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Abstract

Background: Advances in structural biology, including structural genomics, have resulted in a
rapid increase in the number of experimentally determined protein structures. However, about half
of the structures deposited by the structural genomics consortia have little or no information about
their biological function. Therefore, there is a need for tools for automatically and comprehensively
annotating the function of protein structures. We aim to provide such tools by applying
comparative protein structure annotation that relies on detectable relationships between protein
structures to transfer functional annotations. Here we introduce two programs, AnnoLite and
Annolyze, which use the structural alignments deposited in the DBAIi database.

Description: Annolite predicts the SCOP, CATH, EC, InterPro, PfamA, and GO terms with an
average sensitivity of ~90% and average precision of ~80%. AnnolLyze predicts ligand binding site
and domain interaction patches with an average sensitivity of ~70% and average precision of ~30%,
correctly localizing binding sites for small molecules in ~95% of its predictions.

Conclusion: The Annolite and AnnolLyze programs for comparative annotation of protein
structures can reliably and automatically annotate new protein structures. The programs are fully
accessible via the Internet as part of the DBAIi suite of tools at http:/salilab.org/DBAIi/.

Background We are now faced with assigning, understanding, and
Genomic efforts are providing us with complete genetic  modifying the functions of proteins encoded by these
blueprints for hundreds of organisms, including humans. ~ genomes. This task is generally facilitated by protein 3D
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structures, which are best determined by experimental
methods such as X-ray crystallography and NMR spectros-
copy. Structural genomics aims to structurally characterize
most protein sequences by a combination of experiment
and prediction [1-4]. As a consequence, the number of
known protein structures deposited in the Protein Data
Bank (PDB) is growing exponentially [5]. However, pro-
tein target selection for structural genomics is generally
not motivated by specific biological questions. Target
selection aims to cover the structural space by selecting
targets from groups of proteins of unknown structure
[2,6]. During recent years, more than 3,300 structures
have been deposited in the PDB by the various structural
genomics consortia. Approximately half of these struc-
tures have limited information about their function (i.e.,
missing CATH or SCOP fold assignments, InterPro or
PFAM functional predictions, and EC or GO functional
annotations). Moreover, this ratio is likely to increase
with the growing output of protein structure determina-
tion techniques. Therefore, reliable and rapid methods for
functional annotation of protein structures are needed to
leverage the wealth of information generated by structural
genomics [7].

Comparative protein annotation from sequence and
structure has been previously applied [8,9]. The approach
relies on the fact that evolution tends to conserve function
for homologous proteins (i.e., proteins that have evolved
from a common ancestor). However, remotely related
sequences may share similar functions partially due to
convergent evolution [10], homologous sequences may
have diverse functions [11,12], or some proteins may per-
form more than one function depending on environmen-
tal conditions [13]. Therefore, the transfer of annotation
based only on sequence homology has so far reached lim-
ited accuracy and leads to a significant propagation of
errors in the annotations stored in various protein data-
bases [14].

Currently, there are over 38,000 protein structure entries
deposited in the PDB [5], corresponding to more than
82,000 protein chains. However, these structures assume
only ~700 different folds [15]. Comparative annotation
benefits from two properties of protein structures: (i) the
number of unique folds is far less than the number of pro-
teins and (ii) evolution tends to conserve function and
structure more than sequence. In this paper, we aim to
apply comparative protein structure annotation by using
the information from pairwise structural alignments
stored in the DBAIi database [16]. To achieve this goal, we
have developed two different programs, AnnoLite and
AnnolLyze, which predict functional annotations for a tar-
get structure based on the annotation of known homolo-
gous structures. Our approach is not novel, and other
methods for function annotation from structure use simi-
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lar methods (e.g., ProFunc [17,18], ProKnow [19], and
Phunctioner [20] for transfer of annotation and Patcher
[21] for localizing biding sites in the surface of a protein).

We begin by describing the source of information for the
two programs, testing sets, search protocols, and testing
criteria to evaluate their accuracy (Methods). Then, the
accuracy of the methods for predicting functional annota-
tion is detailed in Results. Finally, we illustrate the pro-
grams by outlining several examples.

Results

Annolite accuracy

The output of AnnolLite currently consists of the predicted
CATH and SCOP fold, EC numbers, InterPro entries, and
PFAM families, as well as GO terms with their statistical
significance expressed as a p-value. The p-value is the
probability of a given functional assignment to be false.
Given the presumed biases of the fold types and func-
tional annotations of known structures, a different relia-
bility cutoff for the p-value was determined for each of the
functional annotations (Table 1). The accuracy of Anno-
Lite was benchmarked with a set of 1,879 nonredundant
structural chains that are fully annotated in the Macro
Molecular Database (MSD).

The AUC for AnnolLite ranges from 0.69 to 0.85 with cov-
erage ranging from 86.0 to 93.6% depending on the type
of functional annotation (Table 2). AnnolLite accuracy
reaches at least 0.8 AUC for SCOP, CATH, InterPro, PFAM,
and GO biological process, while the F-BLAST method (a
sequence-based method) only reaches AUC of at least 0.8
for the CATH fold assignments. Moreover, Annolite over-
performs both sequence-based methods in AUC and COV
for all types of functional annotations (Table 2).

Annolite can correctly recall the fold assignments for
about 95% of the testing set, resulting in sensitivity of
92.7% and 95.7% for predicting the SCOP and CATH fold
assignments, respectively. The percentage of false posi-
tives is 11.6% for SCOP and 9.9% for CATH. Comparative
protein structure annotation is thus quite reliable for the
annotation of the fold type of a query structure. It is inter-
esting to manually inspect some of the CATH false posi-
tive assignments by AnnoLite. Our method predicts false
positives for 187 chains of the 1,879 chains in the annota-
tion set. Of those, only 35 chains (1.8% of the testing set)
have a false positive assignment as the top score predic-
tion, and only 6 chains result in no statistically significant
correct predictions (0.3% of the testing set). All those
cases correspond to large or multidomain structures, and
the predicted architecture by AnnolLite could be consid-
ered part of the annotated CATH architecture. We believe
that these results may be a consequence of the continuity
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Table I: Sensitivity and precision of AnnoLite.
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Optimal cutoff

Sensitivity (%) Precision (%)

SCOP Fold 10-6
CATH Fold 103
InterPro Entry 10-3
PFAM Family 10-4
EC Number 104
GO Molecular Function 10-!
GO Biological Process 10-3
GO Cellular Component 10-2

92.7 88.4
95.7 90.1
88.4 78.2
90.5 82.8
933 79.7
84.3 80.9
85.5 74.8
77.6 58.6

of the structural space [22] and the local nature of the
alignments stored in the DBAIi database [23].

The accuracy of AnnolLite is lower for predicting sequence-
based annotations, such as PFam and InterPro assign-
ments, relative to the fold type annotation. AnnoLite cor-
rectly recalls the InterPro and PFam assignments for
88.4% and 90.5% of the benchmark set, respectively, with
precision of ~80% for both types of assignments. Enzyme
annotation (EC number) is highly accurate at 93.3% and
79.7% of sensitivity and precision, respectively. Finally,
Annolite predicts GO terms with good accuracy for
molecular function and biological process with about
85% sensitivity and 75% precision, respectively. However,
the accuracy for predicting GO terms for cellular compart-
mentalization is significantly lower with only 77.6% sen-
sitivity and 58.6% precision. Although Annolite's
accuracy depends on the type of functional annotation,
most of the functional annotations described here can be
predicted with more than 80% sensitivity.

Annolyze accuracy

The output of AnnoLyze currently consists of the pre-
dicted interacting ligands and domains as well as the
binding-site sequence identity. The binding-site sequence
identity is calculated based on the aligned residues
defined as a template binding site in the LigBase and
PIBASE databases. Similarly to AnnolLite, an optimal cut-
off on the binding-site sequence identity was calculated

Table 2: AnnolLite comparison against BLAST-based searches.

(Table 3). The accuracy of AnnolLyze was benchmarked
with a set of 4,948 nonredundant chains that were co-
crystallized with a small ligand and with a set of 4,613
nonredundant chains that were co-crystallized with an
interacting domain. Additionally, the localization of
binding sites by AnnoLyze was benchmarked with a set of
1,936 nonredundant structural chains.

AnnoLyze can correctly recall interacting ligands and
domains for approximately 72% of the set, resulting in
sensitivities of 71.2% and 72.9% for predicting small lig-
ands and interacting protein domains, respectively. The
false positive rate is much larger than that for functional
assignment by Annolite, resulting in precisions of only
13.7% and 55.7% for ligands and interacting domains,
respectively. As for the AnnolLite annotations, a true nega-
tive set of noninteracting ligands and protein partners is
not readily available. That is, we cannot prove that a par-
ticular ligand or domain does not interact with the query
structure. Thus, the low precision of AnnoLyze may be the
consequence of a large number of false positives (i.e., pre-
dicted binding sites for interacting ligands and domains
not annotated in the testing set).

On average, AnnoLyze correctly localizes a binding site on
the surface of a protein in 94.6% of the predictions with
an average of 88.4% of residues correctly localized (Table
4). For some ligand types (see Table 4 for definition of the
abbreviated ligand names), the sensitivity of the localiza-

Annolite F-BLAST T-BLAST

AUC cov AUC cov AUC cov
SCOP Fold 0.85 93.6 0.79 90.8 0.62 89.5
CATH Fold 0.82 91.2 0.8l 87.7 0.57 86.6
InterPro Entry 0.80 86.8 0.71 79.8 0.65 77.8
PFAM Family 0.83 9l.1 0.76 86.4 0.62 828
EC Number 0.75 87.9 0.77 83.0 0.71 825
GO Molecular Function 0.68 86.0 0.60 788 0.65 76.9
GO Biological Process 0.80 88.3 0.72 824 0.63 80.1
GO Cellular Component 0.69 93.2 0.63 90.0 0.6l 86.9
AUC: area under the curve; COV: coverage (%).
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Table 3: Sensitivity and precision of AnnolLyze.

http://www.biomedcentral.com/1471-2105/8/S4/S4

Optimal cutoff (%)

Sensitivity (%) Precision (%)

Ligands 30
Interacting Domains 40

71.9 13.7
729 55.7

tion is lower. For ligands such as MES, BOG, CIT, ANP,
and ATP, the coverage is lower than 75% (i.e., 43.4%,
54.8%, 61.5%, 68.9%, and 72.9%, respectively). In con-
trast, for ligand types such as FAD, FMN, GDP, HEC,
HEM, MAN, NAD, NAG, and NDP, the coverage is higher
than 85%. The average coverage of AnnoLyze is 79.9%,
which is similar to the sensitivity for the ligand testing set
(71.9%). For all ligand types except BOG, FUC, and MES,
AnnolLyze correctly localized the binding site for more
than 90% of the predictions in the localize set. The average
accuracy localizing the binding site was 90% or higher for
ADP, AMP, ANP, ATP, FAD, FMN, GDP, HEC, HEM,
NAD, NAP, and NDP. Although AnnoLyze cannot predict
a binding site for ~20% of the testing set, its accuracy is
~50 points higher than that of the Patcher program (Table
4).

Homologous proteins with different functions

We tested the accuracy of AnnolLite in predicting the func-
tion of pairs of homologous enzyme-non-enzyme struc-
tures, which were previously selected by Pal and Eisenberg
to assess the accuracy of ProKnow [19] (Table 5). These
pairs of proteins share similar fold but perform very differ-
ent functions. AnnoLite was run for a total of 8 pairs of
protein structures, resulting in correct predictions accord-
ing to previously described functional annotations [24].

Annolite predicted an EC number for two structures
annotated as non-enzymes in the testing set (i.e., 2fha and
1ndoB) [24]. However, 2fha corresponds to the H chain
of a mammalian ferritin, which assembles in a 24-mer
complex of H and L chains [25]. Although both chains
share similar structures, the differences between them
explain the ferroxidase activity (EC 1.16.3.1) of the chain
H of ferritin. AnnolLite in fact correctly predicts this activ-
ity. The 1ndoB chain is one of six chains of a muticompo-
nent enzyme system that catalyzes the reaction
baphthalene 1,2-dioxygenase (EC 1.14.12.12) [26],
which is also correctly predicted by Annolite.

AnnolLite predicted some functional annotations that
were not previously annotated in the MSD database.
1bl0A, a member of the AraC prokaryotic transcriptional
activator family [27], is predicted as a transcriptional
repressor (i.e., GO term 0016564). loazA, an enzyme
with oxydoreductase activity [28], is annotated as 1.10.3.3
in the EC database. AnnolLite correctly predicted this
annotation but also assigned laccase activity (i.e., EC
number 1.10.3.2 and GO term 0008471). lounA, a
nuclear transport factor 2 [29], is predicted to interact
with Ras GTPase (i.e., GO term 0008536), which is impli-
cated in nucleocytoplasmic transport, cell-cycle progres-
sion, spindle assembly, nuclear organization, and nuclear

Table 4: Accuracy of AnnoLyze in locating binding sites for small ligands.

Ligand Extended name Cases Coverage (%) Average (%) Correct (%) Patcher (%)
ADP ADENOSINE-5'-DISPHOSPATE 172 80.2 93.2 100.0 45.6
AMP ADENOSINE-5'-MONOPHOSPHATE 56 80.4 91.4 100.0 31.0
ANP PHOSPHOAMINOPHOSPHONIC ACID — ADENYLATE ESTER 74 68.9 91.0 100.0 51.3
ATP ADENOSINE-5'-TRIPHOSPHATE 107 72.9 92.7 97.4 57.7
BOG B-OCTYLGLUCOSIDE 31 54.8 719 76.5 18.2
CIT CITRIC ACID 52 61.5 82.2 90.6 333
FAD FLAVIN-ADENINE DINUCLEOTIDE 110 91.8 96.1 100.0 60.9
FMN FLAVIN MONONUCLEOTIDE 62 85.5 94.5 100.0 60.0
FUC FUCOSE 35 82.9 67.9 724 0.0
GAL D-GALACTOSE 70 80.0 84.5 92.9 41.7
GDP GUANOSINE-5'-DIPHOSPHATE 72 95.8 93.2 97.1 333
GLC GLUCOSE 115 80.0 84.1 935 353
HEC HEMEC 42 95.2 96.9 100.0 55.6
HEM PROTOPRPHYRIN IX CONTAINING FE 360 94.7 97.1 99.7 734
MAN ALPHA D-MANNOSE 52 86.5 84.6 95.6 15.4
MES ETHANESULFONIC ACID 53 434 782 82.6 29.4
NAD NICOTAMINE ADENINE DINUCLEOTIDE 183 85.8 95.9 100.0 55.6
NAG N-ACETYL-D-GLUCOSAMINE 153 86.9 84.8 94.7 4.6
NAP NADP NICOTINAMIDE-ADENINE-DINUCLEOTIDE PHOSPHATE 73 84.9 93.6 98.4 65.4
NDP NADPH DIHYDRO-NICOTINAMIDE-ADENINE-DINUCLEOTIDE PHOSPHATE 64 85.9 94.9 100.0 58.3
Average 97 79.9 88.4 94.6 413
The last column shows the percentage of correct predictions by the Patcher algorithm.

Page 4 of 12

(page number not for citation purposes)



BMC Bioinformatics 2007, 8(Suppl 4):S4

http://www.biomedcentral.com/1471-2105/8/S4/S4

Table 5: AnnolL.ite functional predictions for pairs of enzyme-non-enzyme homologous structures.

Enzyme Non-Enzyme

Chain Functional class EC GO Chain Functional class EC GO
1a73A Hydrolase/DNA -- 0004519 ImhdA Transcription/DNA 0003700
IxikA Oxidoreductase 1.17.4.1 0005506 IdpsA DNA binding 0008199
0004748 0003677
Iron storage 1.16.3.1 0008199
0004322
Ipda Lyase 2.5.1.61 0004418 Phosphate transport 0005315
lerxA Replication/DNA - 0003677 IblIOA Transcription/DNA 0016564
0003677
lqjgA Isomerase 5.3.3.1 0004769 lounA Transport 0008565
0008565 0008536
IndoB Dioxygenase 1.14.12.12 0016702
0018625
0046872
laozA Oxydoreductase 1.10.3.3 0008447 InwpA Electron transport 0005507
1.10.3.2 0005507 0005489

0008471

IbugA Oxydoreductase 1.10.3.1 0004097 Oxygen transport 0005344
0005507 0005507
0016787
0016740
0003677

Underlined functional predictions are not annotated in the MSD.

envelope assembly. Finally, loxy [30], a hemocyanin
associated to the transport of oxygen, is correctly pre-
dicted with oxygen transport activity (i.e., GO term
0005344) but is falsely predicted by AnnoLite to have cat-
alytic activity (i.e., GO terms 0016787 and 0016740) as
well as DNA binding activity (i.e., GO term 0003677).
These false positive predictions are transferred from a sin-
gle structure similarity (1wjb entry in PDB), which super-
poses 80% of its Co. atoms within 3.1 A, to part of the
loxy_ structure. Although only two hits (chains A and B
from 1wijb) of the 12 hits to 1oxy_ had catalytic activity,
the relative abundance of chains annotated with the very
same GO terms made the prediction statistically signifi-
cant.

Annotation for structural genomics

Target-selection strategies for structural genomics have led
to the experimental determination of many protein struc-
tures whose functions are not yet known. AnnoLite and
AnnoLyze can be usefully employed to annotate the func-
tions of such structures, as illustrated by the following
example (Figure 1).

The Midwest Center for Structural Genomics (MCSG)
selected a MutT-Nudix protein from Enterococcus faecalis as
a target for structure determination (target APC28983).
The structure was successfully determined and deposited
in the PDB (code 2azw, release date January 10, 2006).
Sequence-based searching of the PFam database reveals
similarity to the NUDIX domain (PF00293), which is a
small bacterial protein involved in a system responding to
damage in the DNA [31]. The NUDIX family of domains
can be divided into several subgroups, but only MutT has
anti-mutagenic activity. AnnoLite and AnnoLyze confirm

and add to these known annotations. A DBAIi search for
structures homologous to 2azwA results in 303 hits.
Twenty-six of these hits pass all the Annolite cutoffs,
which predicts that the query chain will adopt the Nucle-
oside Triphosphate Pyrophosphohydrolase CATH fold
(3.90.79.10, p-value 1e20) and the MutT-like SCOP fold
(d-113.10.1, p-value 4e2%). The NUDIX domain from the
PFam database (PF00293, p-value 2e74) as well as the
NUDIX hydrolase InterPro entry (IPRO00086, p-value of
1.9e-55) are also predicted. Two more InterPro entries are
predicted for the query structure, the Mutator MutT
(IPRO03561, p-value 2.7e20) and the Isopentenyl-dipen-
tenyl-diphosphate delta-isomerase (IPR002667, p-value
2.9e14). All predicted GO terms, both for molecular func-
tion and for biological process, clearly indicate that
2azwaA has a hydrolase activity with the DNA-repair func-
tion. Finally, AnnoLyze predicts that the protein could
form a homodimer with another MutT-Nudix fold (aver-
age binding-site sequence identity of 23.7%) as well as
contain a binding site for the analgesic drug magne-
sium(+2) cation dihydroxide (ascripin) with an average
binding-site sequence identity of 59.0%.

Conclusion

The influx of genomic information over the last decade
has increased the amount and diversity of the protein
sequences and their structures. This very same increase
demands the development of more accurate and reliable
tools for functional annotation. Numerous programs
have been developed that transfer annotation from pro-
teins of known function to the uncharacterized related
proteins. However, the accuracy of such programs varies
and is limited by technical difficulties, our knowledge of
protein evolution, and the nontrivial definition of func-
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a)
MutT/nudix family protein

b)
CATH:

1.1e-20  3.90.79.10 Nucleoside Triphosphate Pyrophosphohydrolase
SCOP:

42e-29 d.113.1.1 MutT-like
PFAM:

2.0e-74  PF00293 NUDIX domain
InterPro:

1.9e-65  IPR0O00086 NUDIX hydrolase

2.7e-20  IPR003561 Mutator MutT

2.9e-14  IPR002667 Isopentenyl-diphosphate delta-isomerase
0

magnesium(+2) cation dihydroxide
Figure |
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PDB ID: 2azw:A
STRUCTURAL GENOMICS, UNKNOWN FUNCTION
Compound:
MUTT/NUDIX FAMILY PROTEIN
Source:
BACTERIA
SCOP:
unclassified
CATH:
unclassified
Ligands
1PE
Interacting domains:
unknown

GO Molecular Function:

4.5e-19 0008413 8-oxo-7,8-dihydroguanine triphosphatase activity

3.8e-13 0004452 isopentenyl-diphosphate delta-isomerase activity

1.9e-6 0016787 hydrolase activity

5.4e-3 0004081  bis(5'-nucleosyl)-tetraphosphatase (asymmetrical) activity
GO Biological Process:

7.7e-11 0008299 isoprenoid biosynthesis

1.5e-5 0006974 response to DNA damage stimulus

1.7e-5 0006260 DNA replication

2.4e-5 0006281 DNA repair

MutT/nudix SCOP domain

Functional annotation of a newly determined protein structure. Application to the target APC28983 from the Mid-
west Center for Structural Genomics Consortium (PDB code 2azw chain A). (a) Known annotation of chain 2azwA. (b) Signif-
icant AnnolLite predictions. (c) Significant AnnoLyze predictions.
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tion [9]. Here we introduced two programs for compara-
tive protein structure annotation with the goal of
overcoming those limitations. AnnoLite and AnnoLyze
rely on structural relationships stored in the DBAIi data-
base to perform a reliable and rapid annotation of protein
structures. AnnolLite predicts the CATH and SCOP fold
assignments, InterPro and PFam families, EC number,
and GO terms for a query structure. AnnoLyze predicts the
location and type of putative binding sites for small lig-
ands and partner protein domains on the surface of the
query protein structure.

We have fully benchmarked both methods with large test-
ing sets. The results indicate that AnnolLite outperforms
sequence-based methods for functional annotation and
has similar accuracies as previously published programs
(i-e., ProFunc [17,18], ProKnow [19], and Phunctioner
[20]). The main advantages of AnnoLite with respect to
these other methods are its applicability, accuracy, and
speed of execution. For example: (i) in contrast to Pro-
Func, ProKnow, or Phunctioner, the predictions in Anno-
Lite are continuously updated with the DBAIli pairwise
structural alignments and can be retrieved within seconds
for most of the protein structures in the PDB; (ii) in con-
trast to ProKnow and Phunctioner, AnnolLite predicts an
array of different functional annotations ranging from
fold assignments to GO terms; and (iii) in contrast to Pro-
Func, ProKnow, or Phunctioner, AnnolLite can be applied
to all known structures with structural similarities to any
annotated protein and does not rely on any additional
search or sources of information. Moreover, AnnoLite can
be combined with AnnoLyze for additional prediction of
small ligand binding sites and protein-protein interac-
tion. AnnoLyze can be applied to about 80% of the pro-
tein chains and outperforms other knowledge-based
methods such as Patcher [21].

Annolite and AnnoLyze will benefit from the growth of
the structural and functional databases. Both methods
rely on the DBAIli database, which is updated weekly.
Thus, we expect the accuracy of both methods to improve
with the DBAIi updates. However, the current implemen-
tation of AnnolLite and AnnoLyze is limited by: (i) errors
in the annotation databases, (ii) the potential sub-opti-
mality of the selected structural alignments, and (iii) the
explicit inclusion of specificity measures for the AnnoLyze
predictions. First, incorrect entries in the underlying
annotation databases will most likely result in false posi-
tive predictions. Our implementation of the Fisher's exact
test for 2 x 2 contingency tables should minimize this
problem. Second, AnnolLite and AnnoLyze rely on the
DBAIi database for selecting a set of homologous struc-
tures to the query structure. We have arbitrarily chosen a
set of parameters based on the MAMMOTH benchmark
[23], which ensures a high degree of local similarity

http://www.biomedcentral.com/1471-2105/8/S4/S4

between the query structure and its selected homologous
structures. However, those parameters were not optimized
for functional annotation of structures. Third, AnnoLyze
does not include any external scoring function to assess
the accuracy of a prediction. Thus, most of the false posi-
tives from Annolyze may be detectable by taking into
account the specificity of a particular binding site for a
particular ligand or protein domain. We plan to develop a
series of statistical potentials to assess each of the predic-
tions from AnnoLyze. As these additions are incorporated,
the performance of AnnoLyze is likely to further improve.

To demonstrate the applicability of our programs, Anno-
Lite was used to predict the functional annotation of a set
of pairs of homologous enzyme-non-enzyme proteins.
Annolite was able to correctly differentiate between the
catalytic and noncatalytic proteins. Moreover, we applied
Annolite and AnnoLyze to fully annotate a structure pro-
duced by structural genomics, indicating a utility of our
programs for an initial characterization of new protein
structures of unknown function. The sensitivity and preci-
sion of both programs will likely make AnnolLite and
AnnoLyze an interesting component supporting the
experimental work of a wider structural biology commu-
nity. Both programs are fully available as part of the DBAIi
suite of tools for structural characterization and are readily
applicable to any structure deposited in the PDB as well as
any user-provided coordinate sets.

Methods

DBAIi database

The DBAIi database [16] contains pairwise and multiple
structure alignments of proteins in the PDB. Pairwise
alignments are updated weekly, and multiple alignments
are updated monthly. As of December 2006, DBAIli con-
tains a total of 86,257 PDB chains in more than 1.3 bil-
lion pairwise alignments with a MAMMOTH P-value
higher than 2 [23]. DBAIi also stores multiple structure
alignments for 11,405 families with 30,150 nonredun-
dant PDB chains representing 83,080 chains in the PDB.
Both programs introduced in this work, AnnoLite and
AnnoLyze, make use of the pairwise alignments in DBAli
to predict functional annotation.

Annotation databases

AnnolLite and AnnoLyze rely on the information stored in
several databases to predict functional annotations. We
have adopted the information from the Macromolecular
Structure Database (MSD) [32], which links each PDB
entry to CATH [33], SCOP [34], InterPro [35], PFam [36],
EC [37], and GO entries [38]. Additionally, the informa-
tion stored in LigBase [39] and PIBASE [40] is also used to
predict annotation for small ligands and interacting pro-
teins, respectively. DBAIi data from all external databases
are updated monthly.
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Testing sets

Four different testing sets were selected to evaluate the
accuracy of Annolite and AnnoLyze: (i) a set of nonre-
dundant functionally annotated chains (annotation), (ii) a
set of nonredundant protein structures co-crystallized
with small ligands (ligand), (iii) a set of nonredundant
proteins co-crystallized with other proteins or domains
(partner), and (iv) a set of nonredundant protein struc-
tures for localizing binding sites (localize).

The annotation set

Atotal 0f 10,997 PDB chains in the MSD (July 2005) were
annotated by all the following terms: CATH and SCOP
fold assignments, InterPro and PFam entries, EC num-
bers, and GO terms (molecular function, biological proc-
ess, and cellular component). This list of chains was
filtered to remove redundancies resulting in a list of 1,879
representative chains (Table 6).

The ligand set

The LigBase database contains information for 30,126
chains and co-crystallized small molecules. This list of
chains was filtered to remove redundancies, resulting in a
list of 4,948 representative chains and associated ligands
(Table 6).

The partner set

The PIBASE database contains information for 30,425
chains and co-crystallized interacting domains. This list of
chains was filtered to remove redundancies, resulting in a
list of 4,613 representative chains (Table 6).

The localize set

The LigBase database contains ligand and binding-site
information for 30,126 chains and their co-crystallized
small molecules. LigBase defines a binding site as all the
protein residues with at least one atom within 5 A of any
of the ligand atoms. Our benchmark data set was
restricted to 20 different ligands of 10 or more atoms that
occur more than 100 times in LigBase (Table 4). The set
contains biologically relevant molecules (such as ATP,
NAD, and sugars) but excludes ions and very small mole-
cules [21]. The initial set of proteins was filtered to remove

http://www.biomedcentral.com/1471-2105/8/S4/S4

redundancies within each ligand type, resulting in the list
of 1,936 representative chains (Table 6).

The entire annotation, ligand, partner, and localize testing
sets are available for download [41].

BLAST searches

To assess the benefits of using the structural space as well
as a robust statistical approach for transferring annota-
tion, a BLAST search with default parameters [42] was run
for all the sequences in the annotation set against all
sequences in the PDB. Two BLAST-based predictions were
calculated: i) T-BLAST, which selected the top BLAST hit
with functional annotation, which was then transferred to
the query with the BLAST e-value statistical significance
and ii) F-BLAST, which selected all the hits with functional
annotation, which were then transferred to the query with
a statistical significance calculated using a Fisher's exact
test for 2 x 2 contingency tables as for AnnolLite.

Annolite

AnnolLite predicts functional annotations such as the
CATH and SCOP fold assignments, InterPro and PFam
entries, EC numbers, and GO terms by transferring known
annotations from homologous structures to the query
structure. AnnolLite collects homologous structures that
pass all the following similarity criteria to the query struc-
ture: a minimum of 75% of Co atoms aligned within 4 A
and a maximum of 4 A Co. RMSD after superposition of
the two structures. All hits are then sorted by their
sequence identity to the query, and then a decreasing cut-
off for sequence identity (from 90% to 15% in steps of
1%) is applied. The iterative process stops when at least 25
structures from the list have been selected. Functional
annotations for the homologous set of chains are then
collected from the MSD. Next, a p-value score is calculated
for each collected annotation using a Fisher's exact test for
2 x 2 contingency tables comparing two groups of anno-
tated chains (i.e., the group of similar chains to the query
and the group of all annotated chains in the PDB) [43].
Only those annotations that have a significant p-value are
then transferred to the query structure and correspond to
the predicted functional annotation (Figure 2). Given the

Table 6: Filtering cutoffs for removing redundancy in the testing sets.

Initial set Sequence Identity (%) Equivalent positions (%) RMSD (A) Difference in length Final set
Annotation 10,997 N/A >60.0 <2.0 <30 1,879
Ligand 30,126 =30.0 275.0 <4.0 <50 4,948
Partner 30,425 >30.0 >75.0 <4.0 <50 4,613
Localize 30,126 >90.0 >90.0 <2.0 N/A 1,936

Sequence identity is the percentage of identical residues with respect to the aligned positions in the structural alignment. Equivalent position is the
percentage of residues that align within 4 A with respect to the shorter of the two aligned structures. The RMSD is calculated using Ca atoms of

the two aligned structures.
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DBAIi tools

Chain ID

Similar chains in DBAIi

RMSD < 4A
% sequence identity variable (>15)
% equivalent positions > 75%
p-value > 4

AnnoLite search e f

BioMart protein annotation

Y

Annotations from MSD.msd
database and descriptions from
SCOP, CATH, InterPro, PFamaA,

ENZYME, and GO databases

Fisher's2 x 2
test for statistical
significance

HTML output

Figure 2
Flowchart of main steps in AnnoLite.
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DBALIi tools
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AnnolLyze search

<
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Similar chains in DBAIi

RMSD < 4A
% sequence identity > 20%
% equivalent positions > 75%
p-value > 4

LigBase protein

Selection based on local
similarity
% sequence identity > 20%
% equivalent positions > 75%

HTML output

Figure 3
Flowchart of main steps in AnnolLyze.
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on the spatial
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PiBase protein
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annotated based
on the spatial
proximity
between domains

ligand

presumed biased distribution of functional annotations  (Table 1). First, an ROC curve [44] was calculated by plot-
in the PDB database, an optimal cutoff for the p-valuewas  ting the sensitivity against the precision for all possible p-
obtained for each type of functional annotation as follows  value cutoffs. Second, the optimal classification point was
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identified as the point in the ROC curve that is closest to
the perfect classifier (i.e., 100% sensitivity at 100% preci-
sion).

Annolyze

AnnolLyze predicts ligand-binding sites as well as protein-
interaction patches on the surface of the query structure
by transferring known ligands and domain partners from
homologous structures. AnnoLyze collects homologous
structures that pass all the following criteria on the simi-
larity to the query structure: a minimum of 20% sequence
identity, a minimum of 75% of Co. atoms aligned within
4 A, and a maximum of 4 A Co. RMSD after superposition
of the two structures. Known ligands from LigBase as well
as known protein-interacting partners from PIBASE are
then collected for all homologous structures. Next,
sequence identities between the query structure and its
homologs are calculated for the interacting residues based
on the structural alignment. Residues involved in the
interaction with small ligands and protein partners are
taken from LigBase and PIBASE, respectively. Only those
sets of interacting residues in a template that have a signif-
icant template-query sequence identity are then trans-
ferred to the query structure and correspond to the
predicted binding site (Figure 3). Similarly to AnnoLite,
an optimal cutoff for the sequence identity was identified
for each type of binding site annotation (Table 3).

Searching parameters

The AnnoLite and AnnoLyze parameters for searching in
DBAIli were arbitrarily selected and were not optimized for
functional annotation. However, our use of the MAM-
MOTH program (the underlying algorithm for pairwise
structural alignments in the DBAIi database) as well as its
benchmark [23] indicate that the selected parameters
ensure structural similarity of the homologous chains to
the query structure. For example, 87% of the 59,849
selected hits in the search with the annotation test set
superpose at least 90% of their Co. atoms within 4 A, and
65% of the 763,962 selected hits from the ligand and part-
ner test sets superpose at least 90% of their Co. atoms
within 4 A.

Accuracy measures

The accuracies of AnnoLite and AnnoLyze were bench-
marked in terms of sensitivity (recall) and precision. Sen-
sitivity is defined as the ratio between the number of true
positives (i.e., hits correctly predicted) and the sum of true
positive and false negatives (i.e., functional annotations
not predicted as such) with a score higher than or equal to
the given cutoff. Precision is defined as the ratio between
the number of true positives (i.e., hits correctly predicted)
and the number of all predictions with a score higher than
or equal to the given cutoff (i.e., the sum of true positive
hits and false positive hits). The number of false positives

http://www.biomedcentral.com/1471-2105/8/S4/S4

approximates only an upper bound since a negative anno-
tation set of functions, experimentally known not to be
performed by a given protein, is not generally available.
Unless otherwise indicated, sensitivity and precision are
expressed as percentage values.

The accuracy of AnnolLite against a BLAST-based method
was also benchmarked in terms of the area under the
curve (AUC) and coverage (COV). The AUC is defined as
the area under the ROC curve, which plots the true posi-
tive rate against the false positive rate. An AUC of 1 indi-
cates a perfect classifier, and an AUC under 0.5 indicates a
poor classifier. Coverage is defined as the fraction of the
query structures that had a particular function type pre-
dicted in the annotation test set.

Additionally, the accuracy of AnnoLyze for localizing
binding sites for small molecules was also benchmarked.
For each protein in the localize testing set, AnnoLyze pre-
dicted a set of residues in the binding site, which formed
a patch on the surface of the protein. Given two binding
sites or patches, we defined the overlap between the two
patches as the percentage of common residues with
respect to the number of residues in the smaller of the two
patches [21]. The overlap of two patches is 100% if they
are identical or if one patch is completely contained
within the other. The overlap is 0% if there are no residues
in the intersection between the two. A binding site was
considered correctly localized if the overlap between a
predicted patch and the real patch as defined in LigBase
was greater than 50%. The AnnoLyze coverage for each lig-
and type was calculated as the percentage of predicted lig-
and-binding sites with template-query sequence identity
higher than or equal to 30%. Finally, the average accuracy
of a predicted binding site type was calculated as the aver-
age of correctly localized residues for each ligand type.

List of abbreviations

Protein Data Bank (PDB), Macromolecular Structure
Database (MSD), area under the curve (AUC), coverage
(COV).
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