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Abstract
Background: High quality multiple alignments are crucial in the transfer of annotation from one
genome to another. Multiple alignment methods strive to achieve ever increasing levels of average
accuracy on benchmark sets while the accuracy of individual alignments is often overlooked.

Results: We have previously developed a method to automatically assess the accuracy and overall
difficulty of multiple alignments. This was achieved by a per-residue comparison between alternate
alignments of the same sequences. Here we present a key extension to this method, an algorithm
to extract similarly aligned regions from several alignments and merge them into a new consensus
alignment.

Conclusion: We demonstrate that the fraction of correctly aligned residues within the resulting
alignments is increased by 25 – 100 percent compared to the original input alignments, as only the
most reliably aligned parts are considered.

Background
Multiple alignments are of key importance in transferring
annotation from model organism to humans [1]. The
importance is reflected by the number of alignment meth-
ods that have emerged recently [2-5]. The development of
alignment programs is governed by achieving ever
increasing levels of accuracy on several commonly used
benchmark sets [6,7]. The accuracy is usually measured by
calculating the number of identically aligned residues
divided by the number of aligned residues in a reference
alignment. Essentially, this reflects the extent to which an

alignment method managed to reconstruct a reference
alignment. Misaligned residues in the test alignment are
completely ignored. Therefore alignment programs that
tend to align more residues, usually global methods,
appear to perform well.

It is often more desirable in practice to create alignments
in which only reliable regions are aligned and unreliable
regions remain unaligned. Misaligned regions can give the
impression of conservation where in fact there is none.
This is particularly true in multi-domain cases where
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alignment programs often fail to insert large gaps corre-
sponding to the loss, or gain, of entire domains. In phyl-
ogenetic reconstruction such misaligned regions
essentially contribute noise that can lead to false tree
topologies [8-10]. Previously, we made the simple obser-
vation that regions aligned similarly by several alignment
methods are usually more reliable than those aligned dif-
ferently [11]. Our method Mumsa takes advantage of this
observation by using cross-alignment conservation as an
indicator of alignment accuracy and overall case difficulty.

Here we present a new algorithm that extracts identically
aligned regions from several multiple alignments and cre-
ates new alignments out of them. Within these align-
ments, unreliably aligned residues from the input
alignments are disentangled and therefore we term them
relaxed alignments.

Algorithm
The input of our method is a set of multiple alignments of
the same sequences generated either by different align-
ment methods or by a few methods employing different
parameter settings.

An important concept in our algorithm are pairs-of-
aligned residues (POARS) as defined in Lassmann and
Sonnhammer (2005). Briefly, within an alignment two
residues form a POAR when they occur in different
sequences (rows) but within the same column.

The algorithm for the extraction of reliable regions from a
set of alignments follows a few simple steps:

1. All input alignment in the set of alignments M are
atomized into POARs.

2. The power set of M, P(M) is created. For example if |M|
= 3, the following list of sub-sets is created:
{},{A},{B},{C},{AB},{AC},{BC},{ABC} where A, B, C
are alignments.

3. Each individual POAR is assigned to a single subset of
P(M) depending on its occurrence within the input align-
ments. For example, an aligned pair of residues occurring
in alignment A, B and C will be assigned to set {A, B, C}
but not to any other set such as {A, B}.

4. Among the subsets of P(M) containing f alignments,
select the one containing the maximum number of
POARs (X). The parameter f is the stringency criterion for
including residues in the final alignment: f = 3 requires all
POARs in the final alignment occur in at least three input
alignments, while f = 2 only requires POARs to occur in at
least two alignments.

5. Build a set Y including all POARs that belong to X or
sub-sets of P(M) of which X is a subset itself. If X = {A, B},
include POARs from this set but also from set {A, B, C}.

6. Assemble alignment by :

(a) Start with an alignment that contains only single resi-
dues in each column(i.e. an alignment where all
sequences are completely unaligned)

(b) Sequentially merge columns if their residues form a
POAR present in y.

(c) Sort the alignment columns to preserve the order of
the residues in the initial sequences.

Practical improvements
The previous version of Mumsa required that all input
alignments to be in the Fasta format and contain the
sequences in the same order. Both of these limitations
were removed in this version to make it easier for users to
use several different alignment methods.

Mumsa can produce output alignments in Fasta, Clustal
and Macsim [12] alignment formats. When using the
Macsim format, the residues in each sequence obtain a
reliability score. For residue A this reliability score is the
sum of the occurrences of all POARs, that A is involved in,
normalized by the maximum reliability score attainable
(the score if residue A would be aligned identically in all
input alignments). These reliability scores can be visual-
ized by Kalignvu [13] to aid users in distinguish between
reliable and unreliable regions.

Accuracy measurement
Alignment accuracy is measured by comparing a test
alignment to a reference alignment. The sum-of-pairs
score (SPS) [14] and Q-score [15] reflect how many resi-
dues are aligned identically in both test and reference
alignment. In a sense this reflect how much of the refer-
ence alignment was reconstructed. However, no attention
is being paid on the number of misaligned residues in the
test alignment. For example a SPS score of 0.5 could either
mean that 50 percent of the residues in the test alignment
are simply not aligned but also that 50 percent are mis-
aligned. We therefore introduce a per-residue accuracy
(PRA) score that also has the number of shared POARs as
the nominator but the total number of POARs of the test
alignment as the denominator. Essentially, this is equiva-
lent to asking how many residues are aligned correctly in
the test alignment.
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Benchmark
To test our method we used a selection of alignment
methods (Table 1) in combination with the Balibase
benchmark set [6]. The strategy is as follows:

1. All 12 alignment programs are run on all test cases in
Balibase.

2. Mumsa is run on the resulting alignments with varying
stringency parameter f.

3. All alignments are scored using the PRA function.

In addition, we calculated the percentage of aligned resi-
dues, or the number of aligned residues divided by the
total number of possible aligned residues.

The computational properties of Mumsa were tested by
comparing the cumulative running time of alignment
methods to the running time of Mumsa using three set-
tings. We used the program ROSE [16] to generate sets of
input sequences for the alignment methods. Since
embarking on this project several alignment packages
have been updated and we chose to adopted slightly more
recent versions for this evaluation (Table 2). The CPU
times were measured on a 2.0 GHz Xeon processor with 4
GB of RAM running Fedora Linux 6.0.

Results and discussion
The PRA scores for all alignment methods used in this
study are surprisingly low (Table 3). For reference set 11
all methods fail to align around half of the residues cor-
rectly while in other sets a full quarter of the residues are
incorrectly aligned. However, in all cases the percentage of
aligned residues for all alignment methods is high.

The relaxed alignments created by Mumsa have a much
higher per-residue accuracy than those of the input align-
ment. Depending on the overall difficulty of the subset of

benchmark alignments, the increase in accuracy is dra-
matic. This is especially true for the first Balibase reference
set where the accuracy is almost doubled. It is particularly
striking that the stringency cutoff f does not have to be
high to give good accuracy gains. Residues occurring in
more than 25 percent, here three or more, of input align-
ments are reliable and lead to good relaxed alignments.

As expected, the alignments generated by Mumsa contain
fewer aligned residues than the input alignments. Moreo-
ver, the higher the cutoff f the fewer residues are aligned.
Another observation is that the difficulty of the alignment
cases affects the number of aligned residues in the merged
alignments. For example, fewer aligned residues are
present in the Mumsa alignments for the set 11, the most
difficult one, compared to the other ones. In fact, the Pear-
son correlation coefficient between the average accuracy
of input alignments (a measure of alignment difficulty)
and the percentage of aligned residues of the most relaxed
alignments is 0.98. This supports the notion that align-
ment programs usually disagree in difficult cases – more
precisely in regions that are difficult to align.

The alignment viewer Kalignvu can be used to display the
output alignments of Mumsa (Figure 1). A heat-map color
scheme highlights the more reliable regions in red tones
and less reliable regions in blue tones.

The running time of Mumsa is very low in comparison to
that required by the input alignments (Figure 2). We ran
Mumsa using a stringent, moderate and relaxed parameter
setting for f. It is clear that the running time is influenced
by the choice of f. Nevertheless, the running time of
Mumsa remains two to three orders of magnitude lower
than that required by the input alignment methods.

Conclusion
Much emphasis has been given to alignment methods
that focus on aligning a large fractions of residues because

Table 1: Alignment methods and parameters used in this study.

Method Description/Options

Poa [17,18] local unprogressive mode using blosum80.mat
ClustalW version 1.83 [19] default parameters
Muscle version 3.52 [15] one iteration: -stable -maxiters 1
“ two iterations: -stable -maxiters 2
“ default: -stable
Probcons version 1.09 [2] default parameters
Dialign version 2.2 [20,21] default parameters
Mafft version 5.63 [3,22] -localpair
“ -localpair -maxiterate 100
“ -globalpair
“ -globalpair -maxiterate 100
Kalign [4] default parameters
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this often gives high scores on benchmark sets. We argue
that it is equally relevant to increase the ration of correctly
aligned residues within generated alignments. For this
purpose we have introduced an algorithm to extract iden-
tically aligned parts from several multiple alignments and
have shown that those are very reliable. Our method oper-
ates on pairs of aligned residues rather than columns. In
addition to being able to identify blocks of high conserva-

tion, our method can therefore also identify correctly
aligned regions which only few input sequences share.

In contrast to alignments generated by most popular
direct alignment method, the relaxed alignments gener-
ated by Mumsa contain more gaps and are therefore less
compact. As such they are inherently different from tradi-
tional alignments and users will have to decide whether

Table 3: PRA scores of various alignment methods for the Balibase subsets. Average PRA and percentage of aligned residues (in 
brackets) for several alignment methods on Balibase3. The average scores for all of the 12 alignment methods is given in the middle 
row (bold).

Set 11 Set 12 Set 20 Set 30 Set 40 Set 50

Kalign 40.4 (91) 80.4 (94) 75.8 (94) 68 (92) 61.9 (89) 65.5 (89)
ClustalW 36.4 (97) 76.2 (96) 73.5 (95) 61.8 (94) 58.9 (92) 57.2 (93)
Muscle 41.8 (93) 80.6 (95) 76.3 (96) 68.5 (94) 62.6 (92) 64.4 (92)

Muscle_maxiters1 37.6 (91) 76.7 (95) 76.0 (95) 66.5 (93) 59.9 (91) 60.1 (91)
Muscle_maxiters2 39.2 (92) 78.5 (95) 76.0 (95) 67.7 (93) 61.8 (91) 62.9 (90)

G-INS-1 41.8 (87) 79.6 (94) 77.1 (94) 70.9 (91) 63.9 (88) 66.0 (89)
G-INS-i 44.7 (90) 81.1 (94) 78.1 (94) 71.8 (92) 64.8 (91) 68.1 (90)
L-INS-1 47.4 (89) 81.2 (94) 78.8 (93) 72.3 (92) 66.9 (89) 68.2 (89)
L-INS-i 50.3 (90) 82.7 (95) 79.8 (94) 73.1 (93) 68.1 (90) 69.7 (90)
Dialign 45.8 (72) 78.3 (91) 79.4 (88) 68.8 (85) 68.0 (79) 68.0 (81)

Probcons 49.8 (88) 83.3 (94) 79.8 (92) 72.9 (90) 69.0 (85) 71.6 (85)
Poa 46.3 (52) 78.5 (84) 75.3 (89) 62.9 (87) 63.6 (79) 58.2 (82)

Average 43.5 (86) 79.7 (93) 77.2 (93) 68.8 (91) 64.1 (88) 65.0 (88)
Mumsa (f = 1) 34.5 (93) 72.6 (93) 72.8 (94) 59.5 (91) 57 (90) 53.8 (90)
Mumsa (f = 2) 48.8 (73) 83.4 (85) 81.5 (86) 75.1 (81) 71.6 (76) 73.5 (77)
Mumsa (f = 3) 61.5 (49) 89.0 (78) 89.4 (77) 84.8 (68) 85.5 (60) 85.4 (60)
Mumsa (f = 4) 71.5 (39) 92.0 (74) 92.0 (72) 87.8 (64) 87.9 (58) 87.9 (59)
Mumsa (f = 5) 74.2 (34) 93.0 (73) 92.6 (72) 90.6 (62) 90.4 (54) 91.2 (55)
Mumsa (f = 6) 74.4 (29) 94.9 (67) 93.5 (70) 92.3 (58) 91.7 (53) 92.5 (52)
Mumsa (f = 7) 80.7 (27) 95.4 (66) 94.3 (69) 94.2 (55) 92.9 (50) 93.3 (50)
Mumsa (f = 8) 79.9 (24) 96.2 (63) 95.1 (67) 93.7 (55) 93.4 (49) 94.0 (49)
Mumsa (f = 9) 80.3 (23) 96.2 (63) 94.9 (67) 94.5 (55) 93.9 (48) 94.5 (47)
Mumsa (f = 10) 85.1 (21) 96.7 (62) 95.4 (66) 96.3 (50) 94.9 (46) 95.3 (45)
Mumsa (f = 11) 82.8 (18) 97.2 (59) 96.1 (63) 97.4 (47) 94.2 (44) 96.4 (42)
Mumsa (f = 12) 84.9 (13) 97.9 (53) 96.5 (60) 97.9 (43) 95.8 (39) 97.0 (37)

Table 2: Alignment methods used to measure computational properties of Mumsa.

Method Description/Options

Kalign default parameters
ClustalW version 1.83 default parameters
“ -quicktree option
T-Coffee [23] default parameters
Muscle version 3.6 default parameters
“ two iterations: -maxiters 1 -diags -sv -distance1
Probcons version 1.11 default parameters
Dialign version 2.2.1 default parameters
Mafft version 5.8613 -retree 1
“ -retree 2
“ -maxiterate 1000
“ -maxiterate 1000 -globalpair
“ -maxiterate 1000 -localpair
“ -maxiterate 1000 -genafpair
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these are suitable to be used directly in their specific stud-
ies. However, relaxed alignments can always be used to get
an overview of conservation, a sense of how trustworthy
alignments are and, more importantly, which regions are
reliable. Users may wish to examine Mumsa alignments in
a hierarchical manner, starting from the most reliable
(high stringency cutoff f) to more compact but less relia-
ble alignments (low f). Due to the good computationally
properties of Mumsa little extra computing time is
required to perform such an analysis. A direct application
of relaxed alignments is in phylogenetics where alignment
accuracy is of prime importance. An alignment in which
60 percent of the residues are aligned with an accuracy of
more than 95 percent is clearly more desirable than an
alignment where 90 percent of the residues are aligned,
but incorrectly so in a quarter of cases.

Availability and requirements
The Mumsa program is freely available at http://
msa.cgb.ki.se or by request from T. Lassmann.
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A Mumsa alignment visualized by KalignvuFigure 1
A Mumsa alignment visualized by Kalignvu. A relaxed Mumsa alignment derived from a ClustalW, Poa, Kalign, Probcons 
and Dialign alignment of the Balibase 3.0 test case BB20007. The parameter f was chosen to be two, requiring that residues in 
the output alignment appear in at least two input alignments. Each residue is colored according to the average occurrence of 
the POARs it is involved in. Regions that appear in red are identically aligned in all 5 input alignments while green and blue 
regions are only aligned identically in fewer and fewer cases. It is clear that all alignment programs find conserved motifs in the 
sequences but disagree on how the residues in between should be aligned.
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