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Abstract
Background: During gene expression analysis by Serial Analysis of Gene Expression (SAGE),
duplicate ditags are routinely removed from the data analysis, because they are suspected to stem
from artifacts during SAGE library construction. As a consequence, naturally occurring duplicate
ditags are also removed from the analysis leading to an error of measurement.

Results: An algorithm was developed to analyze the differential occurrence of SAGE tags in
different ditag combinations. Analysis of a pancreatic acinar cell LongSAGE library showed no sign
of a general amplification bias that justified the removal of all duplicate ditags. Extending the analysis
to 10 additional LongSAGE libraries showed no justification for removal of all duplicate ditags
either. On the contrary, while the error introduced in original SAGE by removal of naturally
occurring duplicate ditags is insignificant, it leads to an error of up to 3 fold in LongSAGE. However,
the algorithm developed for the analysis of duplicate ditags was able to identify individual artifact
ditags that originated from rare nucleotide variations of tags and vector contamination.

Conclusion: The removal of all duplicate ditags was unfounded for the datasets analyzed and led
to large errors. This may also be the case for other LongSAGE datasets already present in
databases. Analysis of the ditag population, however, can identify artifact tags that should be
removed from analysis or have their tag count adjusted.

Background
Serial Analysis of Gene expression (SAGE) is a global and
digital gene expression profiling method [1,2]. It relies on
three fundamental principles: (i) a short nucleotide tag
cut from a cDNA copy of an mRNA is sufficient to
uniquely identify the transcript, (ii) two tags can be
ligated together to form ditags and unambiguously ampli-
fied by PCR, and (iii) multiple tags can be concatenated

for efficient detection by DNA sequencing. The overall
reliability of SAGE has been compared to other gene
expression profiling methods such as Northern Blots [3],
real-time or kinetic PCR[4,5], and cDNA and oligo nucle-
otide micro array hybridizations [6-8]. It was generally
found that the reliability and reproducibility of SAGE is
high. Typically 70–85% of gene expression changes
observed in SAGE can be confirmed by a different method
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[4,7]. However, a potential bias introduced by amplifica-
tion of ditags was discussed already in the original SAGE
publication [1]. It was suspected that duplicate ditags, i.e.
identical copies of a ditag (AB), would occur only as an
artifact of PCR amplification. Therefore, duplicate ditags
have been removed prior to tag counting in most SAGE
studies so far, partly because of requests from reviewers
before publication.

However, duplicate ditags will be encountered naturally
with a certain frequency, depending on abundance of the
two transcripts from which the ditag is derived [8,9]. For
example, in the original SAGE protocol two blunt ended
14 nucleotide tags were ligated to form ditags. Two tags A
and B, each occurring at a frequency of 0.02 have a 0.0004
probability of being joined. Present SAGE studies typically
include 50,000 tags (25,000 ditags) leading to 10 AB+BA
ditags. However, the total count of a tag of 0.02 frequency
in 50,000 is 1000, and the error of 10 introduced by
removing the naturally occurring ditags is insignificant.
Furthermore, an algorithm to minimize this problem
(SAGEparser) was developed by Snyder and cowork-
ers[10].

However, recent developments in SAGE technology have
accentuated the problem of discarding duplicate ditags.
First, there has been a drive towards using smaller samples
for construction of SAGE libraries, facilitating the analysis
of cells with specialized functions such as pancreatic cells
obtained from biopsies [4]. Such samples may have
extreme gene expression profiles with single transcripts
accounting for 5 % of the total population of transcripts.
Second, the widespread use of the LongSAGE protocol in
which a two base pair overhang is used in the ligation of
ditags, instead of blunt ends [2]. Consequently, any Long-
SAGE tag can only form ditags with tags with a compatible
overhang, in principle reducing the number of potential
partner tags 16 fold on the average. In this paper we ana-
lyze the error introduced by discarding naturally occurring
duplicate ditags in LongSAGE and describe a probabilistic
algorithm that can distinguish naturally occurring ditags
from artifacts.

Results and discussion
A prediction of the number of duplicate ditags as a func-
tion of the abundance of the two monotags in SAGE and
LongSAGE is shown in figure 1. It illustrates the error
introduced by deleting duplicate ditags as commonly
practiced in these analyses. In original SAGE, all blunt-
ended tags can combine with all other tags and, therefore,
the number of a particular duplicate ditag AB can be pre-
dicted from equation 1. In LongSAGE, tags have a 2 nt
overhang and their ditag partner is constrained accord-
ingly. Therefore, the number of a particular LongSAGE

ditag can be estimated from equation 2, assuming an even
distribution of possible overhangs.

As can be seen in figure 1, discarding duplicate ditags
introduces a serious error for abundant tags in LongSAGE

Estimating occurrence of duplicate ditags in SAGE based on an even distribution of compatible overlapping tagsFigure 1
Estimating occurrence of duplicate ditags in SAGE 
based on an even distribution of compatible overlap-
ping tags. (A) The number of expected duplicate ditags 
(equation 1). (B) The accuracy of tag count when duplicate 
ditags were removed from the analysis. SAGE (hatched line), 
and LongSAGE (solid line).
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data analysis. For example, two abundant tags, each
present 1500 times in a typical 50,000 tag study, would
give rise to only 45 duplicate ditags in SAGE, but 720
duplicate ditags in LongSAGE. Counting duplicates only
once, as is presently done, would result in an error of 3%
for SAGE and 48% for LongSAGE. In this example we have
removed the duplicates for AB only, but in reality a partic-
ular tag A, will create duplicates with any compatible tag
B, C, D etc. at the frequency stipulated in equations 1 or 2.
If each of these duplicates is counted only once, a further
reduction of the tag count is introduced and, therefore,
the error will increase. Indeed, this simple estimate dem-
onstrates that the problem is expected to be much greater
for LongSAGE, than for conventional SAGE.

However, the assumption of equal proportions of com-
patible overhangs in LongSAGE is unrealistic. The genome
sequence is not a random distribution of nucleotides [11]
and furthermore, this would limit the maximum tag
count of any tag to 1/16 of the total tag count of the library
(e.g. 3125 in 50,000), and individual tag counts larger
than 3125 have been encountered.

The experimental dataset derived from RNA isolated from
pancreatic acinar cells by the aRNA-LongSAGE procedure
was therefore analyzed in greater detail [4]. It contains
44,276 tags before removal of duplicate ditags and 31,868
after. The unusual high numbers of duplicate ditags
reflects an extraordinary abundance of transcripts encod-
ing the enzymes of the digestive juice (table 1). Table 1
shows the 12 most abundant tags, the enzyme encoded
and the tag counts before and after removal of duplicate
ditags. Removing duplicate ditags from the dataset
reduces the tag count with up to 67% for the most abun-

dant tag. The most abundant tags are the ones most often
affected, although medium abundance tags are also signif-
icantly affected, if they are compatible with predominant
tags (see table 2, and additional file 1). In fact, only for
total tag counts (without removal of duplicate ditags) less
than 10 is the majority of tags unchanged by removal of
duplicate ditags. And 19% of medium abundance tags
(20–49) are changed at least 1.5 fold. Bear in mind, that
the error is not affecting all tags to a similar degree, while
some tags are unchanged, others may be greatly affected.
For an example, the tag count for CATGGGCGACTCT-
GGCGGCCC is 40 tags before removal and only 14 after,
a change of 3 fold [additional file 1]. Anisimov et al. have
argued that up to 5% false ditags, so-called quasi-ditags
should be removed from SAGE analyses [12]. In our case,
removing quasi-ditags has only marginal effect of the
analysis (data not shown), presumably because the error
corrected by Anisimov et al. is exclusively affecting rare
tags, whereas we are concerning with an error increasingly
affecting tags the more abundant they get.

The corrective measures suggested by Welle [9]and Snyder
[10] are both iterative approaches developed for SAGE.
Welle suggests splitting up the dataset in a number of sub-
datasets, removing duplicate ditags, and then adding
these datasets together allowing duplicates. The number
of subdatasets to be created, determining the maximal
number of duplicate ditags is a simple guess. In fact, this
method is equivalent to setting a maximal allowed ditag
count instead of excluding all. In LongSAGE, duplicate
ditag counts of several hundreds are frequently observed.
Therefore, determining a low meaningful fixed number of
duplicate ditags is not feasible. Snyder's algoritm
(SAGEparser) includes a proportion of the observed

Table 1: Abundant LongSAGE tags observed in pancreatic acinar cells.

Duplicate ditags
Includeda Removedb

Tag sequence Tag count Tag count Fold changec THCd Gene name

CATGTCAGGGTGATTCTGGTG 3315 1086 0.33 2531342 Trypsin I
CATGGCGTGACCAGCTTTGTT 2609 1161 0.44 2498325 Elastase IIIB
CATGAATTGAAGAAACTGACC 2359 713 0.30 2510696 Unknown
CATGGAGCACACCCTGAATCA 1145 657 0.57 2613307 Carboxypeptidase A1
CATGGAACACAAAAAAAAAAA 1094 535 0.49 Unknown
CATGTGCGAGACCACCCCTAT 891 461 0.52 2683646 Carboxypeptidase A2
CATGTCCTCAAAACAAAAAAA 753 377 0.50 Unknown
CATGAGCCTTGGTATCAAGAG 645 353 0.55 2462969 Cholesterol esterase
CATGTTCATACACCTATCCCC 531 177 0.33 2398611 NADH dehydrogenase
CATGCTGAATCTAAATTATAA 526 257 0.49 2590573 Alpha-amylase 2B
CATGTCCTCAAAACAATAAAA 465 252 0.54 Unknown
CATGTCCTCAAAAAAAAAAAA 431 211 0.49 Unknown

aTotal number of tags = 44,276
bTotal number of tags = 31,868
ctag count including duplicate ditags/tag count excluding duplicate ditags.
d Tentative Human Contig number from The Institute for Genomic Research
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duplicate ditags based on the abundance of the two
monotags comprising the ditag. This new tag count can
then be used to calculate a new proportion of the
observed duplicate ditags to be added. Many iterations of
this algorithm would approach the inclusion of all dupli-
cate ditags. While this algorithm includes some of the nat-
urally occurring ditags, it only works for SAGE where all
tags can form ditags with each other and does not address
whether an entire library is biased or not.

In this study, an algorithm implemented in Perl was
developed (LongSAGE_bias.pl, see methods for details)
which extracts both monotags and ditags from phred or
fasta formatted sequence files, defines the two nt over-
hang of tag pairs in the ditags, and counts and sorts these
ditags into compatible overlapping classes. Of the 44,276
tags in total, 34,464 were seen twice or more. Considering
these tags only (thus excluding most tags originating from
sequencing error) 12,408 (36%) were present in duplicate
ditags. A major complication of the analysis is the pres-
ence of most abundant tags in several forms differing in
length by one or rarely by two nucleotides. Thus a single
tag may be split into two or more compatible overlapping
classes. For this analysis, only tags between 40 and 42 nt
were considered (including the NlaIII recognition site,
CATG of both tags). These accounted for 98.6% of all dit-
ags (table 3). A 40 nucleotide ditag contains two tags in
the short form (21 nt each, as 2 nt are shared), a 41 nucle-
otide ditag one short form and one long form, and a 42
nucleotide ditag contains two tags in the long form (22 nt
each, as 2 nt are shared). The relative propensity for a tag
to appear in long or short form was calculated for each tag
without considering the 41 nucleotide ditag, as for these
ditags, we cannot know which of the two tags is present in
the long form. Likewise, the compatible overlapping class
was determined from the 40 and 42 nucleotide ditags
only, because the overlap in these tags can be unambigu-
ously identified as the two central nucleotides of the ditag.

The number of ditags in the 10 possible overlapping
classes is tabulated in table 3. The length distribution
shows a general overrepresentation of the long form.
Apparently, the tag generating restriction enzyme, MmeI,
cleaves the DNA strand 21/19 nucleotides downstream of
its recognition site twice as often as 20/18 nucleotides.
Furthermore, the true distribution among compatible
overlapping classes is far from uniform. The overlap CG
was only present in 17 ditags, whereas the AA (or TT) was
present in 3173 ditags. This is in line with the relative
dinucleotide abundance in humans, which also shows a
severe under representation of CG, whereas AA (or TT) is
more commonly observed [11]. This observation is cor-
roborated with the finding that CpG islands are predomi-
nantly found in the first exon of genes and therefore rarely
in the 3' end of transcripts mostly represented in SAGE

[13]. Analyzing the distribution of overlaps generated in-
silico from the human RefSeq v. 16 also shows a similar
tendency, albeit to a lesser extent (table 3).

The uneven distribution of compatible overhangs actually
raises the question whether a particular overhang can be
present in such a low abundance that it suppresses the
measurement of other tags due to an insufficient number
of compatible monotags. One solution to this would be to
conduct the LongSAGE experiments by blunt-ending by
T4-DNA polymerase prior to ligation of ditags, thus short-
ening the LongSAGE tags by two nucleotides [14]. An
advantage of this approach is that the error introduced by
removal of duplicate ditags is small and similar to those
indicated for SAGE (figure 1). However, in the case pre-
sented here, saturation of compatible overlaps is not the
reason for the rare occurrence of the CG overlap, as CG is
a palindrome and thus may form ditags with itself.

Two predictions are calculated for the occurrence of each
ditag (including 41 nucleotide ditags) using equation 3
(see methods and figure 2 for details). The two predictions
are often the same, but may differ for ditags containing
less abundant tags and will approach uniformity for
higher duplicate ditag counts. A plot of the predicted
numbers of ditags against the observed number of ditags
is shown in figure 3a [see additional file 2 for details]. The
slope of a linear regression analysis of the data is 1.3, in
reasonable agreement with the expected 1. However, the
Pearson product moment correlation coefficient between
the observed and the predicted is a modest 0.61.

Detection of outliers is performed by calculating stand-
ardized residuals according to equation (4) for each ditag.
Assuming normal distribution of the standardized residu-
als, the standard deviation is calculated for all ditags
observed more than once. An observation is classified as
an outlier if the standardized residual is larger than three
standard deviations (99% confidence). The standardized
residuals are plotted in figure 3b. The low number of
standardized residuals that fall outside the confidence
interval (outliers) indicates that most duplicate ditags
seem to represent true tags.

Inspection of the outliers reveals that most of these ditags
contain at least one tag ending in a nucleotide that is
inconsistent with the nucleotide sequences of the corre-
sponding Unigene found in the TIGR Human Gene Index
(see table 4), and most likely represents nucleotide varia-
tions. The overlapping class of this variant tag is inconsist-
ent with the overlapping class of the non-variant tag used
for the prediction. Obviously, the algorithm would pro-
vide erroneous predictions in these cases, since it is based
on the frequency of the non-variant monotag, which is
much higher than the frequency of the variant monotag.
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A different, rather abundant ditag was observed (86
times) much more often than predicted (8 times). BLAST
analysis of this ditag reveals that it consists of two tags
derived from the E. coli β-lactamase gene and thus is most
likely the result of vector contamination. Removing these
data points from the regression increases the Pearson cor-
relation coefficient to 0.95. Therefore, an excellent corre-
lation between the number of duplicate ditags observed
and predicted is obtained not discarding duplicate ditags.

To investigate whether this is special to this particular
dataset, we have performed the analysis on additional
datasets, five derived from potato tuber (Høgh, Emmersen
and Nielsen, unpublished) and five other libraries derived

from pancreatic tissue [4]. The analysis can be carried out
on any LongSAGE library, but becomes more precise with
more ditags included in the analysis. In our experience,
depending on the proportion of duplicate ditags present,
a minimum library size of 35,000 tags seems to be the
lower limit for a reliable analysis. In the future, exploiting
new DNA sequencing technologies, libraries larger than
150,000 tags will probably be common[15]. Varying
numbers of duplicate ditags were present in these librar-
ies, and suspicious outlier ditags were identified in all
libraries. However, in none of the libraries the duplicate
ditags were biased to an extent that justified the bulk
removal of all duplicates. Tag extractions including or
excluding duplicate ditags of the most abundant tran-

Table 2: The relationship of tag abundance and degree of change introduced by removal of duplicate ditags.

Tag count # of unique tags Observed change upon removal of duplicate ditags

>2 folda 1.5–2 folda 1–1.5 folda unchangeda

>200 19 7 (37) 8 (42) 4 (21) 0 (0)
>100–199 13 3 (23) 4 (31) 6 (46) 0 (0)
>50–99 42 2 (5) 13 (31) 27 (64) 0 (0)
>20–49 91 6 (7) 11 (12) 72 (79) 2 (2)
>10–19 179 3 (2) 16 (9) 104 (58) 56 (31)
>5–9 383 1 (0.3) 19 (5) 139 (36) 224 (58)
>2–5 2157 8 (0.4) 240 (11) 120 (6) 1789 (83)

a Fold change is calculated by dividing the total tag count with the tag count obtained after removal of duplicate ditags. Percentage of total number 
of different tags in the indicated intervals is given in parentheses.

Table 3: Summary of ditag statistics.

Pancreatic acinar cells RefSeq v.16c

Ditag lengtha Number

40 3339 N.A.
41 11329 N.A.
42 7325 N.A.
43 240 N.A.
44 61 N.A.

Overlap class Number Number

ATb 572 5172
CGb 17 1371
GCb 344 3635
TAb 161 5076
AA or TT 3173 18853
AC or GT 1784 8120
AG or CT 813 11069
CA or TG 437 10467
CC or GG 2868 8561
GA or TC 495 9315

aDitags shorter than 40 nucleotides were not extracted from sequences
bPalindromic sequences. The number of sequences compares to half the number in non-palindromic sequences.
cLongSAGEtags generated in-silico form RefSeq using 17+CATG nt tags only.
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Overview of the LongSAGE_bias.pl PERL script used for the data analysesFigure 2
Overview of the LongSAGE_bias.pl PERL script used for the data analyses. The quality threshold of sequence files 
can be set at any level desired. A high quality threshold may lead to the under representation of difficult to sequence tags. If set 
to zero all tags are included and the number of tags observed once or twice increases.
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scripts of all additional 10 libraries analyzed is shown in
[additional file 3]. The libraries are affected to a different
extent depending on the transcription profile, but all
libraries show a change of up to 1.5–2 folds among the 20
most abundant transcripts, when including or excluding
duplicate ditags [see additional file 3]. However, similar
to the pancreatic acinar library, the effect was not
restricted to high abundance tags, but was observed in
medium abundance tags as well (data not shown). The
NCBI database, SAGEdB, currently contains 625 SAGE
libraries of which 155 are LongSAGE. Unfortunately, ditag
sequences are not reported so re-analysis of existing data
will have to be carried out by the submitters which hold
the original sequence files.

Also, it is important to consider how the removal of dupli-
cate ditags influences the initial identification of a gene as

regulated in a comparison of two transcript profiles. To
assess whether this changes by exclusion of duplicate dit-
ags, we compared the pancreatic acinar library with one
derived from pancreatic ductal cells with and without the
inclusion of duplicate ditags. Excluding duplicate ditags,
122 tags was identified as statistically significantly regu-
lated (P < 0.05 with Bonferroni correction). Including
duplicates yielded 56 new tags, while three fell below the
statistical cut-off (additional 43%) (See table 5). Some of
the tags mapped to genes that are known to be highly
expressed in acinar but not ductal cells, such as variants of
the digestive enzymes chymotrypsin, trypsin and elastase.
Therefore, removal of duplicate ditags alters the interpre-
tation of LongSAGE data at least by limiting the power of
detecting changes in gene expression; thus effectively
excluding what is likely to be valid transcript changes
(false negatives) from further analysis and interpretation.

Predicted versus observed duplicate ditags in a LongSAGE study of pancreatic acinar cells [4]Figure 3
Predicted versus observed duplicate ditags in a LongSAGE study of pancreatic acinar cells [4]. Predicted ditag 
counts, two for each observed ditag, were calculated according to equation 3 (see methods for details). (A) All observed ditags 
are included. (C) Outliers, according to table 4 were removed. Standardized residuals were calculated according to equation 4. 
The confidence interval at three standard deviations is shown as lines. (B) All observed ditags are included. (D) Outliers, 
according to table 4 were removed. The recalculated confidence interval at three standard deviations is shown as lines.
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It has been found, that the cross-platform agreement of
transcriptome measurements by SAGE, LongSAGE and
DNA oligonucleotide microarrays was only modest, in
contrast to a good intra-platform reproducibility [7]. A
majority, but not all of the differentially expressed genes
identified by either method can be verified by RT-PCR
(e.g. [4] and [16]). Therefore, to maximize the accuracy of
LongSAGE and hopefully improve the cross-platform con-
sistency, it is important analyze and adjust the tag
sequences (including all duplicate ditags) for a number of
potential biases prior to mapping to database sequences.
First, linker sequences should be removed. Second, the
dataset should be tested with the present algorithm.
Duplicate ditag counts that falls within the confidence
intervals should not be adjusted. But in the case of out-
liers, these can be manually removed after careful analysis
(as in this study), or automatically adjusted to the pre-
dicted count by the algorithm to minimize the impact of
artifacts. Third, to minimize the number of false positives
identified as differentially expressed genes, artifact tags
originating from sequence errors should be resolved using
SAGEScreen [17].

Conclusion
The analyses presented here clearly demonstrate that the
present procedure of discarding all duplicate ditags can
lead to large errors in LongSAGE studies. Instead, the algo-
rithm described here should be used to test LongSAGE
datasets and identify potentially biased ditags that should
be adjusted or removed. Based on the results obtained it
is likely, that most of the transcriptome profiles present in
the databases have been artificially biased by the removal
of duplicate ditags.

Methods
Equations
Assuming that the observed tag counts (after amplifica-
tion and sequence extraction) are representative of the
actual distribution of tag molecules, the expected occur-
rence of a duplicate ditag AB in SAGE can be approxi-
mated by

where D is the number of ditags, P the probability, and T
the number of monotags observed.

D D P  D P P  DAB, pred total (AB) total (A) (B) total= ∗ = ∗ ∗ = ∗ ∗T

T
A

total

TT

T
B

total
1( )

Table 4: Comparison of outlier ditags with the matched database sequences.

Obs Pred Tag structure THCa Gene name

34 970 CATGGAGCACACCCTGAATCACACCAGAATCACCCTGACATG
CATGGAGCACACCCTGAATCAC 2401106 Carboxypeptidase

CCACCAGAATCACCCTGACATG 2434341 Trypsin I
17 289 CATGGTGTGTGCTGGAGGGTACACCAGAATCACCCTGACATG

CATGGTGTGTGCTGGAGGGTAC 2431718 Elastase IIIA
CCACCAGAATCACCCTGACATG 2434341 Trypsin I

14 913 CATGTCAGGGTGATTCTGGTGAGGAAGCCCACACAGAACATG
CATGTCAGGGTGATTCTGGTGG 2434341 Trypsin I

AAGGAAGCCCACACAGAACATG 2434342 Trypsin I
13 641 CATGACGCTGGACGCTCCAAGCACCAGAATCACCCTGACATG

CATGACGCTGGACGCTCCAAGC 2407612 Colipase
CCACCAGAATCACCCTGACATG 2434341 Trypsin I

9 101 CATGTCAGGGTGATTCTGGTGTGATTGCCGAGCCAGAGCATG
CATGTCAGGGTGATTCTGGTGG 2434341 Trypsin I

GTGATTGCCGAGCCAGAGCATG 2237360 Phospholipase A2b

4 127 CATGTCAGGGTGATTCTGGTGCTGGCGCTTCTGACCATCATG
CATGTCAGGGTGATTCTGGTGG 2434341 Trypsin I

GCTGGCGCTTCTGACCATCATG 2401106 Carboxypeptidase c

4 85 CATGACGCTGGACGCTCCAAGTGATTCAGGGTGTGCTCCATG
CATGACGCTGGACGCTCCAAGC 2407612 Colipase

GTGATTCAGGGTGTGCTCCATG 2401106 Carboxypeptidase
2 267 CATGGAGCACACCCTGAATCAAACAAAGCTGGTCACGCCATG

CATGGAGCACACCCTGAATCAC 2401106 Carboxypeptidase
AAACAAAGCTGGTCACGCCATG 2254617 Elastase IIIB

86 8 CATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATG
CATGACAGTAAGAGAATTATGC β-lactamase

GCAGTGCTGCCATAACCATG Inv. β-lactamase

aTentative Human Contig number from The Institute for Genomic Research (TIGR).
bThe match to Phospholipase A2 is not perfect (GTGATTGCCGAGCCAGAGCACG)
cThe tag matches an inverted sequence from carboxypeptidase.
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Table 5: Additional transcript changes detected between pancreatic acinar and ductal cells by including duplicate ditags.

Tag Acinar Ductal P-value Transcript IDa Gene Name

CATGGGCGACTCTGGCGGCCC 40 0 6.72E-13 THC2268952 Chymotrypsinogen B
CATGGAGCACACCCTGAATCC 39 0 1.4E-12 unknown
CATGCCTGTAATCCCAGCTAC 20 95 1.23E-11 W85818
CATGCCTAGCTGGATTGCAGA 26 104 5.89E-11 BU542624
CATGAAAGTCTAGAAATAAAA 3 41 3.62E-09 THC2400275 full-length cDNA clone CS0DC017YH08
CATGCACAAACGGTAGTTTTG 187 110 3.78E-09 AV744668
CATGTGTGCTAAATGTGTTCG 69 22 5.56E-09 BF089871
CATGTTCTGTGTGGGCTTCCC 27 0 8.83E-09 unknown
CATGTGCATCTGGTGTAGGAA 33 103 1.49E-08 BU626127
CATGGGGTTGGCTTGAAACCA 2 35 1.72E-08 BG756271
CATGCACCTCCCACCGGCCGT 26 0 1.82E-08 THC2457279 Elastase 2B
CATGCTAAGACTTCACCAGTC 58 145 2.1E-08 BU674671
CATGGTAAGTGTACTGGAAAG 33 4 3.3E-08 THC2400569 Human mitochondrial genes
CATGAATCCTTGCCTCCCTCA 25 1 3.74E-08 BI791939
CATGGGAACAAACAGATCGAA 6 44 6.7E-08 NP922813 CD24 protein
CATGGTAATTTAAACAATGAA 0 29 7.31E-08 THC2336784 Integrin beta-6 precursor
CATGTCCCCGTGGCTGTGGGG 1 29 7.31E-08 AV700058
CATGTGCCCTCAGGAAAAAAA 0 29 7.31E-08 THC2244374 Neutrophil gelatinase-associated lipocalin
CATGGAACACAAAAAAAAAGA 24 0 7.68E-08 unknown
CATGTGGCTTCAAGCCACCAG 28 89 8.5E-08 BF987687
CATGCCAAACGTGTAACAATT 7 46 8.61E-08 CV350470
CATGACAGTAAGAGAATTATG 87 39 1.11E-07 unknown
CATGCTGTACAGACACCACCA 0 28 1.33E-07 BG151226
CATGGTAAATTTAAAAAAAAA 1 28 1.33E-07 unknown
CATGAGTTGAAGAAACTGACC 23 0 1.57E-07 unknown
CATGGTTATGGCAGCACTGCA 86 39 1.64E-07 unknown
CATGGGTGGTGTCTGAGAGGC 0 27 2.41E-07 THC2256155 gastrointestinal glutathione peroxidase 2
CATGTTCATTATAATCTCAAA 8 46 2.72E-07 BG025220
CATGCATCTTCACCAGCAGCT 4 36 2.75E-07 CD240368
CATGCTGCTTGGTGAACAATC 4 36 2.75E-07 THC2247807 Neutral and basic amino acid transport protein
CATGTATGACTTAATAAATCC 2 30 3.01E-07 AA506911
CATGCTTGTGAACTGCACAAC 0 26 4.38E-07 AA343639
CATGGAAATTTAAAGCAGGTT 2 29 5.31E-07 THC2272041
CATGCCAGAACAGACTGGTGA 19 67 5.89E-07 CD240292
CATGCCAGGGTGATTCTGGTG 21 0 6.58E-07 THC2434375 Trypsin II
CATGGTGTGCGCTGGGGGCGT 21 0 6.58E-07 unknown
CATGGATTGAAGAAACTGACC 21 0 6.58E-07 unknown
CATGTGTCCACCATCTCTCTG 21 0 6.58E-07 THC2434352 Trypsinogen C
CATGGCGTGACCAGCTTTGTG 21 1 6.58E-07 unknown
CATGAGCCACTGCGCCCAGCC 26 3 6.96E-07 H75720
CATGCTTCTGATCTCAGCAGT 0 25 7.92E-07 THC2315603 Heparan sulfate 3-O-sulfotransferase-1
CATGCACAGGCAAAATGTATT 1 25 7.92E-07 CA314838
CATGTGAAGTTATACTGTGGC 2 28 9.33E-07 AW970111
CATGGGATATGTGGTGTATAT 7 41 9.67E-07 AV656761
CATGCATATCATTAAACAAAT 5 36 0.00000106 NP924865 Insulin-like growth factor binding protein 7
CATGTATTTTCCAGCTGCCTC 20 1 0.00000134 AA514440
CATGTCAGGGTGGTTCTGGTG 20 1 0.00000134 unknown
CATGTCAGGGTGATCCTGGTG 20 0 0.00000134 unknown
CATGTCAGGGCGATTCTGGTG 20 0 0.00000134 unknown
CATGAAAAGCAGAAATCGGTT 0 24 0.00000143 THC2244965 Krueppel-like factor 5
CATGTTTGCACCTTTCTAGTT 0 24 0.00000143 NP119453 Connective tissue growth factor
CATGATACTTTAATCAGAAGC 1 24 0.00000143 NP1194136 full-length cDNA clone CS0DF028YA19
CATGGCGAAACCCTGTCTCTA 3 30 0.00000155 W03579
CATGCTTATGGTTGATCAGTT 2 27 0.00000164 CB243786
CATGCACCTAATTGGAAGCGC 56 22 0.00000216 CF129138
CATGGGAATGTACGTTATTTC 13 52 0.00000218 NP1215187 mitochondrial ATP synthase

aThe percentage of tags idenfied as differentially expressed that cannot be matched to database sequences are similar including (27%) or excluding 
(30%) ditags as well as in this list (24%).
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The expected occurrence of a duplicate ditag AB in Long-
SAGE, assuming even distribution of compatible overlap-
ping classes is then (including duplicate ditags).

The expected occurrence of a duplicate ditag AB in Long-
SAGE, using dataset specific distributions of compatible
overlapping classes can be approximated by

where TPPT is the sum of all possible partner tags.

Standardized residuals was calculated as follows [18]

Ditag analysis
A SAGE experiment is performed by digesting cDNA with
the frequent cutting restriction enzyme NlaIII, isolating
the most 3' fragment and ligating a linker containing the
sequence TCCGAC, which is recognized the restriction
enzyme MmeI. Tags are generated by MmeI which cleaves
the DNA strand 20/18 nt or 21/19 nt downstream of this
sequence. Ligated ditags have the general structure CAT-
GXXXXXXXXXXXXXXXX(X)(Y)YYYYYYYYYYYYYYYY-
CATG, where X denotes tag A and Y denote the reverse
complement of tag B. The parentheses indicate that most
tags exist in both a short and a long form. Hence, the ditag
AB can have the length 40, 41 or 42 nucleotides. Two cen-
tral base pairs are common to both tag A and tag B and
originate from the overlap used during ligation. The Perl
script, LongSAGEbias.pl [additional file 4] was developed
and used for the data analysis (freely available at [19]). A
schematic representation of the script is shown in figure 2.
First, the script extracts both ditags and monotags (21 nt),
including possible linker derived tags, from DNA
sequence files and the corresponding quality values
(*.phd) generated by the Phred base caller [20]. Second,
the script then calculates the length of each ditag and uses
the 40 nt and 42 nt ditags for the calculation of the distri-
bution of compatible overlapping tags and the propensi-

ties that each tag is 21 (short form) or 22 (long form)
nucleotides. This information is then used to predict the
occurrence of any ditag composed of tags observed in a
duplicate ditag by equation 3 according to the tag length
consistent with the ditag in question. For 40 or 42 nucle-
otide ditags, a prediction is made for each of the two
monotags constituting the ditag.

In the case of 41 nucleotide ditags, the ditag AB is first ana-
lyzed. Since A can exist in a 41 nt ditag both in the long
and a short form, two predictions are made and the one
closest to the observed is chosen. Then, the ditag BA is
considered in an identical manner. The standardized
residuals are calculated and the results are written to tab-
ulator separated files easily imported into any spreadsheet
for further analysis. Assuming the ditag counts are Poisson
distributed, the mean can be estimated as the observed
count and the standard deviation as the square root of the
observed. The confidence interval of ditag counts can thus
be estimated as mean ± 2*standard deviation. For small
ditag counts this confidence interval extends below zero.
Consequently, the standard deviation of the standardized
residuals is calculated from ditags observed four or more
times only (4-2*√4 = 0).

The algorithm can be set to include all duplicate ditags,
remove all duplicate ditags and adjust the observed ditag
counts that fall outside the confidence interval to the pre-
diction value.

In sum, libraries derived from pancreatic acinar cells, duc-
tal cells, and four libraries from different grades of pancre-
atic intraepithelial neoplasia were analyzed from
pancreas. In addition, 5 potato tuber libraries derived
from 6 week old minitubers, at harvest, two libraries from
60 days post harvest dormant tubers, and from tuber tis-
sue excised from under an emerging sprout.

Analyzing dinucleotide overlap distribution of tags 
generated in-silico
LongSAGE tags of 17 nt + CATG were extracted from the
human RefSeq v. 16 fasta file and the dinucleotide overlap
distributions determined using the PERL script dinuc-
count.pl [19].

Comparison of LongSAGE libraries with and without 
inclusion of duplicate ditags
LongSAGE tags from libraries generated from all potato
and pancreatic tissue were extracted using the Perl script
sage-phred.pl. For pancreatic acinar and ductal cells the
tags were mapped to the Human Gene Index [21] using
sagemap.pl. The two libraries were compared using the
Perl script acprob.pl and statistically significant changes
using strict Bonferroni correction was recorded including
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or excluding duplicate ditags. All scripts are available at
[19].
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