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Abstract
Background: MicroRNAs have emerged as important regulatory genes in a variety of cellular processes
and, in recent years, hundreds of such genes have been discovered in animals. In contrast, functional
annotations are available only for a very small fraction of these miRNAs, and even in these cases only
partially.

Results: We developed a general Bayesian method for the inference of miRNA target sites, in which, for
each miRNA, we explicitly model the evolution of orthologous target sites in a set of related species. Using
this method we predict target sites for all known miRNAs in flies, worms, fish, and mammals. By comparing
our predictions in fly with a reference set of experimentally tested miRNA-mRNA interactions we show
that our general method performs at least as well as the most accurate methods available to date, including
ones specifically tailored for target prediction in fly. An important novel feature of our model is that it
explicitly infers the phylogenetic distribution of functional target sites, independently for each miRNA. This
allows us to infer species-specific and clade-specific miRNA targeting. We also show that, in long human
3' UTRs, miRNA target sites occur preferentially near the start and near the end of the 3' UTR.

To characterize miRNA function beyond the predicted lists of targets we further present a method to infer
significant associations between the sets of targets predicted for individual miRNAs and specific
biochemical pathways, in particular those of the KEGG pathway database. We show that this approach
retrieves several known functional miRNA-mRNA associations, and predicts novel functions for known
miRNAs in cell growth and in development.

Conclusion: We have presented a Bayesian target prediction algorithm without any tunable parameters,
that can be applied to sequences from any clade of species. The algorithm automatically infers the
phylogenetic distribution of functional sites for each miRNA, and assigns a posterior probability to each
putative target site. The results presented here indicate that our general method achieves very good
performance in predicting miRNA target sites, providing at the same time insights into the evolution of
target sites for individual miRNAs. Moreover, by combining our predictions with pathway analysis, we
propose functions of specific miRNAs in nervous system development, inter-cellular communication and
cell growth. The complete target site predictions as well as the miRNA/pathway associations are accessible
on the ElMMo web server.
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Background
Since the initial discovery of the lin-4 miRNA [1], and
then of the let-7 miRNA which is highly conserved in evo-
lution [2], combined experimental and computational
approaches have resulted in the identification of hun-
dreds of miRNAs in animal genomes, some of the large-
scale studies being [3-19]. In contrast, high-throughput
approaches for experimental identification of miRNA tar-
gets are only in their infancy [20,21], and global properties
of miRNA-dependent regulatory networks have mostly
been inferred from computationally-predicted target sites
[22-26].

Perhaps surprisingly, relatively little is known about the
constraints on a functional miRNA target site. Mutational
studies [27,28] confirmed initial observations of Lai [29]
and Lewis et al. [30] that perfect base pairing between the
5' end of the miRNA and its target is essential. As a conse-
quence, some of the computational methods for miRNA
target prediction require [22,31] or can enforce the con-
straint [32] that 6–8 nucleotides at the 5' end of the
miRNA, the so-called miRNA "seed", are perfectly base
paired with its mRNA target, or give a higher weight to the
base pairs formed in this region [25,33]. Since every 6mer
occurs on average once every 4,096 nucleotides in ran-
dom sequence, the number of target sites for each miRNA
would be very large if matching of the seed were the only
requirement for functional target sites. Although there are
indications that miRNAs do have a large number of targets
[20-22,28,31,34], experimental studies typically do not
confirm that every seed match constitutes a functional tar-
get site. It seems therefore that additional factors contrib-
ute to the functionality of target sites. To improve the
specificity of prediction of functional target sites, most
computational studies make use of evolutionarily conser-
vation [22,25,31,35] or at least flag conserved putative tar-
gets [32,33]. However, currently available methods
generally use conservation statistics in an ad hoc manner.
In particular, existing methods do not explicitly take the
phylogenetic relationships into account when weighing
the evidence of conservation between related species. In
addition, current methods treat all miRNAs identically
and ignore that the selection pressures for conserving
functional target sites between related species may differ
significantly between miRNAs. That is, functional target
sites for one miRNA may be preferentially conserved in
one subset of species, whereas the functional sites for
another miRNA may be preferentially conserved in
another subset of species. Incorporating conservation sta-
tistics in a general, rigorous and miRNA-dependent man-
ner are the main features of the miRNA target prediction
method that we present here.

From the very early stages of miRNA target prediction it
became clear that regulatory proteins such as transcription

factors are preferentially subjected to miRNA-dependent
regulation. Yet, beyond a few well-characterized miRNA-
target interactions, there is still very little known about the
place of individual miRNAs in the regulatory networks of
cells and organs. Several groups [23,30,36] have used
Gene Ontology categories in an attempt to characterize
the biological roles of different miRNAs. Here we present
a new analysis based on the association of targets for indi-
vidual miRNAs with molecular pathways annotated in the
KEGG database. This approach recovers some of the
known miRNA-mRNA associations, and makes new pre-
dictions, in particular it predicts the for the involvement
of specific miRNAs in nervous system development, inter-
cellular communication, and cell growth.

Results and Discussion
miRNA-target interactions: the importance of different 
'seed types'
Several lines of evidence [22,27-29,37] suggest that com-
plementarity of the target site to the first 8 bases at the 5'
end of the miRNA are of crucial importance for target site
recognition. Lewis et al. [22] have investigated the impor-
tance of the miRNA "seed", defined as the positions 2–7
of the miRNA, by comparing conservation statistics of
mRNA segments that are complementary to miRNA seeds
with those of randomized control sets. They concluded
that conserved 3' UTR regions predicted to hybridize per-
fectly with positions 2–8 of the miRNA or with positions
2–7 of the miRNA, but having an A nucleotide flanking
the seed match at the 3' end are likely to be miRNA target
sites. Inspired by these methods we decided to re-investi-
gate the conservation statistics of different "seed types"
across different clades of organisms. In all cases, we only
focused on the first 8 positions of the miRNA, and we ana-
lyzed the following 9 "seed types" (see Figure 1):

1. Perfect complementarity with Watson-Crick interac-
tions between positions 1–8 of the miRNA and the mRNA
target site.

2. Perfect complementarity at positions 1–7 but not at
position 8.

3. Perfect complementarity at positions 2–8 but not at
position 1.

4. Perfect complementarity at 2–7 but not at 1 and 8.

5. Complementarity at positions 1–8 with a single G-U
pair occurring with the U in the miRNA (GUM).

6. Complementarity at positions 1–8 with a single G-U
pair occurring with the U in the target (GUT).
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7. Complementarity with a single bulged nucleotide on
the miRNA side (BM).

8. Complementarity with a single bulged nucleotide on
the target side (BT).

9. Complementarity with a single internal loop involving
one nucleotide in both miRNA and target (LP).

For each of these 9 seed types t, and each of the four clades
(mammals plus chicken, fishes, flies, and worms), we
determined the fraction ft of putative target sites that are
perfectly conserved in all species of the clade (see Methods
for details). We only considered miRNAs that were them-
selves conserved in all species of the clade. We also deter-
mined the "background" conservation fraction, of
randomly chosen 3' UTR sequence segments of the same
length as the respective seed types that are conserved in all
species of the clade. Figure 1 shows the ratio of these two
fractions, which we called "conservation fold enrich-
ment". As expected, octameric sites show most evidence of
functionality. The conservation fold enrichment decreases
dramatically as the extent of complementarity that we
require between miRNA and putative target site decreases.
In particular, sites in which only the nucleotides 2–7 of
the miRNA are predicted to form base pairs with the
mRNA, as well as sites predicted to form G-U base pairs or
to contain internal loops show relative little evidence of
conservation enrichment. This is not to say that such sites
are never functional. Indeed, functional target sites of this
type are known, in particular in worms [38], for which,
interestingly, we observe the strongest evidence of selec-
tion on these seed types. However, for our target predic-

tion method we decided to focus on the three seed types
that show strong evidence of conservation enrichment
across all clades: those with perfect Watson-Crick comple-
mentarity with positions 1–7, 2–8, or 1–8 of the miRNA.
As a result, we predict the same set of target sites for differ-
ent miRNAs with the same first 8 nucleotides. In reality,
even though the seed is probably most important for tar-
geting, the 3' ends may also contribute to the target selec-
tion and this could differentiate the target sets for different
miRNAs with the same seed. This possibility, which has
been studied experimentally by Brennecke et al. [28], and
is explicitly incorporated in other target prediction mod-
els [25], is not captured by our model. Note, however, that
because the miRNA-mediated targeting depends on the
expression of both miRNA and targets, distinct miRNAs
that have the same seed sequence may still have different
target sets simply due to differences in their expression
profile, even though in principle they recognize the same
set of target sites. Note also that we do not use a model in
which the mRNA position corresponding to the first
nucleotide in miRNA is an adenosine, because we did not
find this constraint to consistently improve the conserva-
tion fold enrichment across all clades (not shown).

Bayesian phylogenetic model for miRNA target sites
We have developed a Bayesian probabilistic model for
assigning, to each putative "site" in a 3' UTR that is com-
plementary to a miRNA seed, a posterior probability that
the site is a functional target site for the miRNA, meaning
that the site has been selected in evolution for its ability to
bind the miRNA. The details of the model are described in
the Methods section, but the main ingredients are the fol-
lowing.

MiRNA seed types and conservation fold enrichmentFigure 1
MiRNA seed types and conservation fold enrichment. Schematic representation of the different "seed types" of miRNA 
target sites that we consider and conservation fold enrichment for each of them. a. Seed type interactions of miRNA-mRNA 
hybrids (see text). b. Conservation fold enrichment for the 9 different seed types in the four clades.
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For each miRNA and each seed type t we collect all puta-
tive sites in the 3' UTRs of the reference species of the clade
in question, i.e. the 3' UTR sequence segments that are
complementary to the given miRNA seed. For each of
these putative sites we then determine the conservation

pattern , defined as a binary vector with ci = 1 if the site

is conserved in species i and ci = 0 if it is not conserved in

species i. We then count the number of times n( , t) that

conservation pattern  is observed for putative target sites
of seed type t. To compute the posterior probabilities for
individual sites, the model then compares these numbers

n( , t) with those that would be expected given the "back-

ground" frequencies p( |t, bg) with which randomly cho-
sen 3' UTR sequence segments of the same length as the

miRNA seed show conservation pattern .

Generally, if conservation patterns with many ci = 1 are

much more abundant among putative miRNA sites than
among background sites, then we infer that a fraction of
the putative target sites must be functional and that selec-
tion has maintained these sites in some of the species.
However, conserved target sites need not be functional in
all species in which they occur. The conservation pattern
of a given site is typically the result of selection maintain-
ing the site in some of the species in combination with
chance conservation of the site in other species, in partic-
ular those that are evolutionarily close. Our model flexi-
bly and explicitly takes this into account. The model

considers all possible "selection patterns" , which are
also binary vectors, with si = 1 if the site is under selection

in species i, and si = 0 if it is not.

For each miRNA we then determine the frequencies p( )
of different selection patterns that maximize the overall

likelihood of the observed counts n( , t). That is, we

determine the distribution of selection patterns p( ) that

best explains the observed counts n( , t) of conservation
patterns for this miRNA.

Using the estimated frequencies p( ) we can then deter-
mine, for each putative target site, the posterior probabil-
ity that the site is functional given its conservation pattern

. Finally to determine an overall probability that a given
3' UTR is targeted by a given miRNA we combine the pos-
terior probabilities of all sites for the miRNA occurring in
the 3' UTR. The reader is again referred to the Methods sec-
tion for the details of all these procedures.

Phylogenetic distribution of functional target sites across 
miRNAs

Note that the estimated distribution over selection pat-

terns p( ) quantifies what fraction of putative sites in the
reference species is under selection in each of the possible

subsets of other species. That is, p( ) estimates how func-
tional target sites are distributed over the phylogenetic

tree. Since we estimate p( ) independently for each
miRNA, our method allows us to compare how functional
sites are distributed across the phylogenetic tree for differ-
ent miRNAs. In Figure 2 we show the inferred phyloge-
netic distribution of functional target sites for 4 different
human miRNAs. The genes of these miRNAs are con-
served across all vertebrates shown in the figure. The pre-

cise parameters of the distributions p( ) are represented
by the bars at each node with red indicating the fraction
of sites that remains under selection in the left descending
branch only, blue the fraction that remains under selec-
tion in the right descending branch only, and green the
fraction that remains under selection in both descending

branches. The distribution p( ) is also summarized in the
thickness of the branches of each tree. Starting from the
root (human) the thickness of each branch indicates what
fraction of functional target sites is under selection along
that branch. Note that the initial branch leading away
from human has the same thickness for all four miRNAs,
meaning that the fraction of human target sites that is
under selection in at least one of the other species is
roughly equal for these 4 miRNAs. However, as the figure
shows, the two miRNAs on the left and the two miRNAs
on the right differ significantly in the inferred pattern of
selection across the tree. In particular, whereas the target
sites for the miRNAs on the right (miR-9 and miR-124a)
tend to be shared between all mammals, and to some
extent with chicken and opossum, the target sites for the
miRNAs on the right (miR-544 and miR-205) are shared
mostly among primates, but not with other mammals.
This suggests that, whereas the target repertoires of miR-9
and miR-124a have been largely conserved since the com-
mon ancestor of the mammals, significant changes have
occurred in the target repertoires of miR-544 and miR-205
since that time. In Additional file 1 we show the parame-

ters of the inferred selection distributions p( ) for all
miRNAs that are conserved across all warm-blooded ver-
tebrates that we considered. These results provide a first
comprehensive look into the species-specific targets of
miRNAs.
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Examples of inferred phylogenetic distributions of functional target sitesFigure 2
Examples of inferred phylogenetic distributions of functional target sites. Comparison of the inferred phylogenetic 
distribution of functional target sites across vertebrate species (human – H. sapiens, chimp – P. troglodytes, rhesus maccaque – 
M. mulatta, mouse – M. musculus, rat – R. norvegicus, cow – B. taurus, dog – C. familiaris, opossum – M. domestica, chicken – 
G. gallus) for 4 different miRNAs. Starting from human at the root the thickness of the branches of the tree represents the 
fraction of putative target sites inferred to be selected along that branch of the tree. The bars at each internal node indicate 
what fraction of sites remains under selection in both descending branches (green), only the left descending branch (red), and 
only the right descending branch (blue). For each of the human miRNAs shown in this figure, there exists at least a miRNA 
with the same 1–8 "seed" sequence in all vertebrates in the tree.
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Because we infer different distributions p( ) for different
miRNAs, and these distributions enter as priors in the
Bayesian procedure, we generally assign different poste-
rior probabilities to sites for different miRNAs, even if
these sites have exactly the same conservation pattern. For
example, in the example above a site for miRNA miR-544
that is only conserved in primates would get considerably
higher posterior probability than a site for miR-9 with the
same conservation pattern. This is because this conserva-
tion pattern corresponds better to the inferred selection
pattern of miR-544 than the inferred selection pattern of
miR-9.

One of the issues that has been extensively discussed in
the miRNA literature is the question of the typical number
of functional targets per miRNA, and the related question
of what fraction of seed matches in 3' UTRs corresponds
to functional target sites. Previous work has indicated that
the number of targets per miRNA varies across miRNAs
[23]. We believe that the ability of our method to infer
species-specific miRNA targeting for each miRNA, allows
for a more sensitive and accurate estimation of the total
number of functional target sites of each miRNA.

There are two independent contributions to the total
number of functional target sites for a given miRNA. First,
the total number of miRNA seed matches varies from
miRNA to miRNA and second, the fraction of seed
matches that correspond to functional sites may vary from
miRNA to miRNA. The latter can be estimated from the
conservation evidence. In particular, the inferred parame-

ter ρ of the distribution p( ), corresponds to the fraction
of miRNA seed matches that is under selection in the ref-
erence species and at least one of the other species in the
clade. This provides a lower bound on the fraction of seed
matches that is functional in the reference species (see

Methods). By multiplying this fraction ρ by the total
number of seed matches for the miRNA we obtain a lower
bound on the absolute number of functional target sites
for the miRNA. For simplicity we will refer to these as the
estimated fraction of functional sites, and the estimated
total number of functional sites. Figure 3 shows the esti-
mated fraction of functional sites as a function of the esti-
mated total number of functional target sites, for each
clade of species and each miRNA. We infer that the
number of functional target sites varies very widely across
miRNAs, i.e. from almost zero to several thousands. Sim-
ilarly, the fraction of target sites under selection varies
from close to zero to almost 50% in human, or even more

in worms and flies. Overall we find that the average of ρ is

about 30% for human, fly, and worm, meaning that we
predict that at least 30% of miRNA seed matches in these

species is functional. The inferred fractions ρ are signifi-
cantly lower in fish. This is most likely because the refer-
ence species (Danio rerio) is relatively far (around 120
million years [39,40]) from the other species in the clade
(Fugu rubripes and Tetraodon nigroides), so that there is
a smaller fraction of sites that is under selection in at least
one of the other species. It is intriguing that, for all four
clades, there seems to be a correlation between the frac-

tion ρ and the inferred total number of functional sites at

small values of ρ, but no correlation at high values of ρ.

The number of predicted sites under selection does not
appear to correlate with the breadth of miRNA expression,
as among the miRNAs with the largest number of pre-
dicted target sites we find some that are highly tissue spe-
cific (miR-9 and miR-124 that are expressed in the
nervous system [5], and miR-155 that is specific to lym-
phoid cells [5]) as well some that have broad expression
(e.g. the families of miR-29 [9,10,41,42] and miR-30
[41,42]). miR-16, which is ubiquitously expressed [5,41]
has an intermediate number of targets (Additional file 2).

Performance comparison with other methods
To assess the quality of our predictions relative to other
methods that have been published to date, we built on the
results recently published by Stark et al. [25], who have
performed a detailed comparison of the performance of
most of the prediction methods that are currently in use
on a relatively large set of experimentally tested miRNA-
mRNA interactions. This experimental data set has been
mostly obtained by the Cohen lab, with a small number
of interactions having been tested by other groups. The
issues concerning the biases involved with the assembly of
this data set have already been discussed by Stark et al.
[25], and we will not belabor them here. We will only cau-
tion the reader that the accuracy of various different meth-
ods on this data set should not be taken as an indication
of their accuracy on a random set of miRNA-mRNA inter-
actions. Unfortunately, this unbiased experiment has not
been done.

Since our method assigns a posterior probability to each
predicted site, sets of predictions at different levels of con-
fidence can be obtained by including only sites over a
given posterior probability. We created such sets at differ-
ent thresholds in posterior probability and computed the

sensitivity ( , i.e. the fraction of all true targets

that were indeed predicted) and the specificity

s

s

TP

TP FN+
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( ) i.e. the fraction of all the correct negative

predictions) for each set. The results are shown as the
black line in Figure 4, which also shows the sensitivities
and specificities of other prediction methods [32,36,43-
46], as inferred from the published results.

The figure indicates that our method performs as well as
the most accurate prediction methods available to date,
while maintaining a very high specificity even for high
sensitivities. We observe a large overlap between our pre-

dicted targets and those predicted by Stark et al. [25] and
Grün et al. [23] although there are also substantial num-
bers of predicted sites that are either specific to our
method or specific to one of the other methods. The sig-
nificant overlap is most likely a reflection of the similarity
in the definition of target sites: 7/8-nucleotide seed
matches that are conserved across at least some of the
other flies account for a large fraction of the predicted sites
in all three methods. However, these other methods also
consider putative sites with fewer matches in the seed
region if they are sufficiently conserved [23] or compen-
sated by matches to the 3' end of the miRNA [25]. The very

( )
TN

FP TN+

miRNA seed matches under functional selectionFigure 3
miRNA seed matches under functional selection. The fraction ρ of seed matches inferred to be under selection (vertical 
axis) vs. the total number of sites inferred to be under selection in the entire set of mRNAs (horizontal axis) for individual miR-
NAs. Each star corresponds to one miRNA and each panel corresponds to one clade of species, with the reference species 
indicated at the top.
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good accuracy of our predictions indicates that appropri-
ately weighing the evolutionary information enables us to
achieve a good performance even with more restrictive
definition of putative target sites compared to thee other
methods. In particular, we note that from a total of 12,155
high confidence predicted sites (posterior probability p ≥
0.5), a substantial proportion, namely 1,953 (16%), are
not perfectly conserved in Drosophila pseudoobscura, but
are conserved in many of the other flies. Such sites will be
missed by methods that only consider strict conservation
in D. pseudoobscura.

In Additional file 3 we show a detailed comparison of our
predicted target sets for fly miRNAs and those reported by
Stark et al. [43] and Grün et al. [23]. We defined a UTR to

be a predicted target of a specific miRNA if it had at least
0.5 probability of containing a functional site for the
miRNA (see Methods). Because the UTR data sets used by
different groups differs to some extent, we have used a
conservative scheme of computing the overlap: we have
assumed that whenever another method predicted a site
in a splice variant of a given gene, all the variants would
share the site. Thus, the numbers below represent upper
bounds on the extent of overlap between the different
methods. Note additionally that the total number of pre-
dictions made by other methods may not be the number
of predictions reported in the respective studies, but
include all the splice variants known to date. The overlap
between our predictions and those of Stark et al. [43] and
Grün et al. [23] varies significantly between miRNAs. For

Performance comparison with other methodsFigure 4
Performance comparison with other methods. Comparison of the performance of our method and other published 
methods on a set of 120 experimentally tested miRNA-mRNA interactions in fly. Specificity (fraction of negatives that are not 
predicted) is shown as a function of sensitivity (fraction of positives that are predicted) for our method at different cutoffs in 
posterior probability (black line) and for other methods (colored dots).
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example, for the bantam miRNAs, which has shown to be
involved in the regulation of cell growth [47,48], the over-
lap is quite large. We predict 140 targets of which 106
(76%) and 121 (86%) occur in the predictions of Stark et
al. [25] and Grün et al. [23], respectively. The discrepancy
is higher for miR-1, a miRNA required for muscle develop-
ment [49]. We predict 362 targets of which 252 (70%)
and 271 (75%) occur among the predictions of Stark et al.
[25] and Grün et al. [23], respectively. Finally, for another
microRNA, miR-281, we make only a total of 34 predic-
tions of which only 13 (38%) and 17 (50%) occur among
the predictions of Stark et al. [25] and Grün et al. [23],
respectively. That is, at least half of our predicted targets
are not predicted by the other two algorithms. Unfortu-
nately, the data set of experimentally tested miRNA-
mRNA interactions is too small to meaningfully compare
the predictions of the different methods for individual
miRNAs.

Location bias of predicted miRNA target sites in UTRs
We next turned to the high-confidence (posterior proba-
bility ≥ 0.5) subset of our predicted miRNA target sites
and we asked whether we could identify a bias in the loca-
tion of evolutionarily selected miRNA target sites in the 3'
UTRs. Figure 5 shows a heat map representation of the
location of these sites along the 3' UTRs in the different
clades. In this plot, each predicted miRNA target site is
represented as a dot with its x-coordinate being the total
length of the 3'UTR in which it resides and its y-coordi-
nate being the relative, normalized position of the site in
the UTR. We infer that in all clades, the high-confidence
sites tend to avoid the regions immediately after the stop
codon as well as the end of the transcript. At the 3' end,
this effect could be due to the presence of polyA tails in
some of the Refseq transcripts. In human, where the UTRs
are much longer than in the other species considered
(3,300 of the 22,459 of the human UTRs in our data set
were longer than 2 kb), conserved miRNA target sites also
tend to avoid the regions in the middle of long UTRs. This
pattern is mirrored in the conservation profile across long
UTRs, i.e. long UTRs tend to be less conserved in the mid-
dle than toward their ends (data not shown). The pattern
is also observed at the level of predicted target sites for
individual miRNAs (Figure 6), i.e it is not caused by one
or two miRNAs with an aberrant target site distribution.

A conceivable explanation for the observed pattern of
enrichment of miRNA sites toward the start and end of
long UTRs is that a non-negligible proportion of long Ref-
seq UTRs erroneously contains introns. To test this
hypothesis we obtained all EST sequences that overlap
Refseq UTRs and calculated, for each UTR base, the frac-
tion of all overlapping ESTs in which the base is intronic.
As shown in Additional file 4, there is almost no differ-
ence between the intron-inclusion profiles for long and

short 3' UTRs. That is, the observed enrichment of miRNA
sites toward the ends of long 3' UTRs cannot be explained
by intron inclusion.

The observed pattern is interesting because it has been
argued [25,26] that miRNAs are a major factor driving the
evolution of UTR lengths: ubiquitously-expressed genes
have short UTRs, while genes whose expression is more
restricted and regulated by miRNAs have longer UTRs.
Our result suggests a more complicated scenario, in which
more strongly conserved miRNA target sites, which have
most likely emerged early, are located towards the bound-
aries of the 3' UTR, the stop codon and the polyadenyla-
tion site. This particular location of target sites may
influence the likelihood of interaction between the
miRNA-containing ribonucleoproteins and other com-
plexes involved in RNA processing and regulation.

Inference of miRNA function using pathway analysis
To analyze the role that individual miRNAs play in the
regulatory networks in human, we have used the KEGG
database in which a large fraction of the human genes are
assigned to pathways. KEGG provides a mapping between
genes and pathways, as well as a reference to the identifier
of each of the genes in the Gene database of NCBI. Based
on this mapping, as well as on the assignment of Refseq
identifiers to Gene identifiers which we obtained from
NCBI, we have constructed an assignment between puta-
tive miRNA targets and pathways. The resulting dataset
consisted of 4, 011 human Refseq transcripts. Using puta-
tive target sites with posterior probability of ≥ 0.5, we have
determined which pathways are significantly associated
with each individual miRNA (see Methods). In particular,
for each miRNA/pathway combination we calculated the
log-likelihood ratio, given the observed data, of two mod-
els: one that assumes that pathway membership and
being a predicted target of the miRNA are independent,
and one that assumes that these are generally dependent
properties.

Figure 7 shows the results of this analysis for the subset of
miRNAs that had at least one significant association
(Additional file 5 shows the entire miRNA set). The color
scale is centered around a log-likelihood ratio of 0
(white), and the intensity of the color is proportional to
the posterior probability of the dependent model. Enrich-
ment of targets in a pathway is shown in red, and deple-
tion of targets in a pathway is shown in blue.

The first thing to note is that, as reported previously [25],
genes that are ubiquitous and are involved in basic meta-
bolic functions, tend to be depleted in miRNA target sites.
Also noted before is that miRNAs tend to target genes
involved in transcription regulation, intercellular commu-
nication, cell growth and death and development
Page 9 of 22
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[22,23,25,30,33,36]. For example, we find that the targets
of 19 of the 119 unique miRNA seeds are significantly
enriched in the axon guidance pathway. This does not
necessarily imply, however, that all these miRNAs are spe-
cifically involved in axon guidance. Many of the mole-
cules involved in axon guidance are also involved in
delivering spatial cues during the development of other
systems, such as for example the cardiovascular system. So
it is plausible that, whereas many miRNAs are associated
with the axon guidance pathway, different miRNAs may
act on different subsets of the mRNAs from this pathway

in different tissues. Below we describe some of the most
notable associations that we found between specific miR-
NAs and pathways.

Our method yields the expected associations for miRNAs
which are specifically expressed in certain tissues (and
presumably regulate processes that are specific to these tis-
sues), or for miRNAs for which targets are already known.
miR-124a, whose expression is highly specific to the nerv-
ous system, is one of the miRNAs most significantly asso-
ciated with the axon guidance pathway. Its corresponding

Location bias of predicted miRNA target sites in UTRsFigure 5
Location bias of predicted miRNA target sites in UTRs. Distribution of predicted miRNA target sites in the 3'UTRs. 
Each predicted miRNA target site is represented by a dot with the x-coordinate corresponding to the length of the associated 
3'UTR and the y-coordinate corresponding to the localization of the site within the 3'UTR normalized from 0(start) to 1(end). 
Gaussian kernels around all the dots were used to create a smooth interpolating density surface. Since the general UTR length 
distribution is not uniform, we normalized the vertical slices through the 2-D density surface p(x, y) at each x-coordinate to 
obtain p(y|x).
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targets in this pathway include players with known
involvement in nervous system development such as the
ephrins B1, B2, and B3, ephrin receptors A2, A3, and B4,
semaphorins 5A, 6A, 6C, and 6D, and plexins A3 and B2.
As miR-124 is highly expressed in mature neurons, it is
possible that its function is to maintain previously estab-
lished neuronal circuits.

Our results also suggest an involvement of the miR-181
family of miRNAs in nervous system. These miRNAs,
whose expression in zebrafish appears to be restricted to
the nervous system, thymus and gills [13], have so far
been shown to play a role in lymphocyte [50] and muscle
[51] development. In our data, they have a set of high con-
fidence targets in the long term potentiation pathway,
among which glutamate receptors, calcium/calmodulin-
dependent protein kinase II, adenylate cyclate 1, and cal-
modulin. In fact, calcium/calmodulin kinase II 2 appears
to play a role in both memory performance [52] and in
activation-induced T cell differentiation [53]. These

results may explain the up-to-now puzzling expression
pattern of these miRNAs.

The let-7 miRNA, which was recently shown to regulate
the let-60 gene in C. elegans and is presumed to regulate
the human homologs of let-60, i.e. the Ras genes [35], is
most significantly associated with the MAPK pathway,
with the NRAS gene and the Ras guanyl releasing protein
1 RasGRP1 being predicted as high confidence targets.
Additionally, let-7 is predicted to target several kinases
and phosphatases in this pathway, and, importantly for
the postulated involvement of let-7 in malignancy, the Fas
ligand, TGFβ receptor I, nerve growth factor and fibroblast
growth factor 11.

miR-9 has been described as a brain-specific miRNA [5],
and recent evidence suggests that its expression is highest
in fetal brain and oligodendrogliomas [54]. The top path-
way associated with this miRNA is that of glutamate
metabolism, in which miR-9 appears to target glutamate

Location of predicted target sites of individual miRNAs in the 3' UTRsFigure 6
Location of predicted target sites of individual miRNAs in the 3' UTRs. Histogram of the relative position (0(start) to 
1(end)) of high-probability predicted target sites (posterior probability ≥ 0.5) for 6 individual miRNAs in the human 3'UTRs 
longer than 4 kb. The identity of the miRNAs and their corresponding seed sequences (positions 1–8 from the 5' end of the 
mature miRNA) are indicated on each panel.
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Pathway analysisFigure 7
Pathway analysis. Representation of individual pathways among the predicted targets of a given miRNA. Each column corre-
sponds to a KEGG pathway and each row to a group of miRNAs with the same seed sequence. Red indicates overrepresenta-
tion of the targets of a specific miRNA among the genes in the corresponding pathway, whereas blue indicates depletion. The 
intensity of the color indicates the posterior probability of the dependent model (see Methods). Pathways have been grouped 
in larger functional categories according to the KEGG annotation. Only miRNAs with at least one significant association are 
shown.
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decarboxylase, glutamate dehydrogenase, glutamase,
glutamate-cysteine ligase, glutamic-oxaloacetic transami-
nase 1, as well as glucosamine-phosphate N-acetyltrans-
ferase 1, 4-aminobutyrate aminotransferase, and
phosphoribosyl pyrophosphate amidotransferase. The
second most significant association for miR-9 is with with
the focal adhesion pathway, in which many more genes
appear to be targeted, among which collagen V α1, colla-
gen IV α2, integrin 6, tenascin C, talin, trombospondin 2,
and vinculin. These targets suggest that miR-9 may be
involved in regulating the intercellular communication in
the brain and the function of neural circuits. Another
group of miRNAs for which we suggest a role a develop-
ment, in particular in the nervous system, is that of the
embryonic miRNAs exemplified by miR-372, initially
identified in a study of human embryonic stem cells [10].
These miRNAs appear to be primate-specific. However,
the nucleotides at position 2–7, AAGUGC, are shared by
the 5' ends of several other miRNAs that are embryoni-
cally-expressed and of restricted phylogenetic distribution
such as the rodent miR-290 (AAAGUGCC 1–8), miR-291
(AAAGUGCU 1–8), miR-292 (AAAGUGCC 1–8), and
miR-294 (AAAGUGCU 1–8), zebrafish miR-430's (U/
AAAGUGCU at 1–8), as well as the human miR-302
group (UAAGUGCU at 1–8), miR-373 (GAAGUGCU at
1–8), and most miRNAs of the miR-520 group
(AAAGUGCU at 1–8). Of these miRNAs, the study of [55]
implicated miR-430 in the nervous system development
in zebrafish, although in a subsequent study the authors
showed that miR-430 plays a role in the clearance of
maternal RNAs [56]. Our results speak to the first pro-
posed role of this class of miRNAs, namely in nervous sys-
tem development. The miR-372-related miRNAs
(AAAGUGCU at 1–8) have a strong predicted association
with the axon guidance pathway, where it is predicted to
target, among others, the ephrin B2, ephrin receptors A4,
A5 and A7, semaphorin 4B, LIM kinase 1, and p21-acti-
vated kinase 7. Moreover, at least some of the Smad genes
that are part of the top pathway predicted to be targeted
by these miRNAs, the TGFβ pathway, have been impli-
cated in the growth of neurites [57]. Interestingly, the dif-
ference A vs. U or G at the first position between the miR-
372 and other families mentioned above leads to quite
different predictions of targeted pathways. For none of
these other miRNAs have we found a pathway that
appears to be significantly targeted.

Finally, we were very interested in understanding the func-
tion of miR-16 (which shares its seed with the miR-15
group of miRNAs), a miRNA that appears to be ubiqui-
tously expressed at least in mouse [5], and has been impli-
cated in regulation of apoptosis [58] and of mRNA
stability [59]. We find that the most significant associa-
tion of miR-16 is with the mTOR signaling pathway [60],
which integrates nutrient-derived signals and controls cell

growth. miR-16 appears to target the rapamycin-insensi-
tive companion of mTOR, several ribosomal protein
kinases, components of the eukaryotic translation initia-
tion factor 4 (B and E), insulin-like growth factor 1 and
others. The second most significant association of this
miRNA is with the Wnt pathway, in which it targets sev-
eral Wnt (Wnt2B, Wnt3A, Wnt5B, Wnt7A), a Wnt inhibi-
tor (WIF1) and cyclin (D1, D2, D3) proteins, and the
third most significant association is focal adhesion, where
miR-16 appears to target a large number of transcripts that
have fundamental role in cell division and cell-cell com-
munication. Some examples are again the cyclins D1, D2,
and D3, cell division cycle 42, p21-activated kinase 7
(PAK7), v-akt murine thymoma viral oncogene homolog
3 (AKT3), v-crk sarcoma virus CT10 oncogene homolog
(avian)-like (CRKL), mitogen-activated protein kinase
kinase 1 (MAP2K1), laminin gamma 1, B-cell CLL/lym-
phoma 2 (BCL2), and others. These suggest a fundamen-
tal role of miR-16 in controlling cell growth and
maintaining cell-cell interactions. These functions may
explain the observed association between miR-16/miR-
15a deletions and chronic lymphocytic leukemia [61],
and the slower progression of CLL in mice treated with
rapamycin [62].

Conclusion
As the number of miRNA genes has been growing steadily,
especially through high-throughput cloning techniques,
the number of experimentally validated targets has been
lagging markedly behind. Recently, studies that take
advantage of the fact that miRNAs appear to also induce
partial degradation of their mRNA targets have used
microarray methodology to identify genes whose expres-
sion changes upon over-expression or knock-down of
individual miRNAs. Typically hundreds of putative targets
are identified in such studies but there is only partial over-
lap between these sets of putative targets and those that
are computationally predicted using comparative genom-
ics methods. Computational modeling of miRNA-mRNA
interaction and accurate prediction of miRNA target sites
therefore remains an important and challenging problem
in bioinformatics. In particular, it is still poorly under-
stood what constraints beyond matching of the miRNA
seed determine functionality of putative target sites.

In this study, we developed a general method for miRNA
target prediction that extends the already available meth-
ods in several ways. First, we treat the phylogenetic rela-
tionships between species in a rigorous and general way,
without any tunable parameters. That is, the Bayesian pro-
cedure uniquely determines the posterior probabilities for
each conservation pattern and seed type in terms of the
observed conservation patterns of target sites for each
miRNA. Thus, in contrast to many other target predictions
methods which are specifically tailored to operate on a
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particular clade of species, our method can be applied to
any clade of species, and the phylogenetic relations
between the species will be automatically taken into
account when assessing the significance of the site conser-
vation patterns. This will, for example, enable us to easily
update our predictions as more genomes become availa-
ble, without the need of adapting the method.

Note also that our Bayesian procedure for incorporating
information from conservation statistics is generally inde-
pendent from the "site" definition that we employ and
can easily be applied to other target site definitions (see
Methods for details). Thus, if a better definition of target
sites is developed in the future, for example through a bet-
ter understanding of the requirements on functional
miRNA target sites, then we can easily adapt the method
to incorporate conservation statistics in essentially the
same way. Most generally put, given a binary function that
distinguishes "sites" from "non-sites" in RNA sequences,

and given a set of "background frequencies" p( |bg) with
which sites defined by such a function show conservation

pattern  by chance, we can apply the same methodology
to assign posterior probabilities to all putative sites, incor-
porating the information from the conservation statistics
of these sites.

Second, we estimate the evolution of selection pressures
on target sites in a miRNA-specific manner. This enables
us to correctly treat miRNAs that appeared at different
stages in evolution, and whose targets may have under-
gone different selection pressures in different lineages. In
particular, we show that different miRNAs show markedly
different distributions of functional target sites across the
phylogenetic tree and provide the first comprehensive pic-
ture of species-specific and clade-specific miRNA target-
ing. We have additionally shown that, especially in long 3'
UTRs that occur in vertebrates, miRNA target sites show a
significant bias toward occurrence near the start and end
of the 3' UTR. This suggests the possibility that the choice
of a distal polyadenylation site may reduce the activity of
a miRNA target cassette in the center of the 3' UTR, while
introducing other miRNA target sites close to the new
polyA tail.

With respect to the performance of our algorithm, we have
shown that in fly, where extensive comparisons of the per-
formance of target prediction algorithms have been done,
our method performs at least as well as the most accurate
methods available today, with a high specificity over a rel-
atively large range of sensitivities.

Finally, to more robustly infer the function of individual
miRNAs, each of whom may target hundreds of tran-

scripts, we developed a method for identifying biochemi-
cal pathways that are significantly enriched or depleted in
targets of a specific miRNA. We showed that, for well-
studied miRNAs, this approach recovers the known func-
tional associations. In addition, this analysis predicts
novel pathway associations for a significant number of
miRNAs.

Methods
Conservation fold enrichment of different seed types
For the data shown in Figure 1 we focused, for each clade,
on all miRNAs that occur in all species of the clade. Given
that the seed sequence is so important for our inference,
we used small RNA cloning data in human to determine
the most abundant form of each mature miRNA (Pfeffer
et al. [63,64] and M.Zavolan & T.Tuschl, unpublished
data), and we used this form in our prediction (Additional
file 6). To determine which miRNAs are conserved in the
clade we started with miRNA genes annotated in miRBase
and searched the genomes of the other species for matches
to the mature miRNA. Whenever the mature miRNA
mapped with at most one mismatch we consider the
mature miRNA conserved in that species. Since our infer-
ences only uses the first 8 nucleotides of a miRNA, we
then consider a miRNA seed to be conserved in a species
if there exists at least one mature miRNA in that species
with the corresponding seed.

For each seed type t we located all sites in the 3' UTRs of
the reference species that are complementary to a seed of
type t for any of the conserved miRNAs and then com-
puted the fraction ct of these sites that are conserved in all
other species of the clade. We also determined the "back-
ground" conservation frequencies bt for each seed type by
scanning all 3' UTRs of the reference species and comput-
ing the fraction of all sequence segments of the same
length as the seed that are conserved in all other species of
the clade. Note that all seeds of the same length have the
same background frequency bt. This is because we found
that this frequency is largely independent of the number
of occurrences of a particular sequence segment in the ref-
erence species. Finally, the conservation fold enrichment
ft of seed type t is defined as the ratio of observed and
background conservation rates: ft = ct/bt.

Bayesian phylogenetic miRNA target identification 
algorithm

For each miRNA and each of the three seed types we iden-
tify putative target sites separately and assign a posterior
probability to each target site as follows. First we find all
"sites" that are complementary to the seed in the 3' UTRs
of the reference species. Using pairwise alignments
between the reference species and the other species we
determine, for each putative site, which other species have

c

c
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the site conserved. An individual site was considered con-
served if all the base pairs predicted to form between the
miRNA and this site in the reference species could also be
formed with the corresponding sites, extracted from the
genome alignments, in the other species. This defines a
"conservation pattern" for each site, which is a binary vec-

tor  with ci = 1 if the site is conserved in species i and ci

= 0 if the site is not conserved. For example, for the triplet
of worms C. elegans, C. briggsae, and C. remanei, using C.

elegans as the reference species, the vector  = (1, 1) indi-
cates a C. elegans site that is conserved in both other

worms, the vector  = (1, 0) a site conserved only in C.

briggsae, the vector  = (0, 1) a site conserved only in C.

remanei, and the vector  = (0, 0) a site conserved in nei-
ther of the other two worms.

The fact that a putative target site is conserved does not
necessarily imply that the site is functional. Especially for
closely-related species short sequence segments, such as
the 7-mers and 8-mers of miRNA seeds, can easily be con-
served by chance. This evolutionary dependency between
orthologous sites can be taken into account in a number
of different ways. For example, in RNAhybrid [32] the p-
values for orthologous target sites are combined by fitting
an "effective" number of orthologous sequences to the
observed p-value distribution for randomly generated
miRNAs. Here we aim to incorporate the conservation sta-
tistics in a Bayesian framework that takes the phylogeny of
the species explicitly into account and recognizes that a
conserved site may be under selection in any of the sub-
sets of species in which the site is conserved. That is, to
infer how likely it is that a given putative site with conser-

vation pattern  is functional, we want to calculate how

likely it is to observe this conservation pattern  given
that the site is functional and has been maintained by
selection in one or more species, and how likely it is to

observe  in the absence of selection for maintenance of
the site.

To this end we first define a "background model" that

gives the probabilities p( |t, bg) to observe conservation

pattern  "by chance" for a seed of type t, i.e. a particular
7-mer or 8-mer. By "conservation by chance" we mean
that there is no specific selection for maintaining the com-
plementarity of the region in question to the 5' end of the
miRNA. We did not, however, use a background model
that simply reflects the probabilities to observe different
conservation patterns under neutral evolution. Any partic-

ular putative target site may overlap or be part of a site that
is functional for some other reason, and may therefore be
more conserved than would be expected under neutral
evolution alone. Therefore, to estimate the background

probabilities p( |t, bg) we calculated the overall frequen-

cies with which all conservation patterns  occur in the
alignments, averaged over all 8-mers for the 1–8 seed type,
and averaged over all 7-mers for the 1–7 and 2–8 seed
types. In previous work others [22] have estimated back-
ground frequencies of conserved seed matches independ-
ently for seeds that have different absolute frequencies in
the 3' UTRs of the reference species. We, in contrast, only
require the relative frequencies of different conservation
patterns, and we have observed that these are largely inde-
pendent of the absolute frequency of the seed match. Note
that for a clade consisting of the reference species and g
other species, we are estimating the relative frequencies of
2g possible conservation patterns for each seed type. Fur-
ther subdividing these 2g different conservation patterns
by the absolute frequency of the seed match would reduce
the amount of data available per seed too much for an
accurate estimation of all the parameters.

We next calculated how likely it is to observe different

conservation patterns  given that the putative target site
is functional in at least one of the species. To this end we
had to quantify the effect of selection on functional target
sites. This is very difficult to do in complete generality. For
example, one would generally expect that mutations that
destroy functional target sites can have wildly varying
effects on fitness with some sites being almost lethal when
destroyed and others having only very mild deleterious
effects. In addition these fitness effects will generally differ
from species to the species, even for orthologous func-
tional target sites. Of course target sites can also be spon-
taneously created through mutations in 3' UTRs, and in
some cases these will act as functional target sites that can
have either beneficial or deleterious effects. Thus, the rates
at which orthologous target sites appear and disappear
through evolution is a complex function of fluctuating
selection pressures of which we know virtually nothing. In
order to be able to calculate meaningful probabilities for

observing different conservation patterns  for functional
sites we therefore make the following simplifying assump-
tions. First, we assume that given a set of conserved puta-
tive target sites, each of the conserved sites can be either
"functional" or "nonfunctional". In this context "func-
tional" means that selection has acted to ensure that the
target site remains conserved and "nonfunctional" means
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that the target site has evolved according to the back-
ground model. To take the worm example, if a functional
C. elegans site is functional in both other worms as well,
than the site will necessarily be conserved in both, i.e. we

will have  = (1, 1). If the site is functional in C. briggsae

only, then we might observe either  = (1, 0) or  = (1,
1), because the site is necessarily conserved in C. briggsae,
and it may still remain unmutated by chance in C. rema-
nei.

Thus, in general we consider all possible "selection pat-
terns" for the site across the different species. Like the con-

servation pattern, a selection pattern  is a binary vector
with si = 1 if the site is functional (under selection) in spe-

cies i, and si = 0 otherwise. We calculate the probabilities

p( |t, ) to observe conservation pattern  given selec-

tion pattern  (and seed type t) as follows. Let C( )

denote the set of all conservation patterns  that are con-

sistent with the selection pattern . To be consistent with
the selection pattern, the site needs to be conserved in all
species in which it is presumed to be under selection, i.e.

for all  in C( ) we have that ci = 1 for all i for which si =

1. The probability p( |t, ) is then given by

Note that p( |t, ) is just the probability that the site is
conserved by chance in those species which have ci = 1 but

are not under selection, i.e. si = 0.

Finally, we need to quantify how likely it is a priori that a
target site in the reference species will be under selection
in a particular subset of the other species. That is, we need

a prior probability distribution p( ) that gives the proba-
bility that a miRNA site will be under selection in all spe-
cies i for which si = 1. One of the key novel features of our

model is that we allow this prior distribution p( ) to vary
between different miRNAs. We thus take into account the
species- or clade-specific conservation of functional tar-
gets, i.e. that the reference species may share functional
target sites with different subsets of species for different
miRNAs.

For each miRNA we need to estimate the prior probabili-

ties p( ) of all possible selection patterns. That is, we
need to estimate what fraction of putative sites in the ref-

erence species is under selection in each possible subset 
of the other species. To do this we can first use the conser-
vation of the miRNA gene. That is, if the miRNA gene is not
conserved in a given species i, then we will assume that
sites for this miRNA cannot possibly be under selection in
species i. Thus, for every miRNA in the reference species
we check which of the other species contains a miRNA

with the same seed. When then set p( ) = 0 for all vectors

 in which the site is presumed under selection in a spe-
cies that does not contain the miRNA. Note that, although
unlikely, it is in principle conceivable that problems with
the genome assembly of one of the species causes us to
miss the ortholog of a particular miRNA gene. This will
result in the conservation information from this species to
be ignored for this particular miRNA.

The most general approach to estimating p( ) would

now be to simply find the distribution p( ) that has over-
all maximum likelihood given the data. Formally, the

probability p( , t) to observe the conservation pattern 
for a given putative target site of seed type t is given by

summing over all possible selection patterns :

where S is the set of all selection patterns that are consist-

ent with the miRNA gene conservation pattern, p( |t, )

is given by equation (1), and p( ) is the prior probability
distribution over selection patterns which we want to esti-

mate. Let n( , t) denote the number of occurrences of
putative target sites of seed type t that have conservation

pattern . The likelihood L given the data, i.e. the

observed counts n( , t), is then given by

Given sufficient data, i.e. n( , t) >> 0 for all , we could

estimate p( ) by maximizing L with respect to p( ). The
amount of data is limited, however, and the distribution

p( ) generally has a large number of independent com-
ponents (2g for g species). As we believe that it is not pos-

sible to robustly fit the entire distribution p( ) without a
significant risk of over-fitting, we instead aimed to para-

metrize reasonable distributions p( ) using a much
smaller set of parameters, i.e. on the order of g rather than
2g parameters. A second piece of information that can
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help us estimate p( ) consists of the phylogenetic rela-
tionships between the species. That is, one would gener-
ally expect that functional target sites in the reference
species are more often also functional in closely related
species than they are in distantly related ones. It is thus
natural to model the evolution of selection patterns along
the branches of the phylogenetic tree of the clade. In anal-
ogy with evolutionary models for the evolution of gene
sequences one might consider models in which selection
for a site may "mutate" from "on" to "off" along each
branch of the tree, with a probability of "mutation" pro-
portional to the length of the branch. However, in con-
trast to such simple evolutionary events as point
mutations in sequences, the "mutations" in our model
correspond to changes in selection pressures and we see
no reason to assume that these occur at a constant rate
along each branch of the phylogenetic tree. Indeed, as we
will see below, our results suggest that the rate of turnover
of selection along a given branch of the tree differs signif-

icantly between miRNAs. To reasonable parametrize p( )
we would therefore have to fit independent rates of loss
and gain of selection along each branch of the tree for

each miRNA. In addition, for every selection pattern  we
would need to consider all evolutionary histories of selec-
tion loss and gain that are consistent with the resulting
selection pattern at the leaves of the tree. Finally, note that
we inherently treat the species in the clade asymmetri-
cally. That is, we look for putative sites in the reference
species only and then use pairwise genome alignments to
determine the conservation pattern of each putative site in
the reference species. We thus by definition never consider
conservation patterns in which the site is conserved in
some of the species but not in the reference species. In

summary, we looked for a parametrization of p( ) that is
flexible enough to allow for different rates of turnover of
selection along each branch of the tree, that respects the
topology of the phylogenetic tree, that takes into account
our inherent asymmetric treatment of the reference spe-
cies, and that minimizes the number of free parameters
needed, so that over-fitting is avoided as much as possi-
ble. The parametrization that we chose is the following.
We take the phylogenetic tree of the set of related species,
and take the reference species as the root of the tree, as
illustrated in Figure 8a for the Drosophila species. Starting
from a functional site in the reference species we now
move along the tree from top to bottom and assume that
in each branch the "functionality" of the site can only be
lost. That is, if the site is not under selection at a given
internal node of the tree, we assume that it is also not

under selection in any of its descendants. The probabili-

ties p( ) can then be parametrized by giving, at each node

k, the probabilities ρ11(k), ρ10(k) and ρ01(k) that the func-

tionality is maintained in both descendants, in the left
descendant only, or the right descendant only (Figure 8b).
Note that we assume that if the site was not under selec-
tion in either descendant then the site was already not
under selection in the parent, and that at each node k the

probabilities sum to one, ρ11(k) + ρ10(k) + ρ01(k) = 1.

There are thus 10 independent parameters for the Dro-
sophila tree of Figure 8a which has 5 internal nodes. A

final parameter ρ gives the probability that functionality is
maintained in going from the reference species to the first

internal node. Thus, with probability ρ the site is con-
served in at least one of the other species, and with prob-

ability (1 - ρ) it is specific to the reference species. The tree
in Figure 8a shows a selection pattern with selection in D.
simulans, D. yakuba and D. pseudoobscura. Using our
parametrization the prior probability of this selection pat-

tern is ρρ11(1)ρ11(2)ρ01(3)ρ10(4) (we number the nodes

from top to bottom). A nice feature of this parametriza-

tion of p( ) is that the selection at all internal nodes of
the tree is uniquely determined by the selection at the
leaves of the tree, i.e. no sum over different evolutionary
histories is required.

Note that by using only conservation information, we
cannot possibly distinguish sites that are only functional
in the reference species from sites that are not functional
at all. That is, we do not know what part of the fraction (1
- ρ) corresponds to sites that are functional, reference-spe-
cific sites and what fraction is nonfunctional. The inferred
fraction ρ therefore provides a lower bound on the fraction
of functional sites. For simplicity, we will make the con-
servative assumption that only the fraction ρ of sites is
functional, and refer to these sites as the fraction of "func-
tional" sites.

For each miRNA we estimate the parameters ρ, and ρ11(k),

ρ10(k) and ρ01(k) for each node k, by maximizing the like-

lihood of the distribution given the observed data, i.e.

equation (3). Let ω denote one of the possible selection

patterns for the two descending branches, i.e. ω ∈ {01, 10,

11}, and define the indicator function δ( , ω, k) such

that δ ( , ω, k) = 1 whenever the parameter ρω(k) occurs

in p( ) and δ ( , ω, k) = 0 when it does not. We then
have for the derivatives

s

s

s

s

s

s

s

s

s s
Page 17 of 22
(page number not for citation purposes)



BMC Bioinformatics 2007, 8:69 http://www.biomedcentral.com/1471-2105/8/69
Using this it is easy to show that L can be maximized with
respect to the parameters ρω(k) by an expectation maximi-
zation (EM) procedure. If we define

then the EM update equations are given by

By iterating these equations we can determine the optimal
ρω(k). Since, as can also be shown by taking second deriv-
atives, the likelihood L is a concave function of the param-
eters ρω(k), the EM procedure is guaranteed to converge to
the unique global optimum of the likelihood.

Once all ρω(k) have been determined for a given miRNA

we can calculate posterior probabilities of functionality
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Modeling the selection pressure on miRNA target sitesFigure 8
Modeling the selection pressure on miRNA target sites. a. The phylogenetic tree of the species in the clade (here flies) 
is rooted at the reference species (here melanogaster) and selection is modeled starting from the root and moving down the 
tree (see Methods for details). At each internal node k there are probabilities for selection to be maintained in one or both 
children of the node (see Methods for details). b. Relationship between selection and conservation patterns: Example of a 
selection pattern on a particular set of orthologous target sites in flies. Open circles indicate absence of selection pressure, 
closed circles indicate presence of selection pressure. Selection pressure is absent in Drosophila ananassae, mojavensis and vir-
ilis (D.ananassae, D.mojavensis, and D.virilis). The possible conservation patterns consistent with the selection pattern for this 
target site are listed in the table. The site needs to be conserved in all species in which selection pressure operates, namely 
Drosophila simulans, yakuba and pseudoobscura (D.simulans, D.yakuba, D.Pseudoobscura). In the species in which selection 
pressure does not operate, the site may or may not be conserved.
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for each putative target site as follows. As mentioned
above, we consider a target site functional if it is under
selection in the reference and at least one other species.
The nonfunctional sites are then by definition those sites
that are not under selection in any of the other species. We

will denote this no-selection pattern as . For a site of

seed type t and conservation pattern  the posterior prob-
ability that the site is functional is then given by

Note that the prior probability of no selection is simply (1

- ρ), i.e. p( ) = 1 - ρ, and that the probability for conser-

vation pattern  given no selection is simply the back-
ground probability

We can thus also write the posterior as

The parameter ρ thus corresponds to the estimated frac-
tion of all putative target sites in the reference that are
functional, i.e. under selection in at least on other species.

Finally, note that the sums in equations (1) and (2)
involve a number of terms that grows exponentially with
the number of species in the clade. We believe that this
will not cause any computational problems in clades with
less than 20 or so species. For much larger sets of species
these sums can become computationally prohibitive. In
those circumstances one could reduce the number of spe-
cies by choosing, for each set of closely-related species,
only a single representative. For species that are so closely-
related that most putative target sites are conserved
between them, choosing a single representative per group
would hardly affect the predictions.

Sequence data
We carried out miRNA target predictions for all available
human, fly, fish and worm RefSeq transcripts present in
the 17th release of the Refseq database. We mapped all
transcripts to the corresponding genomes using the Spa
cDNA-to-genome alignment program [65], and the
genome assemblies hg17 (human), dm2 (fly), ceWB05
(worm) and danRer3 (fish) provided by the Genome Bio-
informatics group at the University of California, Santa
Cruz [66]. From the same source we also downloaded
pairwise alignments of several genomes with the genome
of reference species, as follows: for human we down-

loaded hg17-to-panTro1, hg17-to-rheMac2, hg17-to-
canFam2, hg17-to-bosTau2, hg17-to-mm7, hg17-to-rn3,
hg17-to-monDom1 and hg17-to-galGal2; for fly we used
dm2-to-droSim1, dm2-to-droYak1, dm2-to-droAna1,
dm2-to-dp3, dm2-to-droMoj1, dm2-to-droVir1; for fish
we used danRer3-to-fr1 and danRer3-to-tetNig1. Finally,
for worm we used the software Threaded Blockset Aligner
(TBA) [67] to align C. briggsae and C. remanei to C. ele-
gans.

Pathway enrichment analysis
We used the KEGG database to infer pathways preferen-
tially targeted by individual miRNAs. The KEGG database
(ftp.genome.jp) contains mappings from NCBI Gene
identifiers to pathway IDs (data files: [org]_ncbi-
geneid.list, with [org] being the species code)), while the
Gene database of NCBI (ftp://ftp.ncbi.nih.gov/gene/) pro-
vides mappings from Gene IDs to Refseq IDs
(gene2refseq). By intersecting these data sets we obtained
the mappings from Refseq IDs to pathways. We then used
a Bayesian method to determine the significance of the
overlap between the targets of each seed-equivalent set of
miRNAs and each specific pathway.

For a given pathway and miRNA let n01, n10, n00 and n11

denote respectively the number of predicted targets of the
miRNA that are not part of the pathway, the number of
genes in the pathway that are not targeted by the miRNA,
the number of genes that are neither targets of the miRNA
nor members of the pathway, and the number of genes in
the pathway that are predicted to be targeted by the
miRNA. While pathway membership is a simple boolean
variable (a gene is either a member of a given pathway or
it is not), we can only assign probabilities for a given gene
to be a miRNA target. Assume that a given gene has n puta-
tive target sites for a given miRNA and let pi denote the

posterior probability of the ith site. The probability that at
least one of the sites is functional is then given by

. We use ptar as the probability that

the gene is targeted by the miRNA and obtain n01 and n11

by summing ptar over all genes that are not in the pathway

and all genes in the pathway respectively. Similarly we
sum (1 - ptar) over all genes that are not in the pathway and

all genes in the pathway to obtain n00 and n10 respectively.

Finally we calculate the probability of the observed counts
n00, n10, n01, and n11 under an "independent model", in

which the probability to be targeted by the miRNA is inde-
pendent of pathway membership, and a "dependent
model" in which the probability of miRNA targeting is
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generally dependent on pathway membership. The likeli-
hood under the independent model is given by

where Γ(x) is the gamma function, a dot indicates sum-
mation over the variable in question, i.e. n1. = n10 + n11 and
n is the total number of genes. For the dependent model
the likelihood is given by

where the integral is over the simplex p00 + p10 + p01 + p11 =

1. The ratio of likelihoods Ldep/Lindep quantifies the

amount of evidence for association between the miRNA
targets and the pathway. This association can either be
positive (miRNA targets are enriched in the pathway) or
negative (miRNA targets are depleted in the pathway). In
Figure 7 we plotted the quantity sign(n11n.. - n1.n.1)pdep,

where  is the posterior probability of

the dependent model (assuming a uniform prior).
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Additional File 1
Phylogenetic distribution of functional target sites. Inferred selection 

pattern distributions p( ) for all miRNAs that are conserved in all ver-

tebrate (panel a) and all fly (panel b) species. Each row corresponds to a 

miRNA seed and each column corresponds to one of the variables ρω(k) 

– where k indicates the internal node in the tree and ω indicates which of 

the subtrees are under selection – that parametrize p( ) (see Methods). 

The miRNAs are sorted by the inferred total fraction ρ of putative target 
sites that is under selection in at least one other species.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-69-S1.pdf]
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Additional File 2
Number of miRNA targets predicted to be under selection pressure for 
each miRNA.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-69-S2.xls]

Additional File 3
Detailed comparison of the overlap between the predictions provided by 
our method and the methods of Stark et al. [25] and Grün et al. [23].
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-69-S3.xls]

Additional File 4
Profile of the exon coverage of short (left panel) and long (right 
panel) 3' UTRs. We used the mappings of spliced ESTs from the UCSC 
database to determine, for each nucleotide in a 3' UTR in our data set, 
the fraction of times the nucleotide has been observed in an exon, as 
opposed to an intron. We only used ESTs that mapped uniquely with at 
least 95% identity to the genome. Genome gaps longer than 30 nucle-
otides were considered to be introns. The profiles of the computed exon cov-
erage along relatively short (less than 2 kb, left panel) and relatively long 
(longer than 4 kb, right panel) 3' UTRs are shown in the plots with a con-
tinuous line. Also shown are the histograms of the relative positions of pre-
dicted sites (with posterior probability ≥ 0.5) in the same 3' UTRs.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-69-S4.pdf]

Additional File 5
Pathway analysis for all miRNAs and all KEGG pathways. Represen-
tation of individual pathways among the predicted targets of a given 
miRNA. Each column corresponds to a KEGG pathway and each row to a 
group of miRNAs with the same seed sequence. Red indicates overrepre-
sentation of the targets of a specific miRNA among the genes in the corre-
sponding pathway, whereas blue indicates depletion. The intensity of the 
color indicates the posterior probability of the dependent model. Pathways 
have been grouped in larger functional categories according to the KEGG 
annotation.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-69-S5.pdf]

Additional File 6
MiRNA seed families. All miRNAs that have the same seed (positions 1–
8) were clustered together. The table shows the representative miRNA as 
well as the members of each cluster.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-69-S6.xls]
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