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Abstract

Background: False occurrences of functional motifs in protein sequences can be considered as
random events due solely to the sequence composition of a proteome. Here we use a numerical
approach to investigate the random appearance of functional motifs with the aim of addressing
biological questions such as: How are organisms protected from undesirable occurrences of motifs
otherwise selected for their functionality? Has the random appearance of functional motifs in
protein sequences been affected during evolution?

Results: Here we analyse the occurrence of functional motifs in random sequences and compare
it to that observed in biological proteomes; the behaviour of random motifs is also studied. Most
motifs exhibit a number of false positives significantly similar to the number of times they appear in
randomized proteomes (=expected number of false positives). Interestingly, about 3% of the
analysed motifs show a different kind of behaviour and appear in biological proteomes less than
they do in random sequences. In some of these cases, a mechanism of evolutionary negative
selection is apparent; this helps to prevent unwanted functionalities which could interfere with
cellular mechanisms.

Conclusion: Our thorough statistical and biological analysis showed that there are several
mechanisms and evolutionary constraints both of which affect the appearance of functional motifs
in protein sequences.

Background

The detection of functional sequence patterns (motifs) in
a yet uncharacterized protein is one of the most widely
used and powerful methods for assigning a function to
proteins in newly sequenced proteomes. Sequence pat-
terns associated to functional motifs are usually generated
manually in an attempt to maximize the number of

sequences that clearly belong to the set functionally char-
acterized by the motif (true positives, TP), while minimiz-
ing the number of unrelated sequences (false positives,
FP) [1]. The possibility of estimating the number of false
predictions is critical in evaluating the significance of find-
ing a pattern in a protein sequence. The false positive rate
of a pattern on a large protein database can be estimated
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from the number of matches expected to occur by chance
[2,3]. In the following we will refer to this thesis as the
'classical hypothesis'. Both these authors measured the
expectation of occurrence of PROSITE [4] functional pat-
terns in a sequence database of size N, simply as the prod-
uct of N and the amino acid probabilities in each position
of the pattern. The individual amino acid probability val-
ues were calculated from the frequencies of residues in
Swiss-Prot [5]. Sternberg [2] assumed the calculated
expectations as a benchmark for evaluating motif matches
on the Swiss-Prot database as annotated in PROSITE; Nev-
ill-Manning and co-workers [3] used such expectations for
assessing the specificity of motifs exhaustively generated
from a multiple sequence alignment of related proteins.
From this perspective, the number of occurrences of a
motif in a set of proteins can be regarded as the sum of the
functional occurrences plus the random occurrences, i.e.
motif matches explained by the sequence composition
alone [6].

The statistics of the number of occurrences of regular
expression motifs in a random text, has been studied by
several authors [[7-11] and related references]. Nicodeme
and co-workers [9] in particular, computed the theoretical
expectation A of the number of matches of PROSITE pat-
terns on the PRODOM multi-alignment consensus
sequences [12]; This analytical method uses computer sci-
ence algorithms and combinatorial mathematics to give a
constructive method for approximating (or calculating
exactly, if the size of the problem allows for this) the dis-
tribution of number of matches of a given regular expres-
sion in a random text, the random text being modelled as
either a Bernoulli sequence (independent letters with
given probabilities of occurring) or a Markov sequence
with given transition matrix. The matches can be defined
as either (possibly) overlapping or as non-overlapping.
For large texts, it is shown that the number of occurrences
of the expression in the text will approximately follow a
Normal distribution with mean and variance that can be
calculated. In the application example, matching
PROSITE motifs in a PRODOM based set of sequences,
the whole database is treated as one large text and the let-
ter frequencies used are thus computed as averages over all
target sequences. The quantity L was compared to the cor-
responding total number of observed matches O, with the
finding that A systematically underestimates O, a result
that can be expected from the functional significance of
PROSITE patterns.

Whereas events of over-representation of a motif are usu-
ally related to its biological significance, the analysis of
the relationship between the expected number of random
matches of a motif (1) and its number of false predictions
on a biological database (FP), might provide insight into
the evolutionary nature of protein sequences. Indeed a
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chance match of a functional motif is unlikely to be func-
tional wherever it is found in a protein: a motif will be rec-
ognized as functional only when occurring in the right
conformation, location and cellular context. It is possible,
however, that, at least in some cases, a match occurring for
the "mere" sequence composition, fulfils physical condi-
tions similar enough to those of the corresponding func-
tional occurrence, thus giving rise to an "unwished"
functionality. These cases would be, as a rule, disadvanta-
geous for the cell and could be the object of a counter-
selection process. On the other hand, a functional motif
may involve such a high stringency of boundary condi-
tions (protein conformation, cellular compartment, etc.)
that its appearance (e.g. by exon shuffling or by a random
mutation of a "pre-motif") in more than one unrelated
protein family would be extremely unlikely to result in
function interference.

The relationship between A (expected) and FP (observed)
has not been yet thoroughly investigated. In particular, a
quantitative relationship, valuable for inferring the
expected number of false positive matches for an unchar-
acterized pattern in a sequence database, is yet to be estab-
lished. Neither has a qualitative analysis of the biological
features of false occurrences, especially if such occurrences
are associated to significantly higher or lower values of the
corresponding theoretical expectations, been reported in
the literature.

Here we propose a statistical analysis of the relationship
between the theoretical expectation of the number of pat-
tern matches in a database of random sequences and the
number of false occurrences in a biological database. The
study has been carried out for PROSITE patterns in the
form of regular expression, but it is general enough to be
applied to any motif of the same form.

Our approach is based on several concepts. First, we com-
puted the expectation A of a pattern P, as the mean
number of hits in N database randomizations, instead of
deriving it from some a priori statistical model for the
occurrences of regular expressions (or motifs) in random
texts. Second, a regression analysis on the set of m points
(A, FP), where m is the number of patterns under consid-
eration, was used to determine an analytical relationship,
which generalizes the (A, FP) relationship to any motif
and which can be, therefore, used for predictive purposes.
Third, a study of statistical and biological features of the
FP matches was performed for patterns displaying a
number of false predictions in a biological database
remarkably greater or lower than the expected number of
hits in the corresponding randomized database. Our find-
ings suggest diverse fascinating mechanisms and con-
straints occurring during evolution perhaps affecting the
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random appearance of functional motifs in protein
sequences.

Results

In the study of the relationship between the expected
number of matches A of a functional motif in a random
dataset and the observed number of its false occurrences
in the corresponding biological dataset, three important
issues must be considered and discussed beforehand: the
set of functional motifs used to carry out the experiments,
the biological sequence dataset(s) in which the functional
motifs are searched, and the statistical model adopted for
establishing the theoretical expected number of random
matches.

The dataset of motifs

The set of functional motifs in the form of regular expres-
sions was derived from the PROSITE database of patterns
and generalized profiles, as described in methods.

Among other useful features, the PROSITE database pro-
vides, for each entry, complete lists of Swiss-Prot proteins
manually verified for true positive (TP), false positive
(FP), and false negative (FN) assignments [4].

Our work is dependent on the accuracy of PROSITE anno-
tations of true and false positive matches. Random errors
in the PROSITE annotation, however, should not affect
the statistics of motif matches for two reasons: firstly, they
are rare. In fact, true and false positives of PROSITE pat-
terns are manually verified by expert curators through
both the literature and the information retrieved from
other databases such as Swiss-Prot or Pfam [13]. Secondly,
random errors, by definition, do not have a preference for
specific groups of patterns, and hence do not cause a sys-
tematic bias in our analysis. As it will be discussed, the
presence of systematical errors, which may partly influ-
ence some results, has been evaluated and rejected.

The sequence datasets

The complete Swiss-Prot sequence database is a general
reference for motif statistics. However, it is redundant and
its composition in protein families and organisms is still
biased by the trends of the scientific community. The
analysis carried out on human100 (see methods) must
take into account that it is considerably smaller than the
complete human proteome. The yeast proteome is only
partially represented in the Swiss-Prot database. The two
further proteomes analysed, E. coli and M. jannaschii,
which instead are almost entirely represented in the Swiss-
Prot database, belong to small organisms, and unfortu-
nately the number of PROSITE patterns' FPs is too small
for a solid statistical analysis (data not shown).
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The statistical model

The procedure adopted to estimate the expected number
of random matches of a sequence motif does not rely on
a priori assumptions about the statistical distribution of
such matches (see methods). Moreover, it allowed us to
overcome the obstacle of estimating the number of
chance occurrences for those patterns characterized by
variable spacers between more conserved positions. In
fact, the problem of analytically calculating the probabil-
ity of occurrence of this type of patterns in a random text
has not yet been faced [11].

As a control, the analytical calculation of A has also been
performed by using the Nicodéme and co-workers
approach [9] for the subset of patterns with spacers of
fixed length. The two approaches provide similar results,
even if the Pearson correlation between A, as calculated
with our procedure, and FPs is always higher than the one
between A, as determined by Nicodéme and co-workers,
and FPs (see Table 1).

The Nicodeme and co-workers approach is slightly differ-
ent from the approach used in this work, since our
method of randomizing by permutation within each
sequence and of defining matches as simply absence or
presence of the motif in the target sequences leads to a
closer link between the actual sequence database and the
randomized sequences and also to simpler statistical
properties for the number of matches. The major conse-
quence concerns patterns abundant in cysteines. Since
proteins are particularly heterogeneous regarding the den-
sity of the cysteines, the value of A of some cysteine-rich
patterns turned out to be underestimated by Nicodeme
and co-workers and overestimated by our procedure. Such
patterns were discarded from the regression analysis.

Fig. 1 shows the plot (A, FP), where A is the mean number
of matches of a pattern in N (N = 1000) outcomes of a
biological sequence dataset randomization, and FP is the
number of false positive matches in the original dataset.
The plot displays a linear behaviour, and the Pearson cor-
relation between the x-axis and y-axis values is > 0.87 for
all the sequence datasets considered (Table 1). A regres-
sion line was then fitted to the data. The values of the
slope are reported in Table 1 for each sequence dataset. It
is worth noting that the slope is lower than one for both
sprot100 and human100, whereas it is one for yeast100,
within the evaluated error.

PROSITE and reversed patterns statistical analysis

The lines defining the 95% confidence interval divide the
(A, FP)-plane into three regions (see Fig. 1). Patterns
belonging to the first region (I) are such that FP > A, (out-
liers with observed number of random matches greater
than the corresponding expected number). Patterns with
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Table I: Correlation and slope of PROSITE and reversed patterns
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db pattern Cl 2 slope R2
sprot prosite 0.75 0.96 0.877 £ 0.019 0.71
reversed 0.86 0.92 1.080 + 0.023 0.71
human prosite 0.84 0.88 0.908 + 0.031 0.62
reversed 0.86 0.89 1.055 + 0.028 0.73
yeast prosite 0.72 0.87 1.008 + 0.046 0.58
reversed 0.78 0.82 0.977 + 0.049 0.54

(Cl): Pearson correlation based on [9] (C2): Pearson correlation based on randomized datasets.

A < FP < Ay are in the central region (II), and those belong-
ing to the third region (III) are such that FP < A, (outliers
with observed number of random matches lower than the
corresponding expected number).

The number and features of patterns from regions I, Il and
III were analysed separately and then compared. The
majority of the patterns belong to the central region (II),
while few patterns have a number of FPs significantly
greater than expected by chance (region I) in every dataset
considered. sprot100 and human100 also display a subset
of outliers which have a number of FPs significantly lower
than expected by chance (region III).

On a biological dataset, matches of random patterns, i.e.
derived from differently ordered positions of functional
motifs, probably occur by chance. We obtained rand-
omized PROSITE patterns by reversing their regular
expressions (see methods). This procedure should gener-
ate patterns with no functional significance. Being made
up of the same composition of residues as the original
PROSITE patterns, these random patterns display the
same statistical properties, including the information con-
tent [14], as the original ones. The statistical analysis of
the reversed patterns revealed a high correlation between
matches in the random datasets and matches in the bio-
logical datasets and a regression slope that is always equal
to one (Table 1).

The comparison between the slope values of PROSITE and
reversed patterns shows that, whereas reversed patterns
have slope ~ 1 on every datasets considered (i.e. A = FP),
PROSITE patterns display a slope value lower than one,
namely, on average, a higher number of matches in the
random datasets as opposed to the biological datasets in
the cases of sprot100 and human100.

PROSITE patterns
In the following, the detailed analysis performed on the
sprot100 dataset is reported.

Patterns in region Il
1196 PROSITE patterns lay in region II (see Table 2). Pat-
terns where FP = 0 are predominant in this region. The fact

that the majority of patterns fall in this region shows that
our model confirms the "classical hypothesis" [2,3],
although the slope < 1 (see table 1) indicates a general
tendency of having FP < A.

Even though the majority of patterns has a number of FPs
similar to the number of matches expected by chance, we
need to take into account that the cell machinery is con-
stantly subject to mutational events and, consequently, to
the force of natural selection. It is therefore reasonable
that, on average, regarding the accidental occurrence of
functional motifs, protein sequences do not behave as
mere aggregations of letters. Thus, we hypothesize that,
albeit if as a very small effect, the tendency of having FP <
A might reflect the evolutionary pressure (non-uniformly
distributed) against the random appearance of functional
motif matches. This hypothesis of "mild counter-selec-
tion" cannot be proved. It is, however, strengthened by
the fact that, for non-functional patterns, we found FP ~A
(see below).

Outliers of region |

Sixty-three PROSITE patterns lay in region I (Table 2 and
3). In a Poisson distribution (see Methods) the number of
patterns expected to fall by chance in this region is 18
(Table 4). To investigate possible reasons why these
motifs display a much higher number of false positives
than expected by chance, we analyzed those patterns in
some detail and identified two groups:

1) patterns that are mis-annotated in PROSITE (if cor-
rectly annotated they would belong to region II);

2) true outliers.

1) mis-annotated patterns are examples of patterns whose
occurrences, annotated as FPs for a specific PROSITE pat-
tern, are able to identify functionally or structurally rele-
vant regions in protein families different from the true
positives protein family but anyway functionally related
to it. Two of them are PS00103 and PS00120.

The majority of PS00103 true positives are ribose-phos-

phate pyrophosphokinases, which contain the Pribosyl-
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Figure |

The number of false positives versus the number of random matches. The mean number of matches of a pattern in N
(N = 1000) outcomes of a biological sequence dataset randomization () versus the number of false positives (FP) on the bio-
logical dataset. Each point corresponds to a PROSITE pattern. The two non-straight lines over and below the bisector delimi-
tate the 95% confidence intervals around the line A = FP and divide the plan into three regions: |, Il and Ill. Fig. la and b (which
is a zoom of the square area of Fig. |a) display sprotl00 data, whereas Fig. Ic and d represent human|00 and yeast|00 data,
respectively.
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Table 2: The information content (IC)
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Pattern region N IC average Qys Qs
| sprot|00 63 (5%) 26807 23.3 30.7
1l 36 (3%) 20305 18.9 219
I 1196 (92%) 33303 264 374
I* 333 24202 223 26.3
p=FP=0 863 36904 302 40.5
| human100 20 245+ 12 20.6 28.7
n 2 173 0.5 17.1 17.5
I 830 328+04 252 374
I 150 219+02 20.3 23.6
uw=FP=0 680 352+04 283 39.0
| yeast|00 10 244 £ 2.1 214 292

i 0 - - -
I 598 319+ 04 254 35.6
¥ 65 208+ 0.3 19.5 21.8
p=FP=0 532 332+04 269 36.5

Region II* is the region Il without patterns for which A = FP = 0; Q,; is the 25t percentile and Q5 is the 75t percentile; N is the number of patterns

in the corresponding region.

tran Pfam [15] domain. The PS00103 motif is well
conserved in this domain. Nearly all the false positives are
adenine phosphoribosyltransferase (APRT), which also
have a Pribosyltran Pfam domain. It would be, therefore,
more appropriate to use this motif to describe the wider
family of Pribosyltran domain containing proteins.

PS00120 is the PROSITE motif built around the serine
active site of lipases. Many false positives are found
among esterases. This pattern is very conserved (especially
the stretch around the catalytic site) in the Pfam alpha/
beta hydrolase fold domain, which is found in several
protein families including lipases and esterases.

Another interesting example of mis-annotated pattern is
PS00675 which is an atypical ATP-binding motif A (p-

Table 3: The order propensity (OP) value (GlobPlot)

loop) characteristic of bacterial regulatory proteins
involved in the ATP-dependent interaction with sigma-54
[16,17], such as algB, dcdT, flbD, hoxA, hupR1, hydG,
ntrC, pgtA or pilR. The majority of false positives of this
motif belong to the eukaryotic rab-like yptl family of
GTP-binding proteins. Thus, PS00675 might be either an
ancestral motif originally duplicated by mechanisms such
as exon shuffling, or a case of convergent evolution. In
both cases, at present, it co-exists in bacterial and eukary-
otic proteins with no functional interference.

2) The number of true outliers is in agreement to what
expected by chance from the Poisson distribution. One
interesting example of a true outlier among many others
is represented by PS00014, which is annotated in the ELM
database (Eukaryotic Linear Motif. database) [18,19] as

Pattern region dataset N OP average Qys Qs
| sprot|00 63 0.37 £ 0.03 0.18 0.50
1 31 0.25 + 0.03 0.14 0.33
I* 252 0.31 £0.02 0.13 0.43
| human100 19! 0.25 + 0.06 0.03 0.30
i 2 0.14 £ 0.02 0.14 0.16
I* I16! 0.22 £ 0.02 0.00 0.30
| yeast|00 10 0.41 £ 0.08 0.23 0.49
Il 0 - - -
¥ 53! 0.32 £ 0.04 0.17 0.39

N is the number of patterns. The number of patterns in region lll and region II* differs from the number of patterns in the corresponding regions of
table 2 because only for patterns with FP > 0 the OP value can be calculated.
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Table 4: Number of expected by chance and observed PROSITE patterns in regions | and Il

95% 99%
| p-value 11l p-value | p-value 1] p-value
sprot|00 exp 18 <0.0001 3 <0.0001 4 <0.0001 0.5 <0.0001
obs 63 36 54 22
human|00 exp 9 0.0012 0.6 n.s. 2 0.0002 0.1 0.0002
obs 20 2 9 3
yeast100 exp 5 0.0385 0.1 n.s | <0.000 0 n.s
obs 10 0 7 I 0

p-value is the p-value assigned to the number of outliers observed (obs) versus the number expected (exp) from the Poisson distribution and n.s.

stands for p-value > 0.05.

TRG_ER_KDEL. This is a short C-terminal signal motif
which is strictly conserved in the major endoplasmic retic-
ulum (ER) proteins, and which allows proteins that per-
manently reside in the ER lumen to be distinguished from
newly synthesized secretory proteins. In sprot100, this
motif is also detected in 53 non-related proteins, which
are clearly not located in the ER (because they are of bac-
terial or viral origin, for example).

A further analysis was performed on the PS00014 false
positive sequences annotated in the Swiss-Prot release
50.1. The subcellular location of each protein was
retrieved by means of the Swiss-Prot annotation. Out of
the 100 FPs, only two reside in the ER: one is annotated in
the manually curated ELM database as true positive and
the other could potentially belong to the set of true posi-
tives.

We hypothesize that a "proliferation" (e.g. by gene dupli-
cation) of FPs might have occurred, in some cases, in
organisms or cellular compartments where their occur-
rence does not interfere with the function associated to
the motif. In fact, it is unlikely that negative selection will
act on accidental duplication events if these do not per-
turb the cell functionality.

Outliers of region Ill

Thirty-six patterns lay in region III (Table 2 and 3). Fol-
lowing the Poisson distribution, the number of patterns
expected to fall in this region by mere chance is 3 (see
Table 4). These patterns have a number of FPs which is
lower than A. It should be also noticed that they display
low information content and their FPs occur in more dis-
ordered (more exposed) regions of proteins (see next sec-
tion). Our findings suggest that they are likely to result in
"unwished" functionalities and, therefore, are good candi-
dates for negative selection.

There are two possible arguments that might be at vari-
ance with the negative selection hypothesis: The number
of FPs is underestimated because of

1) a systematic underestimate in the PROSITE annotation
for true positives

2) a non-complete coverage of the sequence datasets

Here we discuss both arguments and explain why neither
of them hold.

1) Some proteins might have been erroneously identified
as true positives by similarity alone, indeed. If this were
the case, we would expect the real number of false posi-
tives to be higher and these patterns to belong to region II.
In other words, for these patterns, the number of true pos-
itives as assigned in PROSITE (TP) would consist of a
number of experimental true positives plus a number of
mis-annotated true positives. In such a case we would
expect to find that the difference between the number of
matches expected by chance and the number of PROSITE
false positives is correlated to TP. We found that this cor-
relation is < 0.2, and rejected the hypothesis of a system-
atic error in the annotation of patterns in region III.

2) It could be proposed that, by increasing the number of
sequences in the datasets, the number of FPs might grow
more rapidly than the number of random matches, result-
ing in a shift of patterns from region III to region IL

In order to verify this possibility, we started from non-
redundant versions of the datasets under study and
increased progressively their redundancy (this corre-
sponds to augmenting the number of sequences). Then
we studied the relationship between FP and A and found
that the number of FPs increases more slowly than the
number of random matches in the dataset (data not
shown). This result implies that the addition of sequences
to a dataset would either relocate some patterns of region
IT in region III or leave the situation unaffected.

Information content and disorder propensity
The patterns' mean information content (IC) was calcu-
lated as explained in Methods [14]. The IC of a pattern is
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directly proportional to the length of the pattern and
inversely proportional to its degeneracy. Patterns with
high IC are in general longer and display lower degeneracy
than patterns with low IC. This implies that a high IC is
advantageous for the selectivity of a motif. We found that
the highest IC value is attained by patterns for which A =
FP = 0 (see Table 2).

Interestingly, for each sequence dataset considered the
mean IC decreases from patterns belonging to region I to
those of region III. In particular, a single pattern analysis
showed that the vast majority of patterns in region III are
short (few positions) and non-degenerate (few amino
acid types permitted in each position). This means that
these patterns are less subject to conformational con-
straints.

Patterns were compared also for the propensity of their
false positive matches to occur in ordered/disordered pro-
tein regions (see Methods). Ordered regions typically con-
tain regular secondary structures packed into a compact
globule [20]. Ordered regions, therefore, tend to be more
buried, and therefore more hidden, than disordered ones.
On average, false positive matches of patterns belonging
to region Il have a higher propensity of occurrence in pro-
tein disordered segments than those belonging to region I
and II have (Table 3). These findings suggest that the pat-
terns of group III tend to occur in more exposed and less
structurally constrained regions of proteins, as compared
to patterns of groups I and II and especially to those for
which A = FP = 0. The evolutionary implications of these
results will be further addressed in the 'Discussion’ sec-
tion.

Reversed patterns

The most interesting result is that these patterns display a
regression slope which is always equal to one (Table 1). A
detailed analysis was performed in order to establish if all
the reversed patterns are non-functional. 352 reversed pat-
terns matching PROSITE patterns were removed (see
Methods). The great majority of the remaining patterns
lies in the 95% confidence interval. Few of them fall in
region I (thirty-eight patterns for sprot100, eleven for
human100 and six for yeast100). These are predomi-
nantly patterns highly conserved in some Pfam [15] fam-
ily or domain (22 for sprot100, 7 for human100 and 4 for
yeast100). For example, the reversed of PS00850 is found
almost solely in regulator of ribonuclease activity A pro-
teins and, moreover, it is conserved in the demethylme-
naquinone methyltransferase Pfam domain present in
these proteins. Hence, these are clearly non-random pat-
terns that cannot be considered as non-functional and are,
therefore, excluded from the regression analysis.

http://www.biomedcentral.com/1471-2105/8/68

Finally, in region I, only fourteen patterns for sprot100,
four for human100 and two for yeast100 are apparently
non-functional. These numbers are in agreement with
what it is expected by chance in this region (12 for
sprot100, 5 for human100 and 3 for yeast100).

There is also a subset of reversed patterns falling in region
III (twenty-five patterns for sprot100, four for human 100
and none for yeast). These patterns are less frequent (and
in seven cases in sprot100 even much less frequent) in the
biological database than in the random database. This
observation together with an ad hoc analysis of the pat-
terns, suggests that some of them share a particular amino
acid compositions whose random appearance in a protein
would have a high probability of interfering with the nor-
mal cell functionality. In this case it is possible that they
are functional and conceivable that could be subjected to
events of negative selection.

Discussion

The first telling conclusion is that the great majority of
functional motifs have a number of false occurrences
comparable to the number of matches on a random data-
base (i.e. they belong to the region II of the (A, FP)-plane).

This result is in agreement with works such as [2] and [3].
Thus, it seems that, in most cases, proteins are not affected
if a stretch of amino acids, selected during evolution and
carrying a structural or functional ability, appears in a pro-
teome only by chance. In other words false occurrences of
a functional motif do not generally compete with true
positive ones. Indeed, there are several boundary condi-
tions a motif has to fulfil in order to be functional in a
protein or to be recognized by interactors. In the majority
of cases, interactors are specific enough to discriminate
between an exceedingly high number of similar sites and
avoid mis-functionalities. On the other hand, sites that
are similar to target motifs with limited specificities can be
found not to interfere since they are hidden or appear in
other cellular contexts, different cell types or tissues or
even different organisms.

This possibility is in agreement with the order/disorder
propensity data for false positive matches of patterns
belonging to region I and II, i.e. patterns for which the
number of false positives is higher or similar to the
expected number of random hits (Table 3). In fact, we
observed that false positive matches of patterns in region
I and II are, on average, in more ordered areas than those
of patterns in region III, suggesting how proteins may
avoid cases of mis-recognition by interactors with little
specificity.

A careful analysis of patterns for which the number of FP

is notably greater than the number of matches expected by
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chance revealed several interesting features. First, some
cases of mis-annotation have been identified. Besides
these cases, which are only relevant for the quality of a
pattern database, we observed several patterns whose false
positive matches are functionally important in proteins
non-related to and not co-localizing with proteins match-
ing the true positives. In some other cases it seems that
false positive matches proliferate, even with no functional
relevance, in proteins spatially segregated from true posi-
tives. In both situations, evolution has been apparently
more permissive or even rewarding towards compositions
of amino acids belonging to non-interfering proteins.

Another solution to the problem of functional pattern
specificity might be that, during evolution, longer and not
too variable functional modules have been rewarded [21].
In this case, not only could the true positive site be
unique, but there might not be any sites with one mis-
match. In this regard, it is worth noting that between 72%
(in sprot100) and 89% (in yeast100) of patterns are such
that L = FP = 0 and that the mean information content
(IC) of these patterns is much higher than the mean IC of
any other group considered.

What can be said in terms of evolution about patterns of
group II1Z These are patterns whose number of false posi-
tives is lower than expected by chance. They may belong
to group III for three principal reasons.

The first one might be a systematic error in the PROSITE
annotation for true positives, something which has been
excluded by our analysis.

The second reason concerns the randomization model.
We have seen that, at least in some cases, the expected
number of chance matches of patterns rich in cysteines,
depends on the statistical model adopted to evaluate it.
Thus, one can imagine that patterns belonging to group II1
have some particular features, thus making their rate of
occurrence in a random dataset dependent on the proce-
dure adopted to randomize the dataset. An accurate anal-
ysis of the patterns, however, did not reveal any distinctive
features supporting this hypothesis.

The third reason has evolutionary implications. The pat-
terns of group III are characterized by a preponderance of
residues predisposed to be present in more disordered, i.e.
more exposed, regions of proteins. Moreover, short pat-
terns, with little IC, undergo less conformational con-
straints than long patterns, with high IC. Thus, at least two
important conditions of functionality are more easily ful-
filled by this group of patterns.

If a false occurrence of a functional motif results in an
"unwished" functionality, the protein(s) carrying it would

http://www.biomedcentral.com/1471-2105/8/68

be rejected during evolution. Cases of evolutionary nega-
tive selection have been recognized in immunology [22]
and are likely to have an important role in many biologi-
cal systems [23,24]. Zarrinpar and co-workers [25]
hypothesized negative selection against non-specific
interactions as a mechanism for specificity enhancement
of a particular SH3-ligand pair in yeast. Discrimination
against proteins holding sequence consensi that are, for
example, possible competitors in recognition or interac-
tion processes, might account for the observed non-ran-
dom distribution of false positive matches of some
patterns. For example, a false positive match of a SH3 lig-
and consensus might result in promiscuous SH3 binding
in the case of subcellular co-localization and temporal
overlapping with a true occurrence of the ligand peptide.

The lower IC and the observed disorder tendency of the
false positives of patterns of group III, compared to pat-
terns of groups I and II, support the hypothesis of their
counter-selection.

Evolutionary negative selection, however, is difficult to
prove because so few biological cases have been clearly
identified and there is only indirect information on the
"products” of such a mechanism. Furthermore, organisms
have developed several strategies for avoiding protein
mis-functionalities, which may or may not operate
through the mechanism of negative selection. Finally,
counter-selection is more likely to occur in complex
organisms, where evolution deals with duplication and
mutation of a greater number of genes or portions of
them. These organisms, however, are still insufficiently
represented in the Swiss-Prot databank. More data will be
available to support or disprove our hypotheses as soon as
large and fully-annotated proteomes become available.

Conclusion

We presented a general numerical analysis exploring the
different mechanisms used by Nature in order to prevent
random occurrences of a functional motif interfering with
the proper functioning of a living cell.

We used quantitative parameters (information content,
disorder) to analyse PROSITE patterns sharing a common
behaviour in terms of their appearance in random
sequences. This analysis, together with a further literature
study of the single motifs, led to the conclusion that, in
the majority of the cases (>90%), FPs of functional motifs
are not counter-selected during evolution: Apparently, the
probability that a false positive occurs in the same organ-
ism, tissue, cell compartment, and protein region of a true
positive, is low enough to prevent the risk of functional
interference.
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Our results therefore show that, for the majority of pro-
teins, the mere presence of a motif is not enough to entail
a particular function and therefore additional constraints
must be satisfied. Furthermore, we identified a subgroup
of motifs whose false positives have been subjected to
events of counter-selection.

Methods

Datasets

A set of functional patterns, in the form of regular expres-
sions, was extracted from the complete PROSITE database
[4] release 28.27, discarding patterns that are so general
that PROSITE cannot classify true and false matches, and
patterns restricted to either the N- or C-terminal of a
sequence. This filtering procedure produced a set of 1295
functional motifs whose true (TP) and false positive (FP)
sequences were identified from the PROSITE annotations
and cross-referenced on the Swiss-Prot sequence database
[5], release 42.

In the following, we will refer to "matches", as the number
of sequences with at least one match, i.e. we did not con-
sider multiple instances of a pattern in the same sequence.

The analysis described in this work was performed on five
sequence datasets: the complete Swiss-Prot database after
the removal of sequences containing one or more unde-
termined amino acid (sprot100, 145203 sequences), the
set of 10632 H. sapiens sequences (human100), and the
set of 4925 S. cerevisiae sequences (yeast100) derived from
sprot100. The two further subsets analysed, are E. coli
(complete proteome 4,338 proteins) and M. jannaschii
(1,782 proteins), which are almost entirely represented in
the Swiss-Prot database. Notice that the entire human and
yeast proteomes comprise 35,093 proteins and 6,224 pro-
teins, respectively. For each sequence dataset, the group of
PROSITE patterns displaying at least one true positive hit
was identified: 1295 patterns for sprot100, 855 for
human100, 607 for yeast100, 639 for E. coli and 260 for
M. jannaschii.

Data on the complete proteomes size are extracted from
the Integr8 EMBL-EBI genome statistics [26]. Sequence
and pattern datasets are available on request.

Sequence databases randomization

In order to preserve the local sequence composition and
to account for finite sequence length effects, the sequence
databases were randomized by reshuffling each single
sequence. We define a shuffled sequence of a sequence S
as one in which the number of each kind of amino acid is
exactly the same as in S [27]. The randomization program
was written in C using the GNU scientific library for ran-
dom number generation and sequence shuffling [28].

http://www.biomedcentral.com/1471-2105/8/68

Each dataset under consideration was randomized N (N =
1000) times. The randomization program is available on
request.

Statistical model

The basic dataset was randomized N times and the
number of matches with all selected patterns was counted
for each randomization. For each pattern, the average
number of matches was then calculated. The probability
distribution of matches of a given pattern was assumed to
be Poisson [29]. This assumption was checked by plotting
average number of matches for each pattern against the
corresponding variance, finding a satisfactorily linear plot
with unit slope (as expected in a Poisson setting).

More precisely, our randomization and match counting
method implies that the random variable which counts
the number of matches of a given motif in the rand-
omized database will be the sum of a very large number
(the number of sequences in the database) of Bernoulli
variables (0/1 variables) with different but always small
probabilities for the value 1, representing the presence of
the motif in a given, permuted, single sequence. The sum
of these probabilities is the expected number of matches
of the motif in the whole database. The distribution of the
number of matches can be approximated by the Poisson
distribution regardless of the size of the expected number
of matches as long as the largest single probabilities dis-
cussed above are small.

For large expected values, the Poisson distribution will
simply be approximately Gaussian. In any case, the vari-
ance of the number of matches will always be smaller,
although usually almost equal to, the variance implied by
the Poisson distribution. Thus, use of the Poisson distri-
bution will be conservative. In other words, considering a
given observation as significantly deviating from an
expected distribution will be more difficult under the
Poisson distribution than under the "exact" distribution.

The number N of randomizations was set at 1000, yield-
ing a relative error less than 3% in the determination of
average numbers of matches larger than 1 and, although
relative error may be larger, yielding an even smaller abso-
lute error for averages smaller than 1.

We then constructed an exact confidence interval (c.i.)
comprising at least 95% probability for each value A of the
observed average numbers of matches by iteratively sum-
ming probabilities p around A (with probability values
taken from the theoretical Poisson distribution) until Zp
>0.95. The values of A and the c.i. are plotted in Figure 1.
Since the Poisson distribution is discrete, the calculation
produced irregular lines, which indicate the upper and
lower limits [A, Az] of the prediction intervals and divide
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the (A, FP)-plane into three regions (I, II and III). Further-
more, for each observed value of A (expected number of
matches under randomization), the corresponding value
of effectively observed FP is used to generate a point in the
figure. Points lying outside the c.i. can be considered as
candidates for "extra-random effects".

It should be noticed that the discrete nature of the Poisson
distribution implies that the probability above and below
each c.i. will not be exactly 2.5% and may be different for
each ). This affects the expected number of patterns to be
found outside the c.i. "by pure chance". However, one can
calculate the exact expected number of patterns lying
below or above the prediction interval by simply sum-
ming the probabilities corresponding to values left out
from the intervals (There are good theoretical grounds for
assuming that also the number of "chance outliers" fol-
lows the Poisson distribution).

The above construction of prediction intervals and rela-
tive calculation of "outlier patterns" was repeated at the
99% probability level, in addition at the 95% level in the
previous experiment. In both cases, we found a number of
outlier patterns lying above (region I) or below (region II)
the prediction intervals significantly higher than expected
by chance (see Table 4).

Regression model
All the statistical computing was performed using the R
language and environment [30].

For each pattern, A was plotted versus the PROSITE pattern
false positive number of matches and a line was fitted to
the data, i.e. a regression analysis was applied to the set of
points (A, FP).

Given that false positive matches are expected to occur by
chance alone in a biological database, it is reasonable to
assume that the response variable, FP, comes from a Pois-
son distribution. From this assumption it follows that the
variance of the variable FP increases with its mean value:
to correct for the heteroskedasticity of residuals we
defined a vector of weights (w) for k observations as w =
(1/(Ay + 1),...,1/ (A + 1),...,1/ (A + 1)). In other words, the
influence of an observation on the fit decreases as its value
increases.

From the equation for the line of best fit, the slope and
intercept values were then calculated.

Information content
PROSITE patterns are written in the form:

P=A;-x(iy, ji) - Ay - x(iy jp) = X(iy1, Jp1) - Ap Where A; is
a non-empty set of amino acid symbols and iy < j,, which

http://www.biomedcentral.com/1471-2105/8/68

are integers, indicate the length of a wildcard x. We define
the information content (IC) of a PROSITE type pattern as
([31,14]):

p p-l1

I(P) = 1 (A;)=cx X (i =)
i=1 k=1

where c is a constant (normally ¢ = 0.5) and [,(4;) is the

information content of a single position A;:

L(A) ==Y (paxlogy(ps))+ X p—aXIng Pa
acx ac A\ PA; Pa,

p, is the probability (calculated from the frequency of
amino acid a in the dataset under consideration) of amino

acid a, X is the set of all amino acids and Py, = ZaE aPa -

This measure is based on Shannon's theory [32] and takes
also into account the increase in uncertainty due to varia-
ble spacers of patterns.

The control: reversed patterns

As a control, the statistical analysis was also performed on
randomized (i.e. non functional) PROSITE patterns.
There are too many possible permutations when PROSITE
patterns are used, thus we chose to reverse the pattern
positions as a randomization procedure.

The expected number of matches in random datasets and
the observed number of matches in the corresponding bio-
logical datasets were calculated for the reversed patterns,
and a regression analysis was carried out. The (A, FP) pairs
of values for PROSITE patterns of each region (I, II, and
I1T) were compared to the (A, O) pairs of values for the
reversed patterns, where A is once again the arithmetical
mean of the number of matches on N (N = 1000) dataset
randomizations and O is the observed number of hits on
the corresponding biological dataset.

352 reversed patterns were found to match a PROSITE
pattern. These were considered functional and therefore
discarded. It is possible, however, that some of the
remaining reversed patterns still encode a function. This is
difficult to detect by means of an automated procedure.
Thus, we performed a manual analysis of the reversed pat-
terns displaying an observed number of matches very dif-
ferent from the number of expected matches (regions I and
III). Reversed patterns matching conserved regions of
some Pfam [15] domains were also discarded. The regres-
sion analysis was carried out, for each sequence dataset,
on the reversed patterns retained after the filtering proce-
dure only.
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The false positives "disorder"

Protein disorder is described as the lack of regular second-
ary structure and a high degree of flexibility in the
polypeptide chain [33]. Several computational methods
exist for identifying disordered residues within proteins
[34]. To infer the tendency of PROSITE patterns false pos-
itive hits of being in either disordered or ordered/globular
regions of proteins, we applied GlobPlot [20], a predictor
of protein disorder and globularity, to the sequences of
the datasets considered.

GlobPlot is based on propensities, P, for all amino acids
to be in globular or non-globular states. The leading hypo-
thesis is that the tendency for disorder of an amino acid a
can be expressed as P(a) = RC-SS where RC and SS are cal-
culated as the frequencies for the amino acids' appearing
either in regular secondary structures (helices or strands)
as defined by DSSP [35] or outside them (‘random coil’,
loops, turns etc.). Given a protein sequence of length L, a
sum function is defined as:

Dis(a; ) = iP(aj ) fori=1,.,L
j=1

where P(0,) is the propensity for the ith amino acid. The
sum function defines a curve, which provides the regions
of disorder/order along the sequence.

We then identified the position along the sequences of the
false positive matches. The order propensity of a pattern
(OP € [0,1]) was defined as the ratio of residues of the
pattern belonging to an ordered region (as defined in
[20]) to the total number of residues of the pattern. The
lower the value of OP of a pattern, the higher its propen-
sity of lying in disordered regions.

Abbreviations
TP, true positive; FP, false positive; FN, false negative; O,
observed; IC, information content; OP, order propensity.
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