3595 [http://dx.doi.org/10.1093/bioinfor
matics/bti565].

13. Grossmann S, Bauer S, Robinson PN, Vingron M: An Improved Sta-
tistic for Detecting Over-Represented Gene Ontology Anno-
tations in Gene Sets.  RECOMB 2006:85-98.

14. Lascaris R, Bussemaker HJ, Boorsma A, Piper M, van der Spek H,
Grivell L, Blom J: Hap4p overexpression in glucose-grown Sac-
charomyces cerevisiae induces cells to enter a novel meta-
bolic state.  Genome Biol 2003, 4:R3.

15. Kim SY, Volsky DJ: PAGE: parametric analysis of gene set
enrichment.  BMC Bioinformatics 2005, 6:144 [http://dx.doi.org/
10.1186/1471-2105-6-144].

16. Boorsma A, Foat BC, Vis D, Klis F, Bussemaker HJ: T-profller: scor-
ing the activity of predefined groups of genes using gene
expression data.  Nucleic Acids Res 2005:W592-W595 [http://
dx.doi.org/10.1093/nar/gki484].

17. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar
J, Puigserver P, Carlsson E, Ridderstrale M, Laurila E, Houstis N, Daly
MJ, Patterson N, Mesirov JP, Golub TR, Tamayo P, Spiegelman B,
Lander ES, Hirschhorn JN, Altshuler D, Groop LC: PGC-lalpha-
responsive genes involved in oxidative phosphorylation are
coordinately downregulated in human diabetes.  Nat Genet
2003, 34(3267-273 [http://dx.doi.org/10.1038/ng1180].

18. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gil-
lette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP:
Gene set enrichment analysis: a knowledge-based approach
for interpreting genome-wide expression profiles.  Proc Natl
Acad Sci USA 2005, 102(4315545-15550 [http://dx.doi.org/10.1073/
pnas.0506580102].

19. Scheer M, Klawonn F, Muench R, Grote A, Killer K, Choi C, Koch I,
Schobert M, Haertig E, Klages U, Jahn D: JProGO: a novel tool for
the functional interpretation of prokaryotic microarray data
using Gene Ontology information.  Nucleic Acids Res
2006:W510-W515 [http://dx.doi.org/10.1093/nar/gkl329].

20. Bussemaker HJ, Li H, Siggia ED: Regulatory element detection
using correlation with expression.  Nat Genet 2001, 27(2167-171
[http://dx.doi.org/10.1038/84792].

21. Conlon EM, Liu XS, Lieb JD, Liu JS: Integrating regulatory motif
discovery and genome-wide expression analysis.  Proc Natl
Acad Sci USA 2003, 100(63339-3344 [http://dx.doi.org/10.1073/
pnas.0630591100].

22. Nguyen DH, D'haeseleer P: Deciphering principles of transcrip-
tion regulation in eukaryotic genomes.  Mol Syst Biol 2006,
2:2006.0012 [http://dx.doi.org/10.1038/msb4100054].

23. Foat BC, Houshmandi SS, Olivas WM, Bussemaker HJ: Profiling
condition-specific, genome-wide regulation of mRNA stabil-
ity in yeast.  Proc Natl Acad Sci USA 2005, 102(4917675-17680
[http://dx.doi.org/10.1073/pnas.0503803102].

24. Foat BC, Morozov AV, Bussemaker HJ: Statistical mechanical
modeling of genome-wide transcription factor occupancy
data by MatrixREDUCE.  Bioinformatics 2006, 22(14e141-e149
[http://dx.doi.org/10.1093/bioinformatics/btl223].

25. Liao JC, Boscolo R, Yang YL, Tran LM, Sabatti C, Roychowdhury VP:
Network component analysis: reconstruction of regulatory
signals in biological systems.  Proc Natl Acad Sci USA 2003,
100(2615522-15527 [http://dx.doi.org/10.1073/pnas.2136632100].
Page 6 of 7
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/8?issue=S6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9843981
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9843981
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12740579
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12740579
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12740579
http://dx.doi.org/10.1038/ng1165
http://dx.doi.org/10.1038/ng1165
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15084257
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15084257
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14764868
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14764868
http://dx.doi.org/10.1126/science.1094068
http://dx.doi.org/10.1126/science.1094068
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15262804
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15262804
http://dx.doi.org/10.1093/bioinformatics/bth923
http://dx.doi.org/10.1093/bioinformatics/bth923
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10802651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10802651
http://dx.doi.org/10.1038/75556
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9843569
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9843569
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9843569
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10391217
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10391217
http://dx.doi.org/10.1038/10343
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9719638
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9719638
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9719638
http://dx.doi.org/10.1006/jmbi.1998.1947
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10812473
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15343339
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15343339
http://dx.doi.org/10.1038/nature02800
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15994189
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15994189
http://dx.doi.org/10.1093/bioinformatics/bti565
http://dx.doi.org/10.1093/bioinformatics/bti565
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12537548
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12537548
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12537548
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15941488
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15941488
http://dx.doi.org/10.1186/1471-2105-6-144
http://dx.doi.org/10.1186/1471-2105-6-144
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15980543
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15980543
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15980543
http://dx.doi.org/10.1093/nar/gki484
http://dx.doi.org/10.1093/nar/gki484
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12808457
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12808457
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12808457
http://dx.doi.org/10.1038/ng1180
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16199517
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16199517
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16199517
http://dx.doi.org/10.1073/pnas.0506580102
http://dx.doi.org/10.1073/pnas.0506580102
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16845060
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16845060
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16845060
http://dx.doi.org/10.1093/nar/gkl329
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11175784
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11175784
http://dx.doi.org/10.1038/84792
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12626739
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12626739
http://dx.doi.org/10.1073/pnas.0630591100
http://dx.doi.org/10.1073/pnas.0630591100
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16738557
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16738557
http://dx.doi.org/10.1038/msb4100054
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16317069
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16317069
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16317069
http://dx.doi.org/10.1073/pnas.0503803102
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16873464
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16873464
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16873464
http://dx.doi.org/10.1093/bioinformatics/btl223
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14673099
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14673099
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14673099
http://dx.doi.org/10.1073/pnas.2136632100


BMC Bioinformatics 2007, 8(Suppl 6):S6 http://www.biomedcentral.com/1471-2105/8/S6/S6
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

26. Gao F, Foat BC, Bussemaker HJ: Defining transcriptional net-
works through integrative modeling of mRNA expression
and transcription factor binding data.  BMC Bioinformatics 2004,
5:31 [http://dx.doi.org/10.1186/1471-2105-5-31].

27. Hughes TR, Marton MJ, Jones AR, Roberts CJ, Stoughton R, Armour
CD, Bennett HA, Coffey E, Dai H, He YD, Kidd MJ, King AM, Meyer
MR, Slade D, Lum PY, Stepaniants SB, Shoemaker DD, Gachotte D,
Chakraburtty K, Simon J, Bard M, Friend SH: Functional discovery
via a compendium of expression profiles.  Cell 2000,
102:109-126.
Page 7 of 7
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15113405
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15113405
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15113405
http://dx.doi.org/10.1186/1471-2105-5-31
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10929718
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10929718
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Introduction
	The traditional approach: scoring over-representation of predefined gene sets
	An alternative: scoring the distribution of expression levels for predefined gene sets
	Beyond gene sets: approaches based on regression analysis

	Conclusion
	Authors' contributions
	Acknowledgements
	References

