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Abstract

Background: We develop a probabilistic model for combining kernel matrices to predict the
function of proteins. It extends previous approaches in that it can handle multiple labels which
naturally appear in the context of protein function.

Results: Explicit modeling of multilabels significantly improves the capability of learning protein
function from multiple kernels. The performance and the interpretability of the inference model
are further improved by simultaneously predicting the subcellular localization of proteins and by
combining pairwise classifiers to consistent class membership estimates.

Conclusion: For the purpose of functional prediction of proteins, multilabels provide valuable
information that should be included adequately in the training process of classifiers. Learning of
functional categories gains from co-prediction of subcellular localization. Pairwise separation rules
allow very detailed insights into the relevance of different measurements like sequence, structure,
interaction data, or expression data. A preliminary version of the software can be downloaded

from http://www.inf.ethz.ch/personal/vroth/Kernel[HMM/.

Background

The problem of developing machine-learning tools for
protein function prediction has gained considerable
attention during the last years. From a machine learning
perspective, this task exceeds the "standard" settings of
learning problems in that a protein can be involved in sev-
eral different biological processes exhibiting more than
one function. This means that the objects we want to clas-
sify (i.e. the proteins) might belong to several classes, a
setting which is referred to as multilabel classification. From
a biological perspective, the information carried in these

multilabels might be relevant for extracting correlations of
functional classes. When it comes to predicting the func-
tion of new proteins, it is therefore desirable to develop
tools that can explicitly handle such multiple labeled
objects.

In this work we present a multilabel version of a nonlinear
classifier employing Mercer kernels. Such kernel methods
have been successfully applied to a variety of biological
data analysis problems. One problem of using kernels,
however, is the lacking interpretability of the decision
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functions. In particular, it is difficult to extract further
insights into the nature of a given problem from kernel
mappings which represent the data in implicitly defined
feature spaces. It has been proposed to address this prob-
lem by using multiple kernels together with some combi-
nation rules, where each of the kernels measures different
aspects of the data. Methods for learning sparse kernel
combinations have the potential to extract relevant meas-
urements for a given task. Moreover, the use of multiple
kernels addresses the problem of data fusion which is a
challenging problem in bioinformatics where data can be
represented as strings, graphs, or high dimensional
expression profiles. Kernels provide a suitable framework
for combining such inhomogeneous data under a com-
mon matrix representation.

Existing algorithms for combining kernels recast the prob-
lem as a quadratically constrained quadratic program
(QCQP), [1], as a semi-infinite linear program (SILP), [2], or
within a sequential minimization optimization (SMO) frame-
work, [3]. Methods for selecting kernel parameters have
also been introduced in the boosting literature, see e.g. [4]
or in the context of Gaussian processes, see e.g. [5]. Our
method extends these approaches in two major aspects:
due to the generative nature of the underlying classifica-
tion model, it can learn class correlations induced by mul-
tilabeled objects and it can be used as a "building block"
in hidden Markov models which allow the inclusion of
further categorical information, such as the joint predic-
tion of subcellular localization classes and functional
classes. We show that these extensions significantly
improve the predictive performance on yeast proteins.

Methods

Our classifier is based on an extension of the mixture dis-
criminant analysis (MDA) framework, which forms a link
between Gaussian mixture models and discriminant anal-
ysis [6]. The algorithm for solving multilabel classification
problems emerges as a special case of this clustering
approach. In the following we will briefly outline the
algorithm which is composed of the "building blocks"
Gaussian mixture models, discriminant analysis, adaptive ridge
penalties and the proper handling of multilabels.

Learning Gaussian mixtures by LDA

The dataset is assumed to be given as a collection of n
samples x;€ R4, summarized in the (n x d) matrix X. Con-
sider now a Gaussian mixture model with K mixture com-
ponents which share an identical covariance matrix X.
Under this model, the data log-likelihood reads

= 3 tog( X4, md it ) ). (1)
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where the mixing proportions 7z, sum to one, and ¢
denotes a Gaussian density. The classical EM-algorithm,
[7], provides a convenient method for maximizing Im: in
the E-step one computes the assignment probabilities
P(C,|x;) of objects «; to classes C,, while in the M-step the
current parameters of the Gaussian modes are replaced by
the maximum likelihood estimates.

Linear discriminant analysis (LDA) is a time-honored classi-
fier that (asymptotically) finds the correct class bounda-
ries if the class-conditional densities are Gaussians with
common covariance, which is exactly the supervised ver-
sion of our model (1). This optimality is due to the fact
that for given class labels, the maximum likelihood param-
eters of the model (1) can be found by LDA, see e.g. [8].
This result has been generalized in [6], where it has been
shown that in the unsupervised "clustering" case the M-
step can be carried out via a weighted and augmented LDA:
class labels are mimicked by replicating the n observations
K times, with the k-th replication having observation
weights P(C,|x;) and the "class label" k.

Following [9], any (standard) LDA problem can be
restated as an optimal scoring problem. Let the class-mem-
berships of the n data vectors be coded as a matrix Z, the
(i, k)-th entry of which equals one if the i-th observation
belongs to class k. The point of optimal scoring is to turn
categorical variables into quantitative ones: a score vector
6 assigns real numbers to the K levels of the categorical
response variable, i.e. to the entries in the columns of Z.
The simultaneous estimation of a sequence of scores 6,
and regression coefficients g, k = 1,..., K, constitutes the
optimal scoring problem: minimize

S 1126, - XBy |P (2)

under the orthogonality constraint ®ZZ0 = I;/n, where ©
= (6,,....6;) and I denotes the (K x K) identity matrix. In
[9] an algorithm for this problem has been proposed,
whose main ingredient is a multiple linear regression of
the scored responses Zg, against the data matrix X. The
algorithm starts with ® = I, and the optimal scores are
derived from the solution of the multiple regression prob-
lem via an eigen-decomposition. It can be shown that
solutions to (2) must satisfy a certain orthogonality con-
straint which allows us to start with a (K x K - 1) scoring
matrix ©' that is orthogonal to a K-vector of ones. In the
following we will always consider this latter variant which
is beneficial since it reduces the number of regressions to
K - 1. For simplicity in notation we will still write ©
instead of ©'.

Returning to the above weighted and augmented LDA prob-
lem, it has been shown in [6] that the solution for this
problem can be found by the standard optimal scoring ver-
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sion of LDA after replacing the class indicator matrix Z by

its "blurred" counterpart Z . The rows of Z consist of the
class membership probabilities estimated in the preced-
ing E-step of the EM algorithm.

Adaptive ridge penalties and kernelization

In order to find sparse solutions, we take a Bayesian view-
point of the multiple regression problem (2) and specify
a prior distribution over the regression coefficients 5. Fol-
lowing some ideas proposed in the Gaussian process liter-
ature, we choose Automatic Relevance Determination (ARD)
priors, [10], which consist of a product of zero-mean
Gaussians with inverse variances @;

B @)= exp| -3 017 | (3)

The hyper-parameters @, encode the "relevance" of the i-th

variable in the linear regression. A method called adaptive

ridge regression finds the hyper-parameters by requiring

that the mean prior variance is proportional to 1/4, cf.
1oad 1 1 .

11: =) . . — =—, @ > 0, where A4 is a predefined reg-

(=30 o2 p g

ularization constant.

The balancing procedure has the effect that some hyper-
parameters @, go to infinity. As a consequence, the coeffi-
cients f3; are shrinked to zero and the corresponding input

variables are discarded. Following [11] it is numerically
advantageous to introduce variables

Vji =®i/ABji, ¢ = A/w; . Denoting by D, a diago-

nal matrix with elements ¢;, we have to minimize

new

K-1

i || 280 = XDy [P 4277 7 st € c=d, ¢ >0. (4)

We now consider the case of sharing weights over ] blocks
containing m regression coefficients each:

€= (C1seesC1 o€y y)” (5)
5,_/
m times m times

Note that for given weights ¢, eq. (4) defines a standard

ridge-regression problem in the transformed data X =
XD.,. It is well-known in the kernel literature that the solu-

tion vectors ¥, lie in the span of these input data, i.e. ¥,
= X o, which means that the data enter the model only

in form of the Gram matrix (or Mercer kernel) X X . Since
we have assumed that a weight ¢; is shared over a whole
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block of m features, we can decompose this kernel as a
weighted sum of J individual kernels:

> J 2 > . J 2
K=XX> =3 i XXy = 2 6 K;. (6)

with X (j denoting a (n x m) sub-matrix of X consisting
of one block of m input features. With the above expres-
sion we have arrived at the desired framework for learning
sparse combinations of kernel matrices: the kernel matri-
ces K;in (6) which have been formally introduced by par-
titioning an initial feature set into J feature blocks can be
substituted by arbitrary kernels fulfilling the positive-sem-
idefiniteness condition of valid dot product matrices. On
the technical side, we have to minimize the "kernelized"
version of eq. (4)

K-1, 5 ] 2 2 ]2
i |1 20 = (i 65K e [|° +Aeg; (X 6K ey (7)

. > — ] 2
subjectto ¢” ¢ = 2;’:16

;= d, ¢;> 0. The minimizing vec-

tors ¢y, k =1,...,K - 1 can be found simultaneously in a

very efficient way by employing block conjugate gradient
methods [12]. The optimal weights ¢ are found iteratively
by a fixed-point algorithm similar to that proposed in
[11]:

K-12 >
2 =1 5 % K%
(Cj )new =] K—1

J 2 '
k=1 21:161 o, Kion,

(8)

Practically, if during the iterations a component c¢;
becomes small compared to a predefined accuracy con-
stant, ¢; is set to zero, and in all regression problems the j-
th kernel vanishes.

The algorithm proceeds with iterated computations of
kernel weights ¢ and the expansion coefficients ¢, k =
1..K - 1. We initialize the model with ¢; = 1 Vj. In our
experiments, the initialization did not critically influence
the final result, as long as the initial ¢;'s are non-zero and
J <n. Theoretical uniqueness results, however, are difficult
to derive. For the special case without weight sharing (i.e.
J = d) the above method is equivalent to the LASSO model
of €,-penalized regression (see [11]) for which a unique
solution always exists if the dimensionality does not
exceed the number of samples, d < n. If d exceeds n (which
might be the case for the kernel models considered here),
there might exist different solutions which, however,
share the same globally optimal value of the functional
(4). The experimentally observed insensitivity to different
initializations is probably due to the weights-sharing con-
straints that shrink the number of different ¢/'s from d to J.
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A theoretical analysis of the uniqueness of solutions, how-
ever, will be subject of future work.

Multilabel classification
In multilabel classification problems, an object x; can

belong to more than one class, i.e. it might come with a
set of labels Y;. We treat these multilabels in a probabilistic

way by assigning to each observation a set of class-mem-
bership probabilities. These probabilities might be given
explicitly by the supervisor. If such information is not
available, they might be estimated uniformly as 1/|Y;| for

classes included in the label set Y, and zero otherwise.

ir

After encoding these probabilities in the "blurred"

response matrix Z (which corresponds to a single E-step
in the EM algorithm), we run one optimization step (i.e.
M-step) described above.

Kernel discriminant analysis is a generative classifier
which implicitly models the classes as Gaussians in the
kernel feature space. The effect of multilabels on the clas-
sifier during the training phase can be understood intui-
tively as follows. If there are many objects in the training
set which belong to both the classes C;and C, the respec-
tive class centroids 4, g will be shrunken towards the
averaged value 1/2 - (4; + ). In this way, the classifier can
learn the correlation of class labels and favor the co-pre-
diction of class i and j.

For discriminant analysis it is straightforward to compute
for each object a vector of assignment probabilities to the
individual classes C;, see e.g. [9]. In a traditional two-class
scenario we would typically assign an object to class C; if
the corresponding membership probability exceeds 1/
2(for equal class priors). In multilabel scenarios, however,
an object can belong to different classes so that we have to
find a suitable way of thresholding the output probabili-
ties. In analogy to the classical two-class case, we propose
to sort the assignment probabilities in decreasing order
and assign an object x; to the first k& classes in this order
such that

ke d
zj:1psorte (Cjlx)=7, (9)
where 7is a predefined threshold (e.g. 7= 1/2). By varying
7 one can record the usual precision-recall curves, cf. Fig-
ure 1 for an example.

Algorithm 1 Multilabel kernel learning via AdR regression

Training: /* we start with one E-step */
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compute "blurred" (n x K) response matrix Z encoding
the membership probabilities.

/* now follows one single M-step */

compute initial (n x K - 1) scoring matrix ©,, see [9] for
details;

Initialize ¢;=1, Vi=1,..J;
repeat

compute ¢, k = 1,...,K - 1 as the solution of the linear sys-
tems (7);

recompute the kernel weights c(t+1), see (8);
until | |c(+1) - || <g

compute fitted values and projection matrix for the discri-
minant analysis subspace, see [9,13];

Prediction:

compute projected test object x. and Mahalanobis dis-

tances to class centroids;

compute class membership probabilities P(C,|x.) and
extract multilabels according to eq.(9).

Model selection

For the purpose of model selection, we assume that we are
given a set of kernel matrices over multi-labeled objects.
We further assume that the rule of deriving "fractional
labels" from the multilabels is given. In the absence of fur-
ther prior knowledge (which is probably the case in most
real-world applications), we assume that the fractional
labels are derived by averaging over all classes to which an
object is assigned. Under these assumptions, the model
contains only two free parameters, namely the regulariza-
tion constant 4 in eq. (7) and the threshold 7 for predict-
ing multilabels in eq. (9). In our experiments, the former
is estimated via cross-validation on the training sets. A
unique multilabel-threshold can also be estimated by
cross-validation, but in this work we report the full preci-
sion-recall-F1-curves obtained by varying this threshold,
see Figure 1.

Functional classes and subcellular localization

In several classification tasks in bioinformatics, more than
one classification scheme is available to assign the data to
certain groups. Proteins, for instance, can be classified not
only according to their function, but also according to their
subcellular localization. For the yeast genome, such a local-
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Performance of different classifiers. Performance of different classifier variants under cross-validation. Left panel: boxplots
of maximum F| measure. Left to right: 8 original kernels from [1], extended kernel set, combined subcellular location and func-
tional prediction, pairwise learning of the kernel weights (in the combined model). Right panel: precision, recall and F| for the
pairwise classifier used as "building block" in the HMM under variation of the threshold 7which controls the label multiplicity.

ization-based scheme is available from CYGD, see Table
2. If for some proteins their subcellular localization can be
predicted with high reliability, and if we find high corre-
lations between the corresponding localization classes
and certain functional classes, we can potentially exploit
this prior knowledge to increase the performance of the
functional classification.

We combine both classification schemes by way of a hid-
den Markov model (HMM). This choice was guided by the
observation that even the standard K-class discriminant
analysis model can be viewed as a simple HMM consisting
of K emitting nodes and a silent begin and end node, see
the left panel of Figure 2. The K emitting nodes represent
the values of the hidden variable ¥ ("functional class").
The Gaussian emission probabilities are derived from the
classifier. The transition probabilities are estimated by the
empirical frequencies of class membership in a training
set.

A second classification scheme is included in the automa-
ton by adding another layer with L emitting nodes. These
additional nodes correspond to a Gaussian mixture
model with L components that in our case correspond to
subcellular localization classes, see the right panel of Fig-
ure 2. The emitting nodes in the first layer represent the
values of the hidden variable £ ("localization"), whereas
the nodes in the second layer represent the values of the
second hidden variable ¥ ("functional class"). There are

now two "observed data" variables X ;, X, that are

assumed conditionally independent given the states of the
two hidden variables. This independence assumption
might be justified by the use of sparse kernel selection
rules in each layer which typically induce nearly orthogo-

nal feature spaces. The emission probabilities P( X ;| £)

and P( X ,| F ) are learned separately in the two layers. As
in the former case, the individual transition probabilities
are estimated by empirical frequencies on the training set.
For predicting multilabels in the second layer, we com-
pute the posterior probabilities via the forward-backward
algorithm. The number of labels to be assigned is again
found by thresholding the sum of ordered probabilities,
cf. eq. (9). Varying this threshold yields precision-recall
curves as depicted in Figure 1.

Locality due to pairwise kernel classifiers

The method introduced above finds a "global" set of ker-
nels for the full multi-class problem. In some applica-
tions, however, it might be desirable to further investigate
the discriminative power of kernels in a more class-spe-
cific or "local" setting. This can be achieved by an alterna-
tive approach to multi-class discriminant analysis based
on the pairwise coupling scheme in [14]. The main idea is
to find a K-class discriminant rule (with classes C,...,.Cy)
by training all K(K - 1)/2 possible two-class classifiers and
coupling the obtained conditional membership probabil-
ities r;; := Prob(C;|C; or C;) to a consistent K-class assign-
ment probability. In other words, we want to find
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Table 2: Top-level hierarchy of subcellular localization classes from CYGD

701 extracellular

705 bud

710 cell wall

715 cell periphery
720 plasma membrane

722 integral membrane/endo
membranes

725 cytoplasm

730 cytoskeleton

735 ER

740 golgi
probabilities  py,...px such that the quantities
Sjj = Pi are as close as possible to the estimated r;;.

b +Pj

The probabilities p,,...,py are finally found be minimizing
the KL-divergence between r; and s;. This pairwise cou-
pling approach can also be adapted for multiple class
labels by way of "fractional" class assignments in the
training step. If we find many samples in the training set
which belong to both the classes i and j, multi-label discri-
minant analysis will effectively shrink the respective class
centroids #; and 4 towards their common mean while
keeping the covariances constant, a procedure which will
favor the co-prediction of classes i and j. In our experi-
ments, we use this pairwise approach to LDA as a "build-
ing block" in the two-layered HMM for simultaneous

P(X|F)

F

automaton graph dependency model

Figure 2

745 transport vesicles
750 nucleus

755 mitochondria

760 peroxisome

765 endosome

770 vacuole

775 microsomes

780 lipid particles

790 punctate composite
795 ambiguous

prediction of subcellular localization and functional class.
The advantage of this pairwise method over the "global"
approach is that in each of the K(K - 1)/2 subproblems a
task-specific subset of kernels is learned. Concerning the
computational workload, the pairwise approach is very
similar to the "global" method, since the increase of clas-
sifiers to be learned is compensated by the smaller sample
size in the individual two-class problems.

Results and discussion

On the top-level hierarchy, the functional catalog pro-
vided by the MIPS comprehensive yeast genome database
(CYGD) [15] assigns roughly 4000 yeast proteins to sev-
eral functional classes listed in Table 1. Note that this clas-
sification scheme corresponds to an old version of the
MIPS functional catalog, whereas the newest version, fun-
cat 2.0, further splits some of these 13 classes. To allow a

P(x|L) P(X|F)

L F

automaton graph dependency model

Graphical representation of hidden Markov models. Graphical representation of hidden Markov models. Left: standard 4-
class discriminant analysis with 4 Gaussian emission probabilities. ¥ denotes the hidden random variable "functional class", X

represents the observed data. The nodes (red circles) represent the K values of # (in this example K = 4). Right: Additional

layer with random variable L, "subcellular localization class", and two conditionally independent observed variables X |, X ,.

The different widths of the arrows symbolize different transition probabilities.
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better comparison with previous results reported in [1],
however, we still use the older labeling scheme.

Kernel representation

One of the major advantages of our method is its capabil-
ity of automatically extracting relevant data sources out of
alarge collection of kernels presented by the user. The user
can, thus, collect as much information sources as possible
and let the algorithm decide which to choose. Following
this idea, we represent the yeast proteins by previously
used kernels that extract information on different levels,
like mRNA expression, protein sequences and protein-
protein interactions. Moreover, we enrich this set of
"basis" kernels by variants thereof resulting from nonlin-
ear feature space mappings. We further investigated addi-
tional kernels from several publicly available microarray
datasets [16-20].

The "basis" kernels introduced in [1] consist of (i) two
kernels which analyze the domain structure: K¢, and an

enriched variant K, (ii) three diffusion kernels on

ffexp;
interaction graphs: K, ;(protein-protein interactions),

K (genetic interactions), Ki,, (co-participation in pro-

ap
tein complexes); (iii) two kernels derived from cell cycle
gene expression measurements: K, 4 (binary) and K, ,
(Gaussian); (iv) a string alignment kernel K;,. From each

of these 8 kernels we derive 3 additional Gaussian RBF
variants by computing squared Euclidean distances Dl%

between pairs of objects (i, j) and deriving new kernels

under this nonlinear feature space transform as

Kl(jl) = exp(—O'ID%) for the three RBF variants [ = 1, 2, 3.

Multilabels

Since a protein can have several functions, each protein
comes with a set Y of functional class labels. Let | Y| denote
the cardinality of this set, i.e. the number of classes a cer-
tain protein is assigned to. For running Algorithm 1 in the
methods section below we have to translate the label sets
Y, i = 1,...,n into membership probabilities which form

the entries of the "blurred" n x K indicator matrix Z,

Table I: Functional classes from MIPS CYGD

http://www.biomedcentral.com/1471-2105/8/S2/S12

where n is the number of proteins and K the number of
classes. Since no further information is available, for the i-

th protein we set Z = 1/]Y;|, if the k-th class is a member
of the label set Y;, and zero otherwise. In the following

these membership probabilities will also be called "frac-
tional labels".

Performance evaluation

In [1], all 13 classes were trained separately in a one-
against-all manner, where a gene is treated as a member of
a certain class whenever it has a positive label for that class
(irrespective of other labels!). The performance of these
classifiers has been evaluated in terms of area under the
ROC curves (auc). Our method, on the contrary, respects
the multilabel structure of the problem by explicitly
exploiting co-occurrences of class labels. It uses fractional

labels Z ,, and the output is a probability vector for all
classes. Thus, even in the optimal case, our classifier will
assign a score of 1/|Y;| to a correct class. Since the test set
contains genes with different cardinalities of label sets, the
classifier scores reside on different scales and it will be
impossible to find a common threshold when computing
a ROC curve.

To overcome this problem, we use two different measures:
for each class C,, auc,/1 measures the area under the ROC
curve only on the subset of genes which either do not
belong to class C,, or which exclusively belong to C,,. For

this subset (= 2/3 of the yeast genes) we can directly com-

pute a ROC curve, since there are no scaling problems.

The measure auc,jgheqs ON the other hand, uses all test
genes and rescales both the fractional label Z  for class C,
and the corresponding probabilistic classifier score

P(C,|x;) for the i-th protein by the label set cardinality,
Zj = Zy |Y; |2 Zj € {0,1}.
Figure 3 depicts the results for the enlarged kernel set con-

sisting of the 8 "basis" kernels and 3 additional RBF kernel
variants thereof. For each of the 13 classes three perform-

ol metabolism 08 cell rescue, defense
02 energy 09 interaction w/cell.envt.
03 cell cycle & DNA processing 10 cell fate
04 transcription I control of cell. org.
05 protein synthesis 12 transport facilitation
06 protein fate 13 others
07 cellular transp. & transp. mech.
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ance values (area under ROC curve) are shown: the result
reported in [1] (depicted solely as vertical bars since no
variance measurements are provided) and the two meas-
UIeS AUCyeighied AN aicy/1 for our multilabel approach
(represented as box-plots). Each of the latter two signifi-
cantly outperforms the former in most classes (marked
red). The measure auc,/1 shows an improved median per-
formance in all classes (some are probably not significant,
marked orange), auc,igneq has worse performance in 2
classes (probably not significant, light blue). A control
experiment in which we used only the 8 "basis" kernels
yielded a slightly lower performance.

The improvement obtained by using the enlarged kernel
set becomes more obvious when computing the F1-meas-
ure which is the harmonic mean of precision and recall. The
latter are similar to but different from the axes of ROC
curves which encode fallout and recall. Precision is the
probability that a predicted category is a true category,
whereas fallout is the probability that a true absence of a
category was labeled a false positive presence. Since the
definite absence of a certain protein function can be
hardly validated experimentally, the estimated fallout rate
will strongly depend on the actual status of experimental
coverage. The precision measure, on the other hand, does
not so severely suffer from this problem, since the number
of present categories might be estimated more reliably
even with a small number of carefully designed experi-
ments.

To compute the F1 statistics for a given threshold 7zin eq.
(9), we select for each gene the k most probable multila-
bels such that the sum of the k largest membership prob-
abilities exceeds 7. We then compute precision and recall up
to the rank k and combine both to the F1-measure. Varia-
tion of ryields a complete precision-recall-F1-curve. With
the enlarged kernel set the maximum FI1 value increases
significantly, as can be seen in the two leftmost boxplots
in Figure 1.

Figure 4 depicts the learned kernel weights. Each box con-
tains 4 bins corresponding to the original kernels from [1]
and three Gaussian RBF kernel variants with decreasing
kernel width. It is of particular interest that a RBF variant
of the genetic interaction kernel K, attains the highest
weight, whereas the original diffusion kernel K,,; on the
interaction graph seems to contain almost no discrimina-
tive information (consistent with [1] where K, is the
least important kernel). The reason for the improved per-
formance of the RBF kernel variant might be the local
nature of the Gaussian kernel function. A diffusion kernel
encodes transition probabilities for a random walk model
on a graph G. In the light of this random walk interpreta-
tion, the steep decay of the Gaussian kernel accentuates
the local graph structure.

http://www.biomedcentral.com/1471-2105/8/S2/S12

Functional classes and subcellular localization

For the yeast genome MIPS CYGD provides a classifica-
tion scheme with respect to subcellular localization of the
proteins, see Table 2. We combine both the functional
and the localization-based scheme by way of the hidden
Markov model (HMM) described in the methods section
below. The corresponding automaton model is depicted
in Figure 5. The first layer contains 20 emitting nodes cor-
responding to the top-level localization classes in Table 2.
The transition probabilities are estimated from a training
set by counting the occurrences of paths in the model. In
order to highlight the essential graph structure, only the
transitions with probability above 0.1 are shown. Note
that several localization nodes have dominant transitions
to only one or two functional nodes, see e.g. node "750"
(nucleus) which has a strong prior for class "04" (transcrip-
tion), the pair "730" (cytoskeleton) and "03" (cell cycle &
DNA processing), or "745" (transport vesicles) which
strongly votes for functional class "07" (cellular transport &
transport mechanism).

In order to evaluate the possible advantages of the com-
bined localization-function classifier, we again conducted
a cross-validation experiment in which both sets of labels
were predicted. According to the results summarized in
the left panel of Figure 1, the inclusion of the prediction
step for the subcellular localization of a protein indeed
improves the prediction of its function.

Towards a "local" model: pairwise kernel weights

While all previous models find a common set of kernels
for all classes, the pairwise coupling approach described
in the methods section couples pairwise classifiers which
find individual kernel weights that are optimal for the
"local" problem of separating only two classes. These pair-
wise classifiers can again learn class correlations induced
by objects with multiple labels.

The rightmost boxplot in the left panel of Figure 1 shows
that this "local" model significantly improves the predic-
tive power of the HMM-based classifier. The right panel
depicts the evolution of precision, recall and F1 under var-
iation of the threshold 7in eq. (9).

Figure 6 shows two examples of the learned kernel
weights in the 78 individual two-class models for the 13
functional classes which nicely demonstrate the adaptive-
ness of the pairwise approach: while for the separation of
the classes metabolism and control of cellular organization the
combination of Smith-Waterman sequence alignment
kernels ("SW") and protein interaction kernels ("mpi")
have a main role, the separation of classes energy and pro-
tein synthesis is dominated by gene expression information
("exp") and protein domain structure ("pfam"). A closer
analysis of all 78 classifiers shows some general trends, for
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Performance evaluation. Performance Evaluation for the |13 functional classes of yeast proteins. From left to right: results

from [1], AUC yeighee

performance (unclear significance).

qand aucy/1. Red: significant improvements; orange: improvements of unclear significance; light blue: worse

instance the importance of gene expression kernels when-
ever one of the classes energy or protein synthesis is
involved.

Conclusion

While kernel-based classifiers have been successfully
applied to a variety of prediction tasks, their main draw-
back is the lacking interpretability of the decision func-
tions. One attempt to overcome this shortcoming is to
find a weighted combination of multiple kernels, each of
which represents a different type of measurement. The
idea is that sparse kernel combinations allow the user to
identify the relevant influence factors for a given task. In
this work, the problem of learning such sparse kernel
combinations has been addressed by reformulating classi-
fication as an indicator regression problem using adaptive
ridge penalties. While the standard adaptive ridge model
presented in [11] selects individual input features, our

extensions concerning weight sharing and kernelization lead
to a nonlinear model that finds sparse combinations of
kernel matrices. A probabilistic treatment of multiple labels
allows us to apply the classifier to tasks in which the input
objects can belong to more than one category. The effect
of multilabels can be intuitively understood as shrinking
the centroids of classes which share many multilabeled
objects towards their average centroid, thus favoring co-
prediction of these classes.

The method has been applied to the problem of predict-
ing the function of yeast proteins which defines a classical
multilabel setting. From the experiments we conclude that
our model compares favorably to the approach in [1].
Two aspects seem to be of particular importance: on the
modeling side, our approach directly exploits the multila-
bel structure of the problem, rather than ignoring class
correlations.
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Concerning the computational aspects, the efficiency of
the method allows us to easily enlarge the set of kernels:
as long as one single matrix can be hold in the main mem-
ory, the algorithm is highly efficient. For yeast proteins,
the use of additional kernels has e.g. lead to the insight
that genetic interactions are highly discriminative for
functional predictions.

Aiming at a still higher classification rate and at more
detailed information about the relevance of kernels, we
have introduced two further modifications: extending the
multilabel classifier to a two-layer hidden Markov model
(HMM) allows us to combine two different labeling
schemes. Multilabel prediction in the HMM naturally
translates to reconstructing multiple paths through a
graph. It could be shown that the prediction of the subcel-
lular localization of a protein in the first layer helps to
identify its functional class in the second layer, the reason
for this improvement being the strong correlation of
nodes in both layers. Localization in the transport vesicles,

for instance, gives a strong prior for having a role in the
functional class cellular transport & transport mechanism.

The second modification concerns the transition from a
single "global" prediction model to several "local" models
which focus on the separation of pairs of classes only. The
estimated pairwise membership probabilities are coupled
to a consistent set of assignment probabilities over all
classes. Using the pairwise classifiers as "building blocks"
in the HMM offers the advantage of increased adaptive-
ness, since the kernel weighting can focus on the individ-
ual requirements for separating one class from another.
This approach leads not only to a significantly increased
classification performance, but it also gives a much more
detailed picture on the importance of different data
sources for predicting protein function.
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The hidden Markov model. The hidden Markov model. Combined graph for subcellular location classes (upper layer) and
functional classes (lower layer). Joint predictions of these two entities means finding (multiple) paths through the graph from
begin to end. The nodes in the two layers encode the values of the hidden random variables location class and functional class, see
also Figure 2. The arrows between the nodes encode "transition" probabilities which are estimated by frequency counts on a
training set. For highlighting the main structure of this graph, only transition probabilities with p > 0.1 are shown. Width and
color of the arrows encode these probabilities: > 0.8 yellow, > 0.6 blue, > 0.4 green, > 0.2 red. For instance, the yellow arrow
between the nodes "745" and "07" means that more than 80% of the proteins with subcellular localization transport vesicles
belong to the functional class cellular transport & transport mechanism.
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Kernel weights for the pairwise model. Kernel weights for the pairwise model. Left: separating classes metabolism and con-
trol of cellular organization. Right: classes energy and protein synthesis. The kernels are arranged in groups according to their ori-
gin: genetic interaction (mgi), prot.-prot. interaction (mpi), domain structure (pfam) string alignments (SW), protein complexes
(tap) and gene expression (exp). The 8 gene expression RBF kernels represent the data in [16-20] and three RBF kernel vari-
ants of the data in [21] (left to right).
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