
BioMed CentralBMC Bioinformatics

ss
Open AcceSoftware
Minimus: a fast, lightweight genome assembler
Daniel D Sommer1, Arthur L Delcher1, Steven L Salzberg1,2 and
Mihai Pop*1,2

Address: 1Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA and 2Computer Science
Department, University of Maryland, College Park, MD 20742, USA

Email: Daniel D Sommer - dsommer@umiacs.umd.edu; Arthur L Delcher - adelcher@umiacs.umd.edu;
Steven L Salzberg - salzberg@umiacs.umd.edu; Mihai Pop* - mpop@umiacs.umd.edu

* Corresponding author

Abstract
Background: Genome assemblers have grown very large and complex in response to the need
for algorithms to handle the challenges of large whole-genome sequencing projects. Many of the
most common uses of assemblers, however, are best served by a simpler type of assembler that
requires fewer software components, uses less memory, and is far easier to install and run.

Results: We have developed the Minimus assembler to address these issues, and tested it on a
range of assembly problems. We show that Minimus performs well on several small assembly tasks,
including the assembly of viral genomes, individual genes, and BAC clones. In addition, we evaluate
Minimus' performance in assembling bacterial genomes in order to assess its suitability as a
component of a larger assembly pipeline. We show that, unlike other software currently used for
these tasks, Minimus produces significantly fewer assembly errors, at the cost of generating a more
fragmented assembly.

Conclusion: We find that for small genomes and other small assembly tasks, Minimus is faster and
far more flexible than existing tools. Due to its small size and modular design Minimus is perfectly
suited to be a component of complex assembly pipelines. Minimus is released as an open-source
software project and the code is available as part of the AMOS project at Sourceforge.

Background
With the advent of whole-genome shotgun (WGS)
sequencing in the mid-1990s, the genomics community
had an urgent need for software that could process tens of
thousands of individual sequence "reads" and assemble
those into the genome from which they had come. The
first generation of assemblers, including TIGR Assembler
[1], phrap [2], and CAP3 [3], were able to assemble small-
to medium-sized bacterial genomes, often requiring sev-
eral weeks of computer time on the fastest computers then
available. As sequencing technology improved, ever larger

projects were attempted with the WGS method, and it
became clear that new methods were needed. For the 130
million base pair (Mbp) genome of the fruit fly Drosophila
melanogaster, an entirely new assembler was developed
[4], which incorporated many new ideas about efficient
memory usage and sophisticated repeat processing. The
Celera Assembler (CelAsm) was also the first algorithm to
use mate pair information to any serious degree: taking
advantage of the fact that most reads in a WGS project are
generated in pairs, that system used the expected distance
between reads in a pair to impose many useful constraints

Published: 26 February 2007

BMC Bioinformatics 2007, 8:64 doi:10.1186/1471-2105-8-64

Received: 6 October 2006
Accepted: 26 February 2007

This article is available from: http://www.biomedcentral.com/1471-2105/8/64

© 2007 Sommer et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 11
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17324286
http://www.biomedcentral.com/1471-2105/8/64
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2007, 8:64 http://www.biomedcentral.com/1471-2105/8/64
on the overall assembly. Other large-scale WGS assem-
blers followed, including Arachne [5,6], which was used
to assemble the 2.6 billion base pair (Gbp) mouse
genome [7], Phusion [8], Atlas [9], and JAZZ [10].

As these systems have scaled up to meet the needs of very
large WGS projects, they have grown in size and complex-
ity, so that today, only a few very sophisticated bioinfor-
matics groups have the expertise needed to install and run
them. Like many large systems, these assemblers are rela-
tively brittle, meaning that they often crash if the data
does not conform to fairly rigid specifications. However,
because they produce far superior results to the first gen-
eration of assemblers, the leading genome centers have
focused their efforts on these large assemblers to the
exclusion of other approaches.

Meanwhile, a host of new genome sequencing applica-
tions has arisen that place different demands on assembly
algorithms. Although large-scale sequencing has pushed
assembly technology in productive directions, small-scale
sequencing efforts have proliferated as well. Our group
recognized the growing need for an assembler that could
assemble a handful of sequencing reads with a minimum
of overhead (both computational and human), and as a
result we have developed Minimus, a fast, "lightweight"
assembler that addresses these needs. Before describing
the algorithm and our results, we will describe several of
these motivating applications.

Gap closure
Since the very first bacterial genome, Haemophilus influ-
enza [11], was sequenced, we and our colleagues at The
Institute for Genomic Research (TIGR) have been devel-
oping methods for closing the gaps in a draft genome. The
initial assembly of a WGS project normally produces a
large collection of contiguous pieces of DNA (contigs)
that are separated by gaps. Improvements in sequencing
and assembly technology have yielded fewer gaps per
megabase in recent years, but nonetheless, the increased
scale of sequencing has meant that large centers have
many more gaps to fill. One unintended by-product of
this trend is that many genomes today are left in "draft"
form: the initial assembly is the only assembly, and the
published genome consists of hundreds or thousands of
unordered contigs.

Fortunately, many genomes, especially those of the great-
est scientific interest, are still being finished, which means
that all gaps need to be closed. Gap closure consists of
running additional sequencing reactions that fill in the
gap between two adjacent contigs. If the gap is filled with
repetitive sequence (which is often the case), then "clo-
sure" teams may go to great lengths to clone and sequence
small DNA fragments that correctly span the gap. Once

these sequences are generated, the final step is to assemble
the gap. This requires that the newly generated sequences,
often spanning just a few kilobases or even less, be assem-
bled together with the two surrounding contigs.

Large-scale assemblers such as CelAsm and Arachne can
be used for this task, but this presents several problems.
First, the scale of these programs means that simply load-
ing them into memory can take longer than the execution
time of the assembly itself. Second, the laboratory teams
filling gaps typically use graphical tools to manage gaps,
and configuring these tools to call a very large external
program is impractical if not impossible. Third, and per-
haps most telling, the cleverness of these WGS assemblers
is a hindrance for gap closure, because the data do not
conform to the characteristics of a typical shotgun process.
The depth of coverage of finishing reads often differs from
that in the surrounding areas thereby confusing the statis-
tical repeat detection mechanisms present in large-scale
assemblers, and preventing a correct assembly of the gap.
Therefore an assembler for gaps will do better by using a
simple, straight-forward algorithm, focused on a specific
region of the genome. Finally, these assemblers cannot be
easily modified to address the specific issues raised by spe-
cialized finishing procedures, especially as new finishing
techniques are continuously being developed. For exam-
ple, high-throughput finishing experiments often use
transposons to sample a problematic region, resulting in
paired reads that are facing away from each other (the
sequencing proceeds away from the transposon). Such
constraints cannot be easily incorporated in existing
assemblers which are hard-coded to assume paired reads
are facing inwards, towards the middle of the correspond-
ing shotgun fragment. Flexible tools like Minimus and
AMOS provide the potential for incorporating such infor-
mation through add-on modules.

Gene assembly
Another important use of small-scale assembly takes
advantage of the rapidly growing Trace Archive at NCBI
[12], a public repository of all the raw data from many
large sequencing projects. Because it takes months and
sometimes years before the final, assembled sequence
from a genome project is released, scientists use the BLAST
search function at the Trace Archive to find reads match-
ing a gene of interest. If the gene is contained in the Trace
Archive data, then a search will return anywhere from a
handful to a few hundred sequences. These need to be
assembled together to produce a better picture of the
genomic region containing the gene. Once again, the sci-
entist needs a small, less finicky assembler for this pur-
pose.
Page 2 of 11
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:64 http://www.biomedcentral.com/1471-2105/8/64
Small genomes
Although most sequencing capacity is taken up by the
largest genome projects, the number of small genomes
being sequenced easily outstrips – in number of species
and strains – the number of large genomes. Ironically,
some of the very clever and complicated ideas that make
CelAsm, Arachne, and other assemblers work for large
genomes make them less than ideal for these small
genomes. Viruses are a good example: they typically have
genomes ranging from 5–50 kilobases, and they contain
relatively little repetitive DNA. Thus there is no need to
characterize the repeat content, and a simple assembler
that ignores the issues of large-scale WGS projects will
produce a perfectly correct assembly more quickly. For
example, the Influenza Genome Sequencing Project,
which uses an RT-PCR strategy rather than WGS, has
assembled over 1000 influenza genomes using Minimus
[13], with savings coming from not having to address spe-
cial formatting requirements to prepare the data and from
not having to maintain a large assembly software package.

Implementation
Implementation details of Minimus
The Minimus assembler was built in a modular fashion
from software modules available within the AMOS assem-
bly package [25] and is released as one of the components
of this package. AMOS is an open-source software package
that provides researchers with a collection of modules and
software libraries that are useful in the development of
genome assembly and analysis software. A full description
of the AMOS package is beyond the scope of this paper
and will be published elsewhere (M.Pop, manuscript in
preparation).

Minimus consists of the combination of three AMOS
modules, following the traditional overlap-layout-con-
sensus paradigm [26]. These modules interact with each
other through a central AMOS data-structure (called a
bank) as shown in Figure 1. The three modules are:

1. hash-overlap – a sequence overlapper that uses mini-
mizers [27] to increase speed and decrease memory usage.

2. tigger – a unitigger, i.e. tool that identifies clusters of
reads which can be uniquely assembled based on algo-
rithms developed by Myers [28,29]; in graph theoretic
terms a unitigger identifies maximal interval subgraphs of
the overlap graph.

3. make-consensus – a progressive multiple alignment
program that refines the read layout generated by the unit-
igger to build a precise multiple alignment of these reads.

Note that sequence quality values are only used during the
generation of the multiple alignment consensus (step 3).

Other assemblers, such as phrap, use the quality values as
an integral component of the assembly algorithm. We
found that, due to the high quality of data produced by
modern sequencing instruments, the explicit considera-
tion of quality values during the overlap and unitigging
steps is unnecessary. Instead we only use the quality data
to trim the poor quality flanks of each read (see below
under Sequence trimming), and to compute the consen-
sus (and associated quality values) for the multiple align-
ment of co-assembled reads.

An execution of Minimus consists of the following stages,
described in detail below.

Input stage
The shotgun reads are loaded into the AMOS bank. The
inputs are presented as an AMOS message file, whose for-
mat is modeled on the format used by Celera Assembler
[4]. Virtually any existing format for representing shotgun
data can be easily converted to this message format with
the help of conversion tools distributed with the AMOS
package.

Overlap stage
The hash-overlap program is used to compute all pair-
wise alignments between the reads provided in the input.

Unitigger stage
The tigger module constructs a graph representation of the
set of overlaps determined in the overlap stage. The over-
lap graph contains a node for each shotgun read, and an
edge connects two nodes if the corresponding reads over-
lap. The unitigger then uses several reduction steps to sim-
plify this graph, and generate a set of unitigs, based on
algorithms originally developed by Myers [28,29]. Briefly,
these reduction steps are:

1. Removal of containment edges. Reads completely con-
tained within other reads in the input are removed from
the graph.

2. Transitive reduction. For any set of three reads (A, B,
and C), if the overlap between A and C can be inferred
from the overlaps between reads A and B, and B and C,
this overlap (i.e. the edge corresponding to this overlap) is
removed from the graph.

3. Unique-join collapsing. Every simple path in the graph
(paths that contain no branches, i.e. all the nodes have in-
and out-degrees equal to 1) are collapsed into a single ver-
tex. Each such vertex represents an individual unitig.

Consensus stage
The final stage of Minimus constructs the full multiple
alignment of the reads aligned within each unitig, using as
Page 3 of 11
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:64 http://www.biomedcentral.com/1471-2105/8/64

Page 4 of 11
(page number not for citation purposes)

Overview of Minimus pipelineFigure 1
Overview of Minimus pipeline. Several independent modules of the AMOS package (shown as ovals) interact through the
AMOS API to a central data-structure (called a Bank). The order of execution of the individual modules is shown by the arrow.
Note that the inputs and outputs to minimus follow the AMOS file format (AMOS message files). The AMOS package provides
converters between this file format and virtually all commonly used formats for representing sequence data and genome
assemblies.

BMC Bioinformatics 2007, 8:64 http://www.biomedcentral.com/1471-2105/8/64
a guide the approximate placement of the reads inferred
from the overlap information.

Sequence trimming
The criteria used for trimming the vector sequence and the
poor quality flanks of shotgun reads vary significantly
depending on the source of the data and on the protocols
employed during sequencing. In designing Minimus we,
thus, opted to perform the trimming of the data with
external software tools that can be customized to the spe-
cific characteristics of the data. For the examples described
in this paper we followed two different approaches for
sequence trimming:

1. For data where we had confidence that the Trace
Archive clipping coordinates were correct (i.e. the two
bacterial genomes) we simply used the coordinates pro-
vided to us.

2. For the other data-sets (zebrafish gene and mouse
BACs) we followed the protocol described at [30], specif-
ically we used the program Lucy [31] for quality trimming,
followed by a k-mer based vector trimming protocol.

Note that while phrap performs some trimming based on
quality values, in order to ensure consistent trimming of
the data, we provided phrap with sequences already
trimmed according to the protocol described above.

Extraction of GPC3 homologues from zebrafish shotgun
data
To extract the set of zebrafish shotgun reads that map to
the human GPC3 gene, we built an NCBI Blast database
containing the high-quality region of the zebrafish reads
(obtained by removing the sequencing vector and the
poor quality regions). We then aligned the protein
sequence of the human GPC3 gene using tblastn with an
E-value cutoff of 0.01. All reads matching GPC3 under
these extremely relaxed criteria were then provided to
Minimus for assembly.

Results
To demonstrate the capabilities of Minimus we present its
application to the assembly of several small data-sets:
influenza A virus isolates, individual genes, and BAC
clones. We compare the performance of Minimus to that
of phrap [2], the "small assembler" most commonly used
for such small assembly tasks. We also used Minimus to
assemble two bacterial genomes, Brucella suis, and Staphy-
lococcus aureus, to illustrate its potential use as one of the
components of a complex assembly pipeline. Genome
assemblers such as Atlas [9], developed at the Human
Genome Sequencing Center at the Baylor College of Med-
icine, and Phusion [8], developed at the Sanger Center,
represent such assembly pipelines. Both assemblers use a

hierarchical approach to partition the reads into small sets
during an initial clustering step, then assemble each of the
clusters with the phrap assembler.

Before describing our results we would like to emphasize
the fact that the comparisons to phrap provided below are
inherently skewed due to the fact that phrap and Minimus
were designed to solve different problems. These compar-
isons are relevant, however, because phrap has been
widely applied to assembly tasks that fall outside the
scope of the original intended use for this program. We
will demonstrate that Minimus provides scientists with a
better tool for small assembly tasks, be it the assembly of
viral genomes or individual genes, or as a component in a
larger assembly pipeline such as Atlas or Phusion. The
high stringency of the algorithms employed by Minimus
obviates the need for the complex modules commonly
used (e.g., the RPphrap module of Phusion [8]) in such
assembly pipelines to correct the errors introduced by
phrap. In addition, the flexibility provided by Minimus'
well defined interfaces and open-source license, allow sci-
entists to adapt and extend our software as needed by their
specific projects. Such enhancements are virtually impos-
sible with phrap due to the restrictive license and code
release model.

Assembly of influenza A virus isolates
Assembling the influenza A virus is an ideal application
for Minimus due to the small size of the virus. The influ-
enza A sequencing project, currently underway at TIGR
[13], has been using Minimus to assemble the genomes of
more than 1400 individual isolates of the influenza virus.
The sequencing pipeline at TIGR generates approximately
200 sequencing reads for each viral isolate, providing
approximately 4-fold coverage of the 8 segments compos-
ing the flu genome. The assembly of the influenza genome
is performed in a hierarchical manner, building a collec-
tion of contigs using Minimus with high stringency set-
tings, then improving this assembly during two additional
passes that combine Minimus with quality trimming soft-
ware. In approximately 95% of the cases (J. Sitz, personal
communication), this hierarchical process results in com-
plete reconstructions of each of the segments, these data
forming the substrate for genome annotation and for
other subsequent analyses. The whole assembly process,
including the time needed to access the database used to
store the reads and the resulting assemblies, takes approx-
imately 4 minutes. The actual time used by Minimus for
assembling the data is approximately 2 seconds/segment
during each of the three passes. The shotgun reads, and
the assemblies produced by Minimus are made freely
available to the scientific community by submission to
the NCBI Trace and Assembly Archives [14].
Page 5 of 11
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:64 http://www.biomedcentral.com/1471-2105/8/64
Assembly of individual genes
One of the applications that initially drove the develop-
ment of Minimus is the assembly of an individual gene
from reads "fished" out of a shotgun dataset by alignment
to a homologous gene from a related organism. This
application is particularly relevant to the study of large
eukaryotic genomes that are being sequenced but for
which no assembly has yet been made available to the sci-
entific community. While sequencing is a highly auto-
mated process, the assembly of large genomes is a time-
consuming activity that requires extensive manual inter-
vention, particularly in the case of large, highly repetitive
genomes, or genomes with highly divergent homologous
chromosomes. Thus, it is not uncommon for the raw shot-
gun data to be deposited in the Trace Archive months, and
sometimes years, before an assembly of a genome is made
available, even in a draft form. This situation makes it dif-
ficult for scientists to ask questions such as "does this
organism being sequenced have a homologue of gene X?",
or "how many copies of gene Y are present in this
genome?" Such questions are often difficult to answer
even if a draft assembly is available, as evidenced, for
example, by the absence of chromosome Y-linked genes
in an early draft of Drosophila pseudoobscura; in that case,
investigators found the genes of interest by directly exam-
ining the underlying shotgun data [15].

To highlight the application of Minimus to assembling
individual genes directly extracted from the shotgun data,
we attempted to assemble the zebrafish (Danio rerio)
homologues to the human glypican-3 (GPC3) gene. The
GPC3 gene is highly expressed during development and
has been implicated in a variety of cancers as well as in the
Simpson-Golabi-Behmel overgrowth syndrome (see, e.g.,
[16-19]). We chose this combination of organisms due to
the large evolutionary distance between human and
zebrafish, as well as the fluid nature of the draft assembly
of the zebrafish genome (currently at version 6 and still
being actively improved).

We extracted 175 Danio rerio shotgun reads (from among
the 24,961,699 reads publicly available at the NCBI Trace
Archive) that could be mapped to the sequence of the
human GPC3 protein (see Methods). We then assembled
these reads using Minimus, resulting in 16 contigs, repre-
senting individual exons of the zebrafish GPC3 homo-
logue. To ascertain the quality of the reconstruction, we
mapped the individual contigs to the human gene. The
overview of the alignments is shown in Figure 2 (top),
indicating that approximately half of the human GPC3
gene is covered by high quality matches to four contigs
generated by Minimus. Interestingly, these four contigs do
not share any significant similarity at the nucleotide level,
indicating the presence in zebrafish of at least four homo-
logues to the human GPC3 gene, not unexpected given

that in human GPC3 is part of a larger gene family. This
result could, however, not be immediately inferred from
the Zebrafish Information Network (ZFIN) – the central
database for the zebrafish community. A search for "glyp-
ican" in ZFIN returns a single entry – that for the zebrafish
homologue to GPC3.

To ascertain whether the incomplete coverage of the
human GPC3 is due to limitations in our methodology, or
to actual differences between the human and zebrafish
homologues, we aligned the annotated zebrafish GPC3
homologue to the human protein (Figure 2 bottom). The
alignment reveals the zebrafish GPC3 gene to be shorter
than its human counterpart, consistent with our recon-
struction. In fact, the Minimus contigs cover most of the
zebrafish gene, with the exception of approximately 100
amino acids at the C terminus. This comparison also
reveals a limitation of our approach. Short exons and/or
splicing differences between the human and zebrafish
homologues of the gene may prevent a simple translated
search from identifying the shotgun reads necessary to
reconstruct the full length gene. Despite such limitations,
we believe our results show that Minimus can be success-
fully used as a first step in characterizing the homologues
of a gene of interest in a newly sequenced organism. Fur-
thermore, the approach we chose can be easily augmented
to hierarchically recruit additional shotgun reads that
extend the initial set of contigs, eventually reconstructing
assemblies of entire genes. We implemented a simple ver-
sion of such a procedure by also recruiting the mates for
all reads identified during the translated searches. Unfor-
tunately, the inclusion of these reads into the assembly
process only resulted in marginal improvements. Better
results will undoubtedly be obtained by extending this
process to also incorporate reads that overlap the recon-
structed contigs, however an implementation of such a
procedure is beyond the scope of the current paper.

BAC clone assembly
The sequencing of complex genomes sometimes follows a
hierarchical process, whereby the DNA is first sheared into
segments of between 50-150 kbp which are then ampli-
fied in E. coli. These segments, called Bacterial Artificial
Chromosomes (BACs), are then sequenced through the
shotgun method. This hierarchical approach can over-
come the complexity of highly repetitive genomes (e.g.,
Zea mays [20]), and has also been applied to the explora-
tion of environmental samples (see, e.g., [21]). The shot-
gun sequencing of individual BAC clones generates
approximately 2000–3000 sequencing reads, which can
be easily assembled with Minimus. We extracted, at ran-
dom, from the NCBI Trace Archive a collection of 10 shot-
gun libraries generated from mouse BAC clones, and
assembled these data with both Minimus and phrap. All
the selected BAC clones have been finished, providing us
Page 6 of 11
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:64 http://www.biomedcentral.com/1471-2105/8/64
with a "gold standard" for evaluating the correctness of
the assemblies. The results of this comparison are summa-
rized in Table 1. On these datasets, Minimus ran faster
than phrap (running time was approximately 60% of the
running time of phrap) and produced contigs that
mapped with few errors to the finished sequences; in con-
trast, the phrap contigs contained up to five times as many
errors as Minimus (see Figure 3 for an example of errone-
ous alignments to the reference sequence) when com-
pared to each of the finished BACs. These results are
unsurprising as phrap's aggressive attempts to generate
longer contigs (Minimus generated contigs that were

about four times smaller than phrap) often result in mis-
assemblies [22]. We argue that the conservative approach
taken by Minimus is preferable in the case of BAC assem-
bly, as mis-assemblies are often difficult to identify and
correct, whereas the fragmented assemblies produced by
Minimus can be easily improved by utilizing mate-pair
information and by using alignment information
between the individual contigs.

Assembly of bacterial genomes
In addition to the assembly of small datasets such as those
described above, Minimus can also be used in conjunc-

Top: Blast alignments of contigs resulting from minimus assembly of Zebrafish shotgun reads to the human GPC3 proteinFigure 2
Top: Blast alignments of contigs resulting from minimus assembly of Zebrafish shotgun reads to the human GPC3 protein. The
top four matches correspond to contigs that do not have any significant similarity to each other at the nucleotide level, indicat-
ing the presence of at least 4 homologues to the GPC3 gene in the Zebrafish genome. Bottom: Alignment of the Zebrafish
GPC3 protein to the human GPC3 protein highlighting that the minimus assembly covers the majority of this gene.
Page 7 of 11
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:64 http://www.biomedcentral.com/1471-2105/8/64
tion with other assembly modules (such as the scaffolder
Bambus [23]) to build an assembly pipeline for larger
genomes. To assess the suitability of Minimus as a replace-
ment for the phrap assembler in pipelines such as Atlas or
Phusion, we compared the two assemblers on their ability
to assemble two bacterial genomes: Brucella suis, and Sta-
phylococcus aureus. Both genomes were sequenced and
fully finished at TIGR, and all the sequencing reads gener-
ated for these projects are publicly available at both the
NCBI Trace Archive, and from our website [24]. The avail-
ability of a finished molecule allowed us to compare the
correctness of the assemblies generated by Minimus and
phrap respectively, as shown in Figure 3. The results of our
comparison are shown in Table 2. Similar to the case of
BAC assembly, Minimus ran faster than phrap (approx. 2–
5 times faster) and produced no errors. The phrap assem-
bly contained multiple errors (8 in B. suis and 5 in S.
aureus), though it produced larger contigs, 4–5 times
larger than those produced by Minimus. Again, the con-
servative approach taken by Minimus, as well as its effi-
ciency, make it a better choice as the core component of a
genome assembly pipeline such as Atlas or Phusion. In
this context, mis-assemblies may present more challenges
than the relatively smaller contigs generated by Minimus.

Discussion
One, perhaps surprising, result of our experiments is the
higher fragmentation of the BAC assemblies in compari-

son to the bacterial assemblies (observed both for Min-
imus and phrap), even though the BACs were sequenced
to a deeper level of coverage. The reason for this fragmen-
tation is the higher density of repeats in the mouse
genome. Eukaryotic genomes often contain high-copy
repeats that disrupt the assembly process, even within the
range of a BAC insert. Such complex repeats are less fre-
quently encountered in bacteria.

Conclusion
We have described Minimus, a shotgun sequence assem-
bly program designed for the assembly of small data-sets,
and shown that Minimus can be successfully used to
extract individual genes from shotgun data-sets, thereby
providing scientists with the means to analyze newly
sequenced organisms long before complete genome
assemblies are made available. Due to its small size and
modular design Minimus is perfectly suited to be a com-
ponent of complex assembly pipelines, as shown by its
use at TIGR as the main workhorse in the influenza virus
sequencing pipeline. Traditionally, phrap has been used
as a main component of such pipelines. We compared
Minimus to phrap on two median-sized assembly tasks,
BAC clones and bacterial genomes, and found that Min-
imus is able to perform such assemblies more efficiently
and more accurately than phrap, at the cost of producing
smaller contigs. We would like to emphasize the fact that
it important to obtain a correct assembly, even if this

Table 1: Comparison of Minimus and phrap in the assembly of 10 mouse BACs from data obtained from the NCBI Trace Archive.

BAC BAC size (bp) # Reads/seq. coverage Running time # Contigs N50 contig size (kbp) Coverage (%) # errors

RP23-179K16 195,061 3685 Minimus 1 m 45 s 40 4.2 99.9 0
8 phrap 2 m 55 s 14 16.1 99.9 2

RP23-188E5 157,996 2983 Minimus 1 m 5 s 43 4.3 99.9 0
7 phrap 2 m 33 s 16 16.9 99.7 2

RP23-111A22 200,329 5428 Minimus 56 s 244 4.8 98.7 3
10 phrap 1 m 43 s 183 17 98.4 14

RP23-271013 239,837 7601 Minimus 3 m 11 s 448 1.5 100.0 2
14 phrap 6 m 30 s 329 6.3 98.6 10

RP23-283E4 178,084 5708 Minimus 3 m 49 s 713 1.4 99.9 2
15 phrap 9 m 53 s 467 3.9 98.7 8

RP23-286D16 195,068 4969 Minimus 41 s 90 9 99.9 2
8 phrap 1 m 22 s 264 40 99.9 5

RP23-296N18 187,242 1536 Minimus 36 s 52 6.5 99.9 0
6 phrap 1 m 5 s 34 16.1 99.0 12

RP23-319P12 190,514 5629 Minimus 1 m 39 s 131 4.9 99.9 3
14 phrap 2 m 29 s 139 18 98.0 18

RP23-363E23 199,409 5301 Minimus 1 m 19 s 111 5.5 99.9 3
12 phrap 2 m 12 s 178 20 100 15

RP23-425H1 188,835 1536 Minimus 14 s 46 10 97.2 1
6 phrap 38 s 28 21 98.4 5

Minimus ran considerably faster than phrap and produced no errors, at the expense of a larger number of contigs. Note that the table contains two
quantities denoted "coverage": the sequencing coverage (reported in the #Reads/seq. coverage column) represents the total amount of DNA in the
sequenced reads, divided by the size of the chromosome, i.e. the redundancy in the sequenced data; the column headed "coverage" represents the
fraction of the reference sequence covered by assembled contig. The latter measure does not take into account assembly errors, i.e. partial contig
matches contribute to the overall coverage.
Page 8 of 11
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:64 http://www.biomedcentral.com/1471-2105/8/64

Page 9 of 11
(page number not for citation purposes)

Dot plots of alignments of assemblies produced by minimus (top) and phrap (bottom) to the completed Brucella suis genomeFigure 3
Dot plots of alignments of assemblies produced by minimus (top) and phrap (bottom) to the completed Brucella suis genome.
The horizontal lines indicate the boundary between assembled contigs represented on the y axis. The vertical line separates
between the two chromosomes of Brucella suis represented on the x axis. The minimus assembly (top) perfectly matches the
reference sequence, as indicated by all matches lying along the main diagonal (except the contig at the bottom center, which
spans the origin of the circular chromosome). The phrap assembly (bottom) shows many discrepancies with respect to the ref-
erence sequence (off-diagonal segments), including several contigs that incorrectly join segments of the two distinct chromo-
somes (e.g., second and third contigs from the bottom). Note that the ordering of the contigs implied by these figures is an
artifact of the alignment to the reference sequence and does not correspond to the order in which the contigs were reported
by the specific assembly tools. The discrepancies between the phrap assembly and the reference sequence prevent us from
providing a consistent ordering for this assembly.

BMC Bioinformatics 2007, 8:64 http://www.biomedcentral.com/1471-2105/8/64
assembly is fragmented. Assembly errors are often difficult
to detect and correct, and are usually resolved through an
expensive and time-consuming process of manual cura-
tion (no automated tools exists for this task), while frag-
mented assemblies can easily be improved in a high-
throughput fashion by, for example, hierarchically com-
bining the fragmented contigs based on lower-stringency
overlap information. These results highlight the potential
for Minimus to be used as a replacement for phrap in
assembly pipelines such as Atlas or Phusion, especially as
these pipelines already implement mechanisms for com-
bining contigs. Also note that the errors in the phrap
assemblies are an artifact of the greedy assembly algo-
rithm used by phrap and cannot be resolved by simply
adjusting the stringency of the assembly process.

Finally, the modular design of Minimus (and its Open
Source license) allows scientists to easily fine-tune, or
replace, individual components of the assembly pipeline,
tailoring the execution of Minimus to the specific charac-
teristics of the data. Such fine-tuning is impossible in
phrap, partly due to its restrictive license, and also due to
its monolithic design. Minimus is therefore more than a
simple assembler: it can be thought of as a potential test-
bed for evaluating specific assembly approaches, whether
for educational purposes as part of a bioinformatics cur-
riculum, or during the conduct of research in genome
assembly.

Availability and requirements
Minimus is distributed under an Open Source license (the
Artistic License) as a component of the AMOS package
[25]. The details for this package are provided below.

Project name: AMOS

Project homepage: http://amos.sourceforge.net

Operating systems: Unix (tested on Linux x86 and
x86_64, Mac OSX, cygwin, Solaris, and Tru64)

Programming languages: C++, Perl

Other requirements: none for Minimus, some compo-
nents of AMOS require the QT library

License: OSI Artistic License

Any restrictions to use by non-academics: none

Test data for running Minimus can be downloaded from
the Minimus website: http://amos.sourceforge.net/docs/
pipeline/minimus.html.

Authors' contributions
DDS implemented the unitigger and the overall execution
pipeline and ran the assemblies presented in the results
section. ALD implemented the overlapper and multi-
aligner programs. SLS provided the initial impetus for the
design of Minimus and encouraged and oversaw the inte-
gration with the flu sequencing pipeline. MP led the
design of the package, provided conversion utilities for
various assembly formats, and performed the analysis of
the zebrafish GPC3 homologues. All authors contributed
to writing the manuscript.

Acknowledgements
We thank Martin Shumway and Jeff Sitz from The Institute for Genomic
Research for providing us with detailed information on the use of Minimus
as part of the Influenza A sequencing pipeline. We also thank Mike Schatz
for providing us with a vector- and quality-trimmed set of zebrafish reads,
and the anonymous reviewers for their detailed and insightful comments.
Finally, we thank Marina Lee for suggesting GPC3 as a test of Minimus' abil-
ity to reconstruct the assembly of individual genes. The development of
Minimus was supported in part by NIH under grants R01-LM06845 and
R01-LM007938 to SLS and by DHS cooperative agreement W81XWH-05-
2-0051.

Table 2: Comparison of Minimus and phrap in the assembly of two bacterial genomes (Brucella suis and Staphylococcus aureus).

Genome Genome size (Mbp) # Reads/seq. coverage Running time # Contigs N50 contig size (kbp) coverage (%) # errors

B. suis 3.3 36080 Minimus 6 m 30 s 110 43 99.9% 0
7.8 phrap 30 m 2 s 39 196 99.7% 8

S. aureus 2.9 49014 Minimus 16 m 40 s 85 51 99.8% 0
9.2 phrap 40 m 30 190 99.7% 5

Minimus ran faster than phrap and produced no errors. However, it generated a considerably larger number of contigs. Note that the table contains
two quantities denoted "coverage": the sequencing coverage (reported in the #Reads/seq. coverage column) represents the total amount of DNA
in the sequenced reads, divided by the size of the chromosome, i.e. the redundancy in the sequenced data; the column headed "coverage"
represents the fraction of the reference sequence covered by assembled contig. The latter measure does not take into account assembly errors, i.e.
partial contig matches contribute to the overall coverage.
Page 10 of 11
(page number not for citation purposes)

http://amos.sourceforge.net
http://amos.sourceforge.net/docs/pipeline/minimus.html
http://amos.sourceforge.net/docs/pipeline/minimus.html

BMC Bioinformatics 2007, 8:64 http://www.biomedcentral.com/1471-2105/8/64
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

References
1. Sutton GG, White O, Adams MD, Kerlavage AR: TIGR Assembler:

A New Tool for Assembling Large Shotgun Sequencing
Projects. Genome Science and Technology 1995, 1:9-19.

2. Ewing B, Green P: Base-calling of automated sequencer traces
using phred. II. Error probabilities. Genome Res 1998,
8(3):186-194.

3. Huang X, Madan A: CAP3: A DNA Sequence Assembly Pro-
gram. Genome Research 1999, 9:868-877.

4. Myers EW, Sutton GG, Delcher AL, Dew IM, Fasulo DP, Flanigan MJ,
Kravitz SA, Mobarry CM, Reinert KH, Remington KA, Anson EL,
Bolanos RA, Chou HH, Jordan CM, Halpern AL, Lonardi S, Beasley
EM, Brandon RC, Chen L, Dunn PJ, Lai Z, Liang Y, Nusskern DR, Zhan
M, Zhang Q, Zheng X, Rubin GM, Adams MD, Venter JC: A whole-
genome assembly of Drosophila. Science 2000,
287(5461):2196-2204.

5. Batzoglou S, Berger B, Mesirov J, Lander ES: Sequencing a
Genome by Walking with Clone-End Sequences: A Mathe-
matical Analysis. Genome Research 1999, 9:1163-1174.

6. Jaffe DB, Butler J, Gnerre S, Mauceli E, Lindblad-Toh K, Mesirov JP,
Zody MC, Lander ES: Whole-genome sequence assembly for
Mammalian genomes: arachne 2. Genome Res 2003,
13(1):91-96.

7. Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal
P, Agarwala R, Ainscough R, Alexandersson M, An P, Antonarakis SE,
Attwood J, Baertsch R, Bailey J, Barlow K, Beck S, Berry E, Birren B,
Bloom T, Bork P, Botcherby M, Bray N, Brent MR, Brown DG, Brown
SD, Bult C, Burton J, Butler J, Campbell RD, Carninci P, Cawley S,
Chiaromonte F, Chinwalla AT, Church DM, Clamp M, Clee C, Collins
FS, Cook LL, Copley RR, Coulson A, Couronne O, Cuff J, Curwen V,
Cutts T, Daly M, David R, Davies J, Delehaunty KD, Deri J, Dermitza-
kis ET, Dewey C, Dickens NJ, Diekhans M, Dodge S, Dubchak I, Dunn
DM, Eddy SR, Elnitski L, Emes RD, Eswara P, Eyras E, Felsenfeld A,
Fewell GA, Flicek P, Foley K, Frankel WN, Fulton LA, Fulton RS, Furey
TS, Gage D, Gibbs RA, Glusman G, Gnerre S, Goldman N, Goodstadt
L, Grafham D, Graves TA, Green ED, Gregory S, Guigo R, Guyer M,
Hardison RC, Haussler D, Hayashizaki Y, Hillier LW, Hinrichs A,
Hlavina W, Holzer T, Hsu F, Hua A, Hubbard T, Hunt A, Jackson I,
Jaffe DB, Johnson LS, Jones M, Jones TA, Joy A, Kamal M, Karlsson EK,
Karolchik D, Kasprzyk A, Kawai J, Keibler E, Kells C, Kent WJ, Kirby
A, Kolbe DL, Korf I, Kucherlapati RS, Kulbokas EJ, Kulp D, Landers T,
Leger JP, Leonard S, Letunic I, Levine R, Li J, Li M, Lloyd C, Lucas S,
Ma B, Maglott DR, Mardis ER, Matthews L, Mauceli E, Mayer JH,
McCarthy M, McCombie WR, McLaren S, McLay K, McPherson JD,
Meldrim J, Meredith B, Mesirov JP, Miller W, Miner TL, Mongin E,
Montgomery KT, Morgan M, Mott R, Mullikin JC, Muzny DM, Nash
WE, Nelson JO, Nhan MN, Nicol R, Ning Z, Nusbaum C, O'Connor
MJ, Okazaki Y, Oliver K, Overton-Larty E, Pachter L, Parra G, Pepin
KH, Peterson J, Pevzner P, Plumb R, Pohl CS, Poliakov A, Ponce TC,
Ponting CP, Potter S, Quail M, Reymond A, Roe BA, Roskin KM,
Rubin EM, Rust AG, Santos R, Sapojnikov V, Schultz B, Schultz J,
Schwartz MS, Schwartz S, Scott C, Seaman S, Searle S, Sharpe T,
Sheridan A, Shownkeen R, Sims S, Singer JB, Slater G, Smit A, Smith
DR, Spencer B, Stabenau A, Stange-Thomann N, Sugnet C, Suyama M,
Tesler G, Thompson J, Torrents D, Trevaskis E, Tromp J, Ucla C,
Ureta-Vidal A, Vinson JP, Von Niederhausern AC, Wade CM, Wall M,
Weber RJ, Weiss RB, Wendl MC, West AP, Wetterstrand K,
Wheeler R, Whelan S, Wierzbowski J, Willey D, Williams S, Wilson
RK, Winter E, Worley KC, Wyman D, Yang S, Yang SP, Zdobnov EM,
Zody MC, Lander ES: Initial sequencing and comparative anal-
ysis of the mouse genome. Nature 2002, 420(6915):520-562.

8. Mullikin JC, Ning Z: The phusion assembler. Genome Res 2003,
13(1):81-90.

9. Havlak P, Chen R, Durbin KJ, Egan A, Ren Y, Song XZ, Weinstock
GM, Gibbs RA: The Atlas genome assembly system. Genome
Res 2004, 14(4):721-732.

10. Aparicio S, Chapman J, Stupka E, Putnam N, Chia JM, Dehal P, Christ-
offels A, Rash S, Hoon S, Smit A, Gelpke MD, Roach J, Oh T, Ho IY,
Wong M, Detter C, Verhoef F, Predki P, Tay A, Lucas S, Richardson
P, Smith SF, Clark MS, Edwards YJ, Doggett N, Zharkikh A, Tavtigian
SV, Pruss D, Barnstead M, Evans C, Baden H, Powell J, Glusman G,
Rowen L, Hood L, Tan YH, Elgar G, Hawkins T, Venkatesh B, Rokhsar
D, Brenner S: Whole-genome shotgun assembly and analysis
of the genome of Fugu rubripes. Science 2002,
297(5585):1301-1310.

11. Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF,
Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM, et al.:
Whole-genome random sequencing and assembly of Hae-
mophilus influenzae Rd. Science 1995, 269(5223):496-512.

12. NCBI Trace Archive [http://www.ncbi.nlm.nih.gov/Traces]
13. Ghedin E, Sengamalay NA, Shumway M, Zaborsky J, Feldblyum T,

Subbu V, Spiro DJ, Sitz J, Koo H, Bolotov P, Dernovoy D, Tatusova T,
Bao Y, St George K, Taylor J, Lipman DJ, Fraser CM, Taubenberger
JK, Salzberg SL: Large-scale sequencing of human influenza
reveals the dynamic nature of viral genome evolution. Nature
2005, 437(7062):1162-1166.

14. Salzberg SL, Church D, DiCuccio M, Yaschenko E, Ostell J: The
genome Assembly Archive: a new public resource. PLoS Biol
2004, 2(9):E285.

15. Carvalho AB, Clark AG: Y chromosome of D. pseudoobscura is
not homologous to the ancestral Drosophila Y. Science 2005,
307(5706):108-110.

16. Blackhall FH, Merry CL, Davies EJ, Jayson GC: Heparan sulfate pro-
teoglycans and cancer. Br J Cancer 2001, 85(8):1094-1098.

17. Pilia G, Hughes-Benzie RM, MacKenzie A, Baybayan P, Chen EY,
Huber R, Neri G, Cao A, Forabosco A, Schlessinger D: Mutations in
GPC3, a glypican gene, cause the Simpson-Golabi-Behmel
overgrowth syndrome. Nat Genet 1996, 12(3):241-247.

18. Toretsky JA, Zitomersky NL, Eskenazi AE, Voigt RW, Strauch ED, Sun
CC, Huber R, Meltzer SJ, Schlessinger D: Glypican-3 expression in
Wilms tumor and hepatoblastoma. J Pediatr Hematol Oncol
2001, 23(8):496-499.

19. Xiang YY, Ladeda V, Filmus J: Glypican-3 expression is silenced in
human breast cancer. Oncogene 2001, 20(50):7408-7412.

20. MaizeGDB - Maize Genetics and Genomics Database [http:/
/www.maizegdb.org]

21. Beja O, Aravind L, Koonin EV, Suzuki MT, Hadd A, Nguyen LP,
Jovanovich SB, Gates CM, Feldman RA, Spudich JL, Spudich EN,
DeLong EF: Bacterial rhodopsin: evidence for a new type of
phototrophy in the sea. Science 2000, 289(5486):1902-1906.

22. Pop M, Salzberg SL, Shumway M: Genome sequence assembly:
Algorithms and issues. Computer 2002, 35(7):47-+.

23. Pop M, Kosack DS, Salzberg SL: Hierarchical scaffolding with
Bambus. Genome Res 2004, 14(1):149-159.

24. Benchmark Data for Genome Assembly [http://
www.cbcb.umd.edu/research/benchmark.shtml]

25. AMOS - A Modular Open-Source Assembler [http://
amos.sourceforge.net]

26. Peltola H, Soderlund H, Ukkonen E: SEQAID: a DNA sequence
assembling program based on a mathematical model. Nucleic
Acids Res 1984, 12(1):307-321.

27. Roberts M, Hayes W, Hunt BR, Mount SM, Yorke JA: Reducing
storage requirements for biological sequence comparison.
Bioinformatics 2004, 20(18):3363-3369.

28. Myers EW: Toward Simplifying and Accurately Formulating
Fragment Assembly. J Comp Bio 1995, 2(2):275-290.

29. Myers EW: The fragment assembly string graph. Bioinformatics
2005, 21 Suppl 2:ii79-ii85.

30. Running Celera Assembler: Trimming the input data [http/
www.cbcb.umd.edu/research/CeleraAssembler.shtml#trimmingth
einput]

31. Chou HH, Holmes MH: DNA sequence quality trimming and
vector removal. Bioinformatics 2001, 17(12):1093-1104.
Page 11 of 11
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9521922
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9521922
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10508846
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10508846
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10731133
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10731133
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10613838
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10613838
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10613838
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12529310
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12529310
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12466850
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12466850
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12529309
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15060016
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12142439
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12142439
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7542800
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7542800
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7542800
http://www.ncbi.nlm.nih.gov/Traces
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16208317
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16208317
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15367931
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15367931
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15528405
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15528405
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11710818
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11710818
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8589713
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8589713
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8589713
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11878776
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11878776
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11704870
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11704870
http://www.maizegdb.org
http://www.maizegdb.org
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10988064
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10988064
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14707177
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14707177
http://www.cbcb.umd.edu/research/benchmark.shtml
http://www.cbcb.umd.edu/research/benchmark.shtml
http://amos.sourceforge.net
http://amos.sourceforge.net
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6320092
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6320092
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15256412
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15256412
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16204131
http://www.cbcb.umd.edu/research/CeleraAssembler.shtml#trimmingtheinput
http://www.cbcb.umd.edu/research/CeleraAssembler.shtml#trimmingtheinput
http://www.cbcb.umd.edu/research/CeleraAssembler.shtml#trimmingtheinput
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11751217
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11751217
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Gap closure
	Gene assembly
	Small genomes

	Implementation
	Implementation details of Minimus
	Input stage
	Overlap stage
	Unitigger stage
	Consensus stage

	Sequence trimming
	Extraction of GPC3 homologues from zebrafish shotgun data

	Results
	Assembly of influenza A virus isolates
	Assembly of individual genes
	BAC clone assembly
	Assembly of bacterial genomes

	Discussion
	Conclusion
	Availability and requirements
	Authors' contributions
	Acknowledgements
	References

