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Abstract
Background: Peptidases are proteolytic enzymes responsible for fundamental cellular activities in
all organisms. Apparently about 2–5% of the genes encode for peptidases, irrespectively of the
organism source. The basic peptidase function is "protein digestion" and this can be potentially
dangerous in living organisms when it is not strictly controlled by specific inhibitors. In genome
annotation a basic question is to predict gene function. Here we describe a computational approach
that can filter peptidases and their inhibitors out of a given proteome. Furthermore and as an added
value to MEROPS, a specific database for peptidases already available in the public domain, our
method can predict whether a pair of peptidase/inhibitor can interact, eventually listing all possible
predicted ligands (peptidases and/or inhibitors).

Results: We show that by adopting a decision-tree approach the accuracy of PROSITE and
HMMER in detecting separately the four major peptidase types (Serine, Aspartic, Cysteine and
Metallo- Peptidase) and their inhibitors among a non redundant set of globular proteins can be
improved by some percentage points with respect to that obtained with each method separately.
More importantly, our method can then predict pairs of peptidases and interacting inhibitors,
scoring a joint global accuracy of 99% with coverage for the positive cases (peptidase/inhibitor)
close to 100% and a correlation coefficient of 0.91%. In this task the decision-tree approach
outperforms the single methods.

Conclusion: The decision-tree can reliably classify protein sequences as peptidases or inhibitors,
belonging to a certain class, and can provide a comprehensive list of possible interacting pairs of
peptidase/inhibitor. This information can help the design of experiments to detect interacting
peptidase/inhibitor complexes and can speed up the selection of possible interacting candidates,
without searching for them separately and manually combining the obtained results. A web server
specifically developed for annotating peptidases and their inhibitors (HIPPIE) is available at http://
gpcr.biocomp.unibo.it/cgi/predictors/hippie/pred_hippie.cgi
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Background
Peptidases (proteases) are proteolytic enzymes essential
for the life of all organisms. The relevance of peptidases is
proved by the fact that 2–5% of all genes encode for pepti-
dases and/or their homologs irrespectively of the organ-
ism source [1]. In the SwissProt database [2] about 18% of
sequences are annotated as "undergoing proteolytic
processing", and there are over 550 known and putative
peptidases in the human genome. It is also worth noticing
that more than 10% of the human peptidases are under
investigation as drug targets [3]. Proteases are responsible
for a number of fundamental cellular activities, such as
protein turnover and defense against pathogenic organ-
isms. Since the basic protease function is "protein diges-
tion", these proteins would be potentially dangerous in
living organisms, if not fully controlled. This is one of the
major reasons for the presence of their natural inhibitors
inside the cell. All peptidases catalyze the same reaction,
namely the hydrolysis of a peptide bond, but they are
selective for the position of the substrate and also for the
amino acid residues close to the bond that undergoes
hydrolysis [4,5]. There are different classes of peptidases
identified by the catalytic group involved in the hydrolysis
of the peptide bond. However the majority of the pepti-
dases can be assigned to one of the following four func-
tional classes:

• Serine Peptidase

• Aspartic Peptidase

• Cysteine Peptidase

• Metallopeptidase

In the serine and cysteine types the catalytic nucleophile
can be the reactive group of the amino acid side chain, a
hydroxyl group (serine peptidase) or a sulfhydryl group
(cysteine peptidase). In aspartic and metallopeptidases
the nucleophile is commonly "an activated water mole-
cule". In aspartic peptidases the side chains of aspartic res-
idues directly bind the water molecule. In
metallopeptidases one or two metal ions hold the water
molecule in place and charged amino acid side chains are
ligands for the metal ions. The metal may be zinc, cobalt
or manganese, and a single metal ion is usually bound by
three amino acid ligands [3]. Among the different ways to
control their activity, the most important is through the
interactions of the protein with other proteins, namely
naturally occurring peptidase inhibitors. Peptidase inhib-
itors can or cannot be specific for a certain group of cata-
lytic reactions. In general there are two kinds of
interactions between peptidases and their inhibitors: the
first one is an irreversible process of "trapping", leading to
a stable peptidase-inhibitor complex; the second one is a

reversible process in which there is a tight binding reac-
tion without any chemical bond formation [4,6-8]. A shift
of interest towards the mode of interaction of protein
inhibitors with their targets is due to the possibility of
designing new synthetic inhibitors. The research is driven
by the many potential applications in medicine, agricul-
ture and biotechnology.

In the last years, an invaluable source of information
about proteases and their inhibitors has been made avail-
able through the MEROPS database [9], so that it is possi-
ble to search for known peptidase sequences (or
structures) or peptidase-inhibitor sequences (or struc-
tures). Exploiting this source, in this paper we address the
problem of relating a peptidase sequence (or inhibitor)
with sequences that can putatively but reliably inhibit it
(or proteases that can be inhibited by it). To this aim we
implemented a method that first and reliably discrimi-
nates whether a given sequence is a peptidase or a pepti-
dase-inhibitor, and afterwards gives a list of its putative
interacting ligands (proteases/inhibitors). Our method
provides answers to the following questions:

1) Given a pair of sequences, are they a pair of protease
and inhibitor that can interact?

2) Given a protease (or inhibitor), can we predict the list
of the proteins in a defined database that can inhibit (or
be inhibited by) the query protein?

3) Given a proteome, can we compute the list of pepti-
dases and their relative inhibitors for each protease class?

Results and discussion
Testing PROSITE and HMMER-Pfam capability of 
detecting MEROPS peptidases and inhibitors
The first step of our analysis is to evaluate the performance
of PROSITE [10] on data sets of proteases and inhibitors,
as derived from MEROPS [1,3,4,9]. Our method focuses
on the four major classes of peptidases and their inhibi-
tors as identified by the catalytic group involved in the
hydrolysis of the peptide bond: Serine, Aspartic, Cysteine
and Metallo- peptidases. In MEROPS there are annota-
tions for 38 peptidase patterns and 20 inhibitor patterns.
We adopted peptidases and inhibitors as annotated in
MEROPS as the positive class (2793 peptidases and 1209
inhibitors). The negative counterpart was taken from
PAPIA [11], and comprises non-inhibitor and non-pepti-
dase non homologue sequences (2091 sequences) (see
"Data sets" section). We start by running PROSITE on the
PAPIA+MEROPS data sets. PROSITE can or cannot find a
correct match. If a known inhibitor (peptidase) sequence
is matched by a PROSITE inhibitor (peptidase) pattern we
count it as a True Positive (TP), otherwise it is labeled as a
False Negative (FN). Conversely, PAPIA sequences having
Page 2 of 8
(page number not for citation purposes)



BMC Bioinformatics 2007, 8(Suppl 1):S3 http://www.biomedcentral.com/1471-2105/8/S1/S3
a match with a PROSITE inhibitor (peptidase) pattern are
False Positives (FP); otherwise they are True Negatives
(TN).

In Table 1 the results obtained by filtering the PROSITE
and the PAPIA+MEROPS data sets are listed. It is worth
noticing that the PROSITE pattern search produces almost
zero False Positives on the MEROPS+PAPIA data set,
although with a significant number of False Negatives.
This indicates that the method has a quite high specificity,
but low coverage. In other words, a match has a high like-
lihood to be a true positive (high specificity); however due
to the low coverage (61%, Table 1), still a non-match label
may indicate a false negative (with a likelihood of 14%
and 34% for inhibitors and peptidases, respectively).

In Table 2 we report the same type of analysis using
HMMER-Pfam [12]. From the results it is evident that on
average this method outperforms PROSITE. Our finding is
in agreement with early observations indicating that Pfam
is a better detection method than PROSITE [13]. We find
that Pfam is more balanced than PROSITE, although with
a slightly lower specificity (Table 1, 2).

The decision-tree method
The high level of PROSITE specificity prompted us to
combine this pattern matching procedure with HMMER-
Pfam by adopting a decision-tree method in order to take
advantage of the features of both approaches (as
described in Methods and shown in Figure 1). The results
of the combined approach (as depicted into the flow chart
of Figure 1) are then listed in Table 3. It appears that the
overall performance is slightly improved over HMMER-
Pfam alone. This is so particularly when the coverage of
the positive class (Q [pos]) is considered.

Detection of possible protease-inhibitor interacting pairs
The most relevant issue addressed by this paper is the
measure of the detection accuracy of possible peptidase-
inhibitor interacting pairs. The idea is to address ques-
tions related to the putative peptidase/inhibitor interac-
tion (or combined discriminative efficacy). In order to test
the combined accuracy of our decision-tree with respect to
the PROSITE and HMMER-Pfam methods, we have taken
all the possible sequence combinations of our selected
data set, namely peptidase/inhibitor, peptidase/PAPIA,
inhibitor/PAPIA, peptidase/peptidase, inhibitor/inhibi-
tor, PAPIA/PAPIA, excluding the self-combinations (a
sequence against itself). By adopting this procedure we
ended up with 18,559,278 pairs that were scored as
described below.

We divided MEROPS peptidase sequences in four classes
according to their biological activity: Aspartic (A),
Cysteine (C), Metallo (M) and Serine (S) peptidases. We
labeled the inhibitors in the same way, with the exception
that one more class is present for them, labeled as U; this
set clusters all the inhibitors that are able to inhibit to
some extent all types of peptidases (the so called Univer-
sal inhibitors).

Among the 18,559,278 possible pairs only those pairs
pertaining to proteases and inhibitors of the same class
are counted as members of the positive class (amounting
only to 7 % of all possible pairs). All the remaining pairs
are labeled as negative examples. On this data set we
tested PROSITE, HMMER-Pfam and the combined deci-
sion-tree (Figure 2). We also tested the reverse decision-
tree in which HMMER and PROSITE are swapped (alter-
native combinations are equivalent). In Table 4 it is
shown that despite of the fact that the overall accuracy
(Q2) is very high for all methods, the decision-tree out-
performs all the others as the increased values of all scor-
ing indexes indicate. Actually, the decision-tree approach

Table 2: HMMER-Pfam discriminating capability towards MEROPS proteases and inhibitors For definition see Scoring indexes.

Data sets Q2 Q [pos] Q [neg] P [pos] P [neg] C

MEROPS (proteases)/PAPIA(sequences) 0.94 0.93 0.98 0.98 0.92 0.91
MEROPS (inhibitors)/PAPIA (sequences) 0.93 0.83 0.99 0.98 0.91 0.85

For definition see Scoring indexes

Table 1: PROSITE discriminating capability towards MEROPS proteases and inhibitors.

Data sets Q2 Q [pos] Q [neg] P [pos] P [neg] C

MEROPS (proteases)/PAPIA(sequences) 0.78 0.61 1 1 0.66 0.63
MEROPS (inhibitors)/PAPIA (sequences) 0.90 0.73 1 1 0.86 0.79

For definition see Scoring indexes
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shows the highest coverage and accuracy for both the
peptidase-inhibitor interacting class and the negative set.
It is also worth noticing that the correlation coefficient
(C), that indicates the displacement from the random pre-
diction, is very high for the decision-tree and it outper-
forms the second best method (HMMER) of 9 percentage
points, with a false positive rate close to 0 (100-Q
[neg]x100). This finding indicates that the decision-tree
method can successfully be adopted to predict pairs of
interacting peptidase/inhibitor, in order to sort out the
subsets of possible interacting pairs of interest.

Annotating peptidases and their inhibitors in Human and 
Mouse genomes
We applied the decision-tree method scored above to per-
form a large-scale genome annotation of peptidases and
corresponding inhibitors of the Human and Mouse pro-
teomes. We retrieved all known coding sequences and
novel peptides from Ensembl35 [November 2005] [14].
The Human proteome consists of 33,869 sequences; the

Mouse proteome contains 36,471 sequences. The deci-
sion- tree method is compared with PROSITE and
HMMER-Pfam in singling out peptidases and inhibitors
(Table 5 and 6, respectively). The predictive performance
of the decision-tree method in predicting putative pairs of
peptidase/inhibitor for each major class of both pro-
teomes is reported in Table 7. Our results corroborate the
view that among peptidases, the Aspartic class is less pop-
ulated than the other three and this is so in both pro-
teomes. For inhibitors, the less populated classes are
Aspartic, Cysteine and Universal.

Web server
In order to facilitate the user's search for protease/inhibi-
tor interactions, we implemented a very simple web inter-
face that exploits our developed decision-tree system. In
practice it is possible to paste a sequence and the system
checks whether that sequence is a protease or an inhibitor
candidate. If the decision-tree returns a positive answer
the server will provide the putative class among the four
and the list of all possible known inhibitors (or proteases
that might be inhibited by the query sequence). Further-
more, the web server furnishes also the corresponding lists
of possible ENSEMBL protease-codes (or inhibitor-codes)
of the Human and Mouse proteomes that belong to the
predicted class of proteins and that can interact with the
query sequence.

The server is available at [15].

Conclusion
In this paper we developed a decision-tree based method
that exploits the features of PROSITE and HMMER-Pfam
in annotating peptidases and inhibitors and that is capa-
ble of correctly and reliably predict whether a given pepti-
dase can or cannot interact with an inhibitor. The
decision-tree discriminates peptidases or inhibitors with a
score as high as 96% (97%) of correct predictions,
improving both the coverage and the specificity of the
positive class (pairs peptidase/inhibitor of the same class
and pairs peptidase/Universal inhibitor) over PROSITE
and HMMER-Pfam. Furthermore the decision-tree
method is capable of predicting if a given protein pair is a
pair of protease and inhibitor that can interact. This task
can help in sorting out and speeding up the selection of
possible interacting partners. Given a protease or an
inhibitor the decision-tree method computes the list of

Table 3: Decision-Tree discriminating capability towards MEROPS proteases and inhibitors.

Data sets Q2 Q [pos] Q [neg] P [pos] P [neg] C

MEROPS (proteases)/PAPIA(sequences) 0.96 0.93 1 1 0.91 0.92
MEROPS (inhibitors)/PAPIA (sequences) 0.97 0.94 0.99 0.99 0.97 0.95

For definition see Scoring indexes

Flow-chart of the decision-tree method for the detection of peptidases and inhibitorsFigure 1
Flow-chart of the decision-tree method for the detection of 
peptidases and inhibitors.
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Flow-chart of the decision-tree method for the detection of possible peptidases/inhibitors interacting pairsFigure 2
Flow-chart of the decision-tree method for the detection of possible peptidases/inhibitors interacting pairs. Each of the two 
input sequences is searched against Prosite and, in case of negative answer, against HMMER-Pfam. In both cases, when there is 
a match, the decision-tree method checks for the presence of multiple matches (patterns or models respectively). If there is a 
match, the method gives a positive answer for each sequence and only the peptidase and inhibitor sequences of the same class 
K (A, C, M, S, U) are classifed as possible interacting pairs.
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the proteins in a defined database that can inhibit or that
can be inhibited by the query protein. Finally, given a pro-
teome the system provides the lists of peptidases and their
relative inhibitors for each discriminated class.

Methods
The data sets
MEROPS database, hosted at the Sanger Institute [1,3,4],
is the main resource of information on peptidases and
their natural and synthetic inhibitors [9]. In this paper we
refer to the 7.10 Merops release (22/07/2005) that con-
tains 30909 peptidase sequences (including homologs)
and 3690 inhibitor sequences (including homologs). We
downloaded all data with the exclusion of sequences
unassigned to any family. We then ended up with a set
that contains chains of 167 protease families and 52
inhibitors families. We retained only the most abundant
MEROPS functional classes: Serine, Aspartic, Cysteine and
Metallo- peptidases.

From the MEROPS database we removed all sequences
belonging to Threonin and Glutamic classes and the
sequences of unknown catalytic type because for these
groups no natural inhibitors are known. Our final pepti-
dase set contains 2793 protein sequences. We also filtered
out the inhibitor data set removing the family sequences
that have an auto-inhibitory peptide at the N-terminus.
Actually, these are peptidases with self-inhibitory peptides
(I09 and I29 families). The inhibitor data set contains
1209 protein sequences. These two data sets represent the
positive examples class for our classification method.

As a negative data set we have taken a non-redundant set
of representative protein structures, of known function
and not including peptidases and their inhibitors. This set
was extracted from PAPIA (PArallel Protein Information
Analysis system) [11]. The final PAPIA-derived set consists
of 2091 protein chains.

The decision-tree method
In order to predict if pairs of peptidase and inhibitor
belong to the same class, we developed a system that per-
forms two consecutive tasks: 1) extracts protease and
inhibitor sequences from a given data set; 2) tests if they
are compatible (if the inhibitor can interact with the pro-
tease). In order to solve this problem, we implemented a
decision-tree method that processes the information
obtained from PROSITE [10] and HMMER-Pfam [12,13]
and detects if a query sequence could be annotated as
peptidase or inhibitor. We selected PROSITE and Pfam
since they are highly reliable methods for a classification
task (see results).

PROSITE is a database of protein families and domains. It
consists of biologically significant sites, patterns and pro-
files that help to reliably identify to which known protein
family (if any) a new sequence belongs. We scanned all
the data set against the PROSITE database (release 26/04/
2005) with the "ps_scan" tool. Since we are interested in
the detection of the presence/absence of patterns in the
sequences, we used ps_scan for this task. We also set the
options of skipping profiles and frequently matching pat-
terns (unspecific) [10].

Table 5: Detection of proteases and inhibitors in the Human proteome.

Peptidases Inhibitors

A C M S TOT A C M S U TOT

Prosite 40 171 192 227 630 0 45 4 147 24 220
Pfam 164 575 626 698 2063 10 67 1099 446 52 1674
Decision-tree 183 600 654 735 2172 10 81 1099 501 68 1759

The different classes discriminated are: A = Aspartic-peptidase or inhibitor; C = Cysteine-peptidase or inhibitor; M = Metallo-peptidase or inhibitor; 
S = Serine-peptidase or inhibitor; U = Universal family of inhibitors.

Table 4: Scoring the detection of possible protease-inhibitor interactions with different methods.

Methods Q2 Q [pos] Q [neg] P [pos] P [neg] C

Prosite 0.96 0.44 1 1 0.96 0.67
Hmm-Pfam 0.97 0.82 0.99 0.84 0.98 0.82
Decision-Tree 0.99 0.89 1 0.95 0.99 0.91
Reverse Decision-
Tree

0.90 0.82 0.99 0.84 0.99 0.80

For definition of the statistical indexes see Scoring indexes
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Pfam is a large collection of multiple sequence alignments
and hidden Markov models covering many common pro-
tein domains and families [12]. Pfam is a database con-
sisting of two parts, the first is the curated part of Pfam-A
containing over 7,973 protein families, and the second is
Pfam-B automatically generated for a more comprehen-
sive coverage of known proteins. We downloaded a copy
of the Pfam database (22/08/2005) and we used the
HMMER package to search our protein sequence data set
against the Pfam-A models. The Pfam library contains all
local Pfam-A HMMs in a HMMER searchable format. We
run the "hmmpfam" program to search for matches to a
query sequence and the Pfam model of interest. The Pfam
models annotated in MEROPS specific for our classes are
145, and 36 for proteases and inhibitors, respectively. If a
sequence matches more than one model we consider the
model with highest score and lowest e-value as the best.

The basic engine is described in the flow-chart of Figure 1,
where for a given input sequence, we first look for
PROSITE matching, and then in case of negative answer,
we proceed using a profile-HMM scanning (HMMER-
Pfam). From Figure 1, it is clear that if a PROSITE match
is found, no more search is carried out. This works only if
the first method has a high specificity (even when the sen-
sitivity is low).

In order to predict whether a pair of sequences can be a
peptidase and an inhibitor of the same class we run the
decision-tree twice: first with the PROSITE and Pfam

parameters relative to the peptidase search, and second
adopting the model and the regular expressions corre-
sponding to the inhibitors.

Scoring indexes
All the results are evaluated using the following measures
of efficiency. The fraction of correctly predicted residues
is:

Q2 = (TP+TN)/(TP+TN+FP+FN)

where TP and TN, FP and FN are respectively: the number
of true positives, true negatives, false positives and false
negatives.

The correlation coefficient is defined as:

cor = [TP*TN - FP * FN]/D

where D is the normalization factor

D = [(TP+FP)(TP+FN)(TN+FP)(TN+FN)]1/2

The coverage or the sensitivity for the positive and nega-
tive classes is defined as:

Q[pos] = TP/[TP+FN]

Q[neg] = TN/[TN+FP]

Table 7: Detection of peptidase/inhibitor pairs in the Human and Mouse proteomes.

Proteome AA CC MM SS AU CU MU SU TOTAL

Human 1830 48600 718746 368235 12444 40800 44472 49980 1285107 
(0.2 %)*

Mouse 3488 60333 802125 350591 15260 46410 49910 48790 1376907 
(0.2%)*

AA = Aspartic peptidase/Aspartic peptidase inhibitor pairs; CC = Cysteine peptidase/Cysteine peptidase inhibitor pairs; MM = Metallo-peptidase/
Metallo-peptidase inhibitor pairs; SS = Serine peptidase/Serine peptidase inhibitor pairs; AU = Aspartic peptidase/Universal peptidase inhibitor pairs; 
CU = Cysteine peptidase/Universal peptidase inhibitor pairs; MU = Metallo-peptidase/Universal peptidase inhibitor pairs; SU = Serine peptidase/
Universal peptidase inhibitor pairs.
* percentage of all the possible sequence pairs (573.537.646 and 665.048.685, for Human and Mouse genomes, respectively)

Table 6: Detection of proteases and inhibitors in the Mouse proteome.

Method Peptidases Inhibitors

A C M S TOT A C M S U TOT

Prosite 96 181 234 242 753 0 59 4 171 21 255
Pfam 202 636 650 658 2146 16 84 1125 453 64 1742
Decision-tree 218 663 713 697 2291 16 91 1125 503 70 1805

For labels see Table 5.
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The probability of correct predictions (accuracy or specif-
icity) is computed as:

P[pos] = TP/[TP+FP]

P[neg] = TN/[TN+FN]
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