BIVIC Bioinformatics moml.?@mral

Software

High-throughput sequence alignment using Graphics Processing
Units

Michael C Schatz*71.2, Cole Trapnellt!.2, Arthur L Delcher!2 and

Amitabh Varshney?

Address: 'Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, USA and 2Department of Computer
Science, University of Maryland, College Park, MD, USA

Email: Michael C Schatz* - mschatz@umiacs.umd.edu; Cole Trapnell - cole@cs.umd.edu; Arthur L Delcher - adelcher@umiacs.umd.edu;
Amitabh Varshney - varshney@cs.umd.edu

* Corresponding author tEqual contributors

Published: 10 December 2007 Received: 20 August 2007
BMC Bioinformatics 2007, 8:474 doi:10.1186/1471-2105-8-474 Accepted: 10 December 2007
This article is available from: http://www.biomedcentral.com/1471-2105/8/474

© 2007 Schatz et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: The recent availability of new, less expensive high-throughput DNA sequencing
technologies has yielded a dramatic increase in the volume of sequence data that must be analyzed.
These data are being generated for several purposes, including genotyping, genome resequencing,
metagenomics, and de novo genome assembly projects. Sequence alignment programs such as
MUMmer have proven essential for analysis of these data, but researchers will need ever faster,
high-throughput alignment tools running on inexpensive hardware to keep up with new sequence
technologies.

Results: This paper describes MUMmerGPU, an open-source high-throughput parallel pairwise
local sequence alignment program that runs on commodity Graphics Processing Units (GPUs) in
common workstations. MUMmerGPU uses the new Compute Unified Device Architecture
(CUDA) from nVidia to align multiple query sequences against a single reference sequence stored
as a suffix tree. By processing the queries in parallel on the highly parallel graphics card,
MUMmerGPU achieves more than a |10-fold speedup over a serial CPU version of the sequence
alignment kernel, and outperforms the exact alignment component of MUMmer on a high end CPU
by 3.5-fold in total application time when aligning reads from recent sequencing projects using
Solexa/lllumina, 454, and Sanger sequencing technologies.

Conclusion: MUMmerGPU is a low cost, ultra-fast sequence alignment program designed to
handle the increasing volume of data produced by new, high-throughput sequencing technologies.
MUMmerGPU demonstrates that even memory-intensive applications can run significantly faster
on the relatively low-cost GPU than on the CPU.

Background ment algorithms find regions in one sequence, called here
Sequence alignment has a long history in genomics the query sequence, that are similar or identical to regions
research and continues to be a key component in the anal- in another sequence, called the reference sequence. Such
ysis of genes and genomes. Simply stated, sequence align- regions may represent genes, conserved regulatory

Page 1 of 10

(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18070356
http://www.biomedcentral.com/1471-2105/8/474
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2007, 8:474

regions, or any of a host of other sequence features. Align-
ment also plays a central role in de novo and comparative
genome assembly [1,2], where thousands or millions of
sequencing reads are aligned to each other or to a previ-
ously sequenced reference genome. New, inexpensive
large-scale sequencing technologies [3] can now generate
enormous amounts of sequence data in a very short time,
enabling researchers to attempt genome sequencing
projects on a much larger scale than previously. Aligning
these sequence data using current algorithms will require
very high-performance computers, of the type currently
available only at the largest sequencing and bioinformat-
ics centers. Furthermore, realizing the dream of wide-
spread personal genomics at hospitals and other clinical
settings requires sequence alignment to be low cost in
addition to high-throughput.

Most personal computer workstations today contain
hardware for 3D graphics acceleration called Graphics
Processing Units (GPUs). Recently, GPUs have been har-
nessed for non-graphical, general purpose (GPGPU)
applications. GPUs feature hardware optimized for simul-
taneously performing many independent floating-point
arithmetic operations for displaying 3D models and other
graphics tasks. Thus, GPGPU programming has been suc-
cessful primarily in the scientific computing disciplines
which involve a high level of numeric computation. How-
ever, other applications could be successful, provided
those applications feature significant parallelism.

In this paper, we describe a GPGPU program called MUM-
merGPU that performs exact sequence alignment using
suffix trees on graphics hardware. Our implementation
runs on recent hardware available from nVidia using a
new software development kit (SDK) for GPGPU progam-
ming called Compute Unified Device Architecture
(CUDA). MUMmerGPU is targeted to tasks in which
many small queries, such as reads from a sequencing
project, are aligned to a large reference sequence. To assess
the performance of MUMmerGPU we compare it to the
exact alignment component of MUMmer called mummer.
MUMmer is a very fast and widely used application for
this type of task [4], and is also used as the alignment
engine for the comparative assembler AMOScmp [2].
Overall MUMmerGPU is more than three times faster
than mummer on typical sequence alignment tasks
involving data from three recent sequencing projects. As
implemented, MUMmerGPU is a direct replacement for
mummer and can be used with any other programs that
process mummer output, including the other compo-
nents of MUMmer that post-process the exact alignments
computed by mummer into larger inexact alignments.

http://www.biomedcentral.com/1471-2105/8/474

Sequence alignment

One of the most successful algorithms for computing
alignments between sequences is MUMmer [4-6]. The first
stage of MUMmer is performed by a component called
mummer, which computes exact alignments between the
pair of sequences. These alignments can be used directly
to infer large-scale sequence structure, or they can be used
to seed extensions to longer inexact alignments using the
post-processing tools bundled with MUMmer. Unlike
other popular sequence alignment programs such as
BLAST [7], FASTA [8], and LAGAN [9], which use fixed
length seeds for constructing their alignments, mummer
alignments are variable-length maximal exact matches,
where maximal means that they cannot be extended on
either end without introducing a mismatch. First, mum-
mer pre-processes the reference sequence to create a data
structure, called a suffix tree. This data structure allows
mummer to then compute all maximal exact substring
alignments of a query sequence in time proportional to
the length of the query. The time to pre-process the refer-
ence sequence is proportional to its length (which may be
considerable for very long sequences), but this time
becomes insignificant when amortized across many query
searches. Consequently, suffix trees are used in several
alignment algorithms, including MGA [10] and REPuter
[11]. The suffix tree [12] for string S is a tree that encodes
every suffix of S with a unique path from the root to a leaf.
For a string of length n, there are n leaf nodes for each of
the n suffixes in S. Each edge in T is labeled with a sub-
string of variable length of S called an edge-label. Con-
catenating edge-labels along a path from the root to a
node i forms a substring, called i's path-label in S. Leaves in
the tree are labeled with the position where the path-label
begins in S. Internal nodes have at least 2 children, repre-
senting positions where repeated substrings diverge. The
edge-labels of the children of a node each begin with a dif-
ferent character from the alphabet, so there is at most one
child for each letter of the reference string's alphabet. Con-
sequently, the depth of any leaf is at most n, and there are
O(n) nodes in the tree.

A suffix tree can be constructed in O(n) time and O(n)
space for a string over a fixed alphabet, such as for DNA or
amino acids, by using additional pointers in the tree
called suffix links. The suffix link of node v with path-label
xa points to node v' with path-label & where x is a single
character and « is a substring [13,14]. Suffix links are used
to navigate between equivalent nodes of consecutive suf-
fixes without returning to the root of the tree.

All substrings of a query string Q of length m that occur in
a string S can be determined in time proportional to m by
navigating the suffix tree T of S to follow the characters in
Q. The algorithm begins by finding the longest prefix of Q
that occurs in T, descending from the root of T and follow-

Page 2 of 10

(page number not for citation purposes)

BMC Bioinformatics 2007, 8:474

ing exactly aligning characters in Q for as long as possible.
Assume that substring Q[1, i] is found in T along the path-
label to node v, but there is no edge from v labeled with
the next character in Q because Q[1, i + 1] is not present
in S. The algorithm can then report the occurrences of
Q| 1, i] at the positions represented by all leaves in the sub-
tree rooted at v after checking the alignments are maximal
by comparing the left flanking base of the query and ref-
erence. The algorithm then continues by finding the long-
est substrings for each of the m - 1 remaining start
positions in Q. However, instead of navigating the tree
from the root each time, the algorithm resumes aligning
with Q[i + 1] after following the suffix link from v to v' and
without reprocessing previously aligned characters.

Given a user-specifed minimum length I and a query Q,
suppose there is an exact alignment of length M > for the
substring starting at position i in the query and ending at
or along the edge to node N. The length of the alignment
(M) is equal to the length of the path-label of the parent
of node N plus the length along the edge to N. Starting
from N, the algorithm follows successive parent links up
the tree, subtracting the edge length of each link from the
alignment length, until the alignment length is less than [
as shown in Figure 1. Let R be the node with the smallest
string depth greater than I on this path. For each leaf L in
the subtree rooted by R, the path-label to the lowest com-
mon ancestor of N and L defines a substring starting at i

Figure |

Aligning a query against a suffix tree. Aligning the query
ATAT against the suffix tree for ATATCATS$. The path from
the root to each leaf encodes a sequence that occurs in the
reference at the label of that leaf. The blue path shows the
extent of the alignment in the tree. The query occurs at posi-
tion | with a alignment length of 4. For [> 2, MUMmerGPU
will print the red nodes as alignments with an alignment
length equal to 2, the sequence depth of the lowest common
ancestor between the red nodes and the blue node.

http://www.biomedcentral.com/1471-2105/8/474

in Q which occurs in both Q and S at the reference posi-
tion defined by the leaf label of L. For a thorough discus-
sion of suffix trees and their applications, see Gusfield's
classic work on sequence analysis [14].

GPGPU programming

As the GPU has become increasingly more powerful and
ubiquitous, researchers have begun exploring ways to tap
its power for non-graphics, or general-purpose (GPGPU)
applications [15]. This has proven challenging for a vari-
ety of reasons. Traditionally, GPUs have been highly spe-
cialized with two distinct classes of graphics stream
processors: vertex processors, which compute geometric
transformations on meshes, and fragment processors,
which shade and illuminate the rasterized products of the
vertex processors. The GPUs are organized in a streaming,
data-parallel model in which the processors execute the
same instructions on multiple data streams simultane-
ously. Modern GPUs include several (tens to hundreds) of
each type of stream processor, so both graphical and
GPGPU applications are faced with parallelization chal-
lenges [16]. Furthermore, on-chip caches for the process-
ing units on GPUs are very small (often limited to what is
needed for texture filtering operations) compared to gen-
eral purpose processors, which feature caches measured in
megabytes. Thus, read and write operations can have very
high latency relative to the same operations when per-
formed by a CPU in main memory.

Most GPGPU successes stem from scientific computing or
other areas with a homogeneous numerical computa-
tional component [17,18]. These applications are well
suited for running on graphics hardware because they
have high arithmetic intensity — the ratio of time spent per-
forming arithmetic to the time spent transferring data to
and from memory [19]. In general, the applications that
have performed well as a GPGPU application are those
that can decompose their problems into highly independ-
ent components each having high arithmetic intensity
[20]. Some bioinformatics applications with these proper-
ties have been successfully ported to graphics hardware.
Liu et al. implemented the Smith-Waterman local
sequence alignment algorithm to run on the nVidia
GeForce 6800 GTO and GeForce 7800 GTX, and reported
an approximate 16x speedup by computing the alignment
score of multiple cells simultaneously [21]. Charalam-
bous et al. ported an expensive loop from RAXML, an
application for phylogenetic tree construction, and
achieved a 1.2x speedup on the nVidia GeForce 5700 LE
[22].

nVidia's new G80 architecture radically departs from the
traditional vertex+fragment processor pipeline. It features
a set of multiprocessors that each contain a number of
stream processors (Figure 2). Graphics applications can

Page 3 of 10

(page number not for citation purposes)

BMC Bioinformatics 2007, 8:474

~ Multiprocessor N
Multiprocessor 2

Multiprocessor 1

Instruction
Unit

[Processor 1| | Processor 2| «-+ [Processor M|

Texture Cache

GPU on-board RAM

Figure 2

Simplified view of the nVidia G80 Architecture. This
figure, inspired by a similar figure in [23] shows how the GPU
is organized into several (N) multiprocessors, each contain-
ing multiple (M) stream processors that simultaneously exe-
cute the same instruction. Each processor can access the
texture cache very quickly, but reads and writes to the
onboard RAM have high latency.

use these as either vertex or fragment processors, and
GPGPU applications can program them for general com-
putation. All processors on a single multiprocessor simul-
taneously execute the same instruction, but different
multiprocessors can execute different instructions. nVidia
anticipated the benefits of such a unified architecture for
GPGPU computing, and released the Compute Unified
Device Architecture (CUDA) SDK to assist developers in
creating non-graphics applications that run on the G80
and future GPUs. CUDA offers improved flexibility over
previous GPGPU programming tools, and does not
require application writers to recast operations in terms of
geometric primitives, as was required by earlier GPGPU
environments [23].

CUDA enables programmers to write programs that run
on the GPU in a restricted form of the C programming
language, and compiled into G80 bytecode. CUDA pro-
grams typically consist of a component that runs on the
CPU, or host, and a smaller but computationally intensive
component called the kernel that runs in parallel on the
GPU (Figure 3). The kernel cannot access the CPU's main
memory directly - input data for the kernel must be cop-
ied to the GPU's on-board memory prior to invoking the
kernel, and output data also must first be written to the
GPU's memory. All memory used by the kernel must be
preallocated, and the kernel cannot use recursion or other
features requiring a stack, but loops and conditionals are
allowed. Furthermore, the number of registers per multi-
processor is limited and the multiprocessor schedules

http://www.biomedcentral.com/1471-2105/8/474

Read input Copy data to GPU

from user \

Execute kernel
Report results J
-
to user Copy data back
to CPU
CPU GPU

Figure 3

Typical GPGPU application flow. Input data for a
GPGPU application must be copied to the GPU's memory
along with a pre-allocated output buffer prior to invoking the
GPU-based kernel. Output from the kernel is read back into
main memory and reported to the user.

fewer processors to compute simultaneously if the
number of registers used per kernel is too high. Conse-
quently, high-performance kernel code requires careful
tuning to reduce the number of registers used and limit
the amount of branching.

The improved flexibility of CUDA does not solve the more
fundamental problems caused by the G80's stream-com-
puting organization: the relatively small cache and associ-
ated high memory latency for memory intensive
programs. However, the G80's texture memory is cached
to speed up memory intensive texture mapping opera-
tions, and can be used by GPGPU programs. GPGPU pro-
grams can pack their data structures into one-, two-, or
three-dimensional arrays stored in texture memory, and
thus use the cache for read-only memory accesses to these
data structures [23]. Performance is further improved by
utilizing one of several software techniques for maximiz-
ing the benefit offered by even a small cache. One such
class of techniques involves reordering either the data in
memory or the operations on those data to maximize data
and temporal locality. Mellor-Crummey et al. reported
significant speedup in particle interaction simulations,
which feature highly irregular access patterns, by reorder-
ing both the locations of particles in memory and the
order in which interactions were processed. They tested a
reordering strategy based on space-filling curves, such as
the Hilbert and Morton curves [24].

Implementation
The MUMmerGPU algorithm performs parallelized exact
string alignment on the GPU (Figure 4). First a suffix tree

Page 4 of 10

(page number not for citation purposes)

BMC Bioinformatics 2007, 8:474

http://www.biomedcentral.com/1471-2105/8/474

Algorithm 1: MUMmerGPU

Build k overlapping suffix trees from reference

foreach QueryBlock do
Output < ()
Load QueryBlock onto GPU

foreach Tree do
Load T'ree onto GPU

Unload T'ree

Unload QueryBlock

Run alignment kernel on (QueryBlock, Tree)
Add kernel output to Output

foreach query € QueryBlock do
| Print output for query in Output

Figure 4

MUMmerGPU Algorithm. MUMmerGPU builds multiple suffix trees of the reference and partitions the query sequences
into sets, called QueryBlocks, depending on the memory available on the GPU. Sequences within a given QueryBlock are aligned

in parallel on the GPU.

of the reference sequence is constructed on the CPU using
Ukkonen's algorithm [13] and transfered to the GPU.
Then the query sequences are transfered to the GPU, and
are aligned to the tree on the GPU using the alignment
algorithm described above. Alignment results are tempo-
rarily written to the GPU's memory, and then transfered in
bulk to host RAM once the alignment kernel is complete
for all queries. Finally, all maximal alignments longer
than a user-supplied value (I) are reported by post-
processing the raw alignment results on the CPU. The out-
put format and many parameters of MUMmerGPU are
identical to those of mummer (with the -maxmatch
option), up to the order in which alignments appear in
the output for each query, and thus MUMmerGPU can be
used as a drop-in replacement for mummer. In particular,
all programs in the NUCmer suite of programs that use
the output of mummer, including those that extend the
exact alignment seeds to larger inexact alignments, can
take advantage of the GPU paralellization [4-6].

The G80 has a relatively small amount of on-board mem-
ory, so the data are partitioned into large blocks so that
the reference suffix tree, query sequences, and output buff-
ers will fit on the GPU. As of this writing, the amount of
on-board memory for a G80 ranges from 256 MB to 768
MB. A suffix tree built from a large reference sequence,
such as a human chromosome, will exceed this size, so
MUMmerGPU builds k smaller suffix trees from overlap-
ping segments of the reference. MUMmerGPU computes
k at runtime to fill approximately one third of the total
GPU device memory with tree data. The trees overlap in

the reference sequence by the maximum query length m
supported by MUMmerGPU (currently 8192 bp) to guar-
antee all alignments in the reference are found, but align-
ments in the overlapping regions are reported only once.

After building the trees, MUMmerGPU computes the
amount of GPU memory available for storing query data
and alignment results. The queries are read from disk in
blocks that will fill the remaining memory, concatenated
into a single large buffer (separated by null characters),
and transferred to the GPU. An auxiliary 1D array, also
transfered to the GPU, stores the offset of each query in
the query buffer. Each multiprocessor on the GPU is
assigned a subset of queries to process in parallel, depend-
ing on the number of multiprocessors and processors
available. The executable code running on each processor,
the kernel, aligns a single query sequence from the multi-
processor's subset to the reference. The kernel aligns the
query to the reference by navigating the tree using the suf-
fix-links to avoid reprocessing the same character of the
query, as described above. Reverse complement align-
ments are computed using a second version of the kernel
which reverse complements the query sequences on-the-
fly while aligning, allowing for computing both forward
and reverse alignments without any additional data trans-
fer overhead. The output buffer contains a slot to record
the alignment result for each of the m - | + 1 substrings for
a query of length m. The fixed size alignment result con-
sists of the node id of the last visited node in the tree and
length of the substring that exactly aligns. This informa-

Page 5 of 10

(page number not for citation purposes)

BMC Bioinformatics 2007, 8:474

tion is sufficient to print all positions in the reference that
exactly align the substring on the CPU.

After the kernel is complete for all the queries, the output
buffer on the GPU is transfered to host RAM and the align-
ments are printed by the CPU. Each slot in the output
buffer corresponds to a specific substring of a query. If
multiple trees were built from the reference (k > 1), then
the output slots for each tree are preserved until the que-
ries in a block have been aligned against each tree. This
way all of the alignments for a given query can be printed
in a single block, following the syntax used by mummer.

GPU Memory Layout

The suffix tree is "flattened" into two 2D textures, the
node texture and the child texture. Each tree node is stored
in a pair of 16-byte texels (texture elements) in these two
textures. The node texture stores half the information for
a node, including the start and end coordinates of the
edge sequence in the reference, and the suffix link for the
node. The remaining information for a node - the point-
ers to its A, C, G & T children - is stored in the child tex-
ture, addressed in parallel to the node texture. An auxiliary
table containing each node's edge length, sequence depth,
parent pointer, and suffix number for leaf nodes, is stored
in RAM and is used during the output phase.

In the CUDA architecture, a program can store read-only
data as cached textures. The G80's proprietary caching
scheme takes advantage of 2D locality common in textur-
ing operations. Therefore, the algorithm attempts to opti-
mize the 2D locality of the tree structure in these textures
by organizing the nodes in 32 x 32 texel blocks as shown
in Figure 5. Near the root of the tree (node depth <16),
nodes are assigned using a level-order (breadth-first)
traversal of the tree creating "wide" blocks of the tree. This
ensures that all nodes near the root of the tree are placed
in the first 32 x 32 texel blocks, and guarantees the chil-
dren of a given node will be at (nearly) adjacent cells in
the texture. This is useful because at this depth, loading a
single 32 x 32 block for one kernel is likely to be reused
for the other kernels running in parallel. Further from the
root (depth > 16), nodes are arranged in "tall" blocks so
that a node, its children, grandchildren, and great-grand-
children are adjacently placed in the same (or adjacent)
32 x 32 block. As multiple queries are aligned against
lower parts of the tree, it becomes less likely that their ker-
nels will access many of the same nodes. Thus, the data
reordering scheme attempts to increase the cache hit rate
for a single thread. The exact specification of the G80's
caching scheme is proprietary information, but empiri-
cally, this hybrid layout seems to maximize the cache hit
rate near the root of the tree, and towards the leaves where
the kernel access patterns are radically different.

http://www.biomedcentral.com/1471-2105/8/474

Figure 5

Suffix Tree layout. The nodes of the suffix tree are rear-
ranged into cache blocks to optimize 2D locality. Near the
root of the tree, nodes of the same depth are placed into the
same "wide" block. Futher down the tree, nodes from the
same subtree are placed into the same "tall" block. MUM-
merGPU uses blocks of 32 x 32 nodes, but for clarity, 8
nodes cache blocks are displayed here.

The reference sequence for the tree is transferred to the
GPU as a third 2D texture, and is reordered along a simple
2D space-filling curve to maximize the cache hit rate for
subsequent accesses along a node's edge. The sequence is
reordered so that beginning with the first character, every
four characters in the reference become the topmost four
characters in the columns of the 2D array. Once the array
contains 4 x 65,536 characters, successive four-character
chunks become the next four characters in the columns,
left-to-right, and so on. We experimented with a variety of
other data reordering schemes, including along a Morton
curve and other space filling curves, and found this to
have the best performance on several reference sequences.
Altogether, using cache memory organized with the spac-
ing-filing curves for the suffix tree and reference sequence
improved the kernel execution speed by several fold.

Complexity of MUMmerGPU

MUMmerGPU constructs its suffix trees in O(n) time with
Ukkonen's algorithm, where n is the length of the refer-
ence. The alignment kernel running on the card computes
all exact substring alignments for each query in time linear
in the length of the query. The kernel is an implementa-
tion of existing alignment methods [14], but with many
independent instances running simultaneously on the
GPU.

MUMmerGPU uses both GPU memory and main system
memory. Suffix trees use an amount of memory linear in
the length of the reference from which they are con-
structed [14]. The suffix trees in MUMmerGPU thus each

Page 6 of 10

(page number not for citation purposes)

BMC Bioinformatics 2007, 8:474

occupy O(n/k + m) space, where k is the number of over-
lapping trees specified by the user, and m is the maximum
query length supported by MUMmerGPU. Note that for
most expected uses of MUMmerGPU n > m. Only a frac-
tion of that total space is actually transferred to the GPU.
In the current implementation, 32 out of every 48 bytes
per node are transferred. The remaining bytes are stored in
the host-only auxiliary table used only for printing results
by the CPU. For each query, MUMmerGPU transfers the
null terminated query sequence prepended with a special
mismatch character, along with two 4-byte entries in aux-
iliary tables used by the kernel. For a query of length m,
and a minimum substring length [, m - I + 1 output slots
are reserved to record the query's substring alignments,
and each output slot occupies 8 bytes. The total space
required on both the CPU and the GPU for each query is
8(m -1+ 1)+ (m + 10) bytes. On a G80 with 768 MB of
on-board RAM, there is sufficient RAM to store a tree for a
5 Mbp reference sequence, and 5 million 25 bp or
500,000 100 bp query sequences.

Results and Discussion

We measured the relative performance of MUMmerGPU
by comparing the execution time of the GPU and CPU
version of the alignment code, and the total application
runtime of MUMmerGPU versus the serial application
mummer. The test machine has a 3.0 GHz dual-core Intel
Xeon 5160 with 2 GB of RAM, and an nVidia GeForce
8800 GTX. The 8800 GIX has 768 MB of on-board RAM
and a G80 with 16 multiprocessors, each of which has 8
stream processors. At the time of this writing, the retail
price of the 8800 GTX card is $529, and a retail-boxed
Intel Xeon 5160 CPU is $882 [25]. Input and output was
to a local 15,000 RPM SATA disk. The machine was run-
ning Red Hat Enterprise Linux release 4 update 5 (32 bit),
CUDA 1.0, and mummer 3.19.

We ported the MUMmerGPU alignment kernel to use the
CPU instead of the GPU to isolate the benefit of using
graphics hardware over running the same algorithm on
the CPU. CUDA allows programmers to write in a variant
of C, so porting MUMmerGPU to the CPU required only
straightforward syntactic changes, and involved no algo-
rithmic changes. Where the CUDA runtime invokes many
instances of the kernel on the GPU simultaneously, the
CPU executes each query in the block sequentially.

The first test scenario was to align synthetically con-
structed reads to a bacterial genome. We used synthetic
reads in order to explore MUMmerGPU's performance in
the absence of errors and over a wider variety of query
lengths then are available with genuine reads. The syn-
thetic test reads consisted of 50-, 100-, 200-, 400-, and
800-character substrings (uniformly randomly) sampled
from the Bacillus anthracis genome (GenBank ID:

http://www.biomedcentral.com/1471-2105/8/474

NC 003997.3). Thus, each read exactly aligns to the
genome end-to-end at least once, and possibly more
depending on the repeat content of the genome. When
aligning each of the five sets of reads, we used I equal to
the read size for the set. Each set contained exactly
250,000,000 base pairs of query sequence divided evenly
among all the reads in the set.

The time for building the suffix tree, reading queries from
disk, and printing alignment output is the same regardless
of whether MUMmerGPU ran on the CPU or the GPU,
since those parts of MUMmerGPU always run on the
CPU. The actual sequence alignment portion of MUM-
merGPU ran dramatically faster, over 10x faster, on the
GPU, despite the added cost of transferring the tree and
query data to the GPU. The speedup of MUMmerGPU
(not including the costs mentioned above shared by both
variants) running on the GPU over MUMmerGPU on the
CPU is shown in Figure 6.

For longer reads, the speedup of using the GPU is dimin-
ished, because of poor cache performance and thread
divergence, both of which are acknowledged as potential
performance problems on the G80 [23]. All queries begin
at the root of the tree, and many queries will share com-
mon nodes on their paths in the tree. However, as the ker-
nel travels deeper into the tree for longer reads, the texture
elements stored in the cache are reused less often, thus

s Kernel speedup, GPU vs. CPU
12 T T T T T T

\ 4
10 n

Speedup
o
T
L

2 F V .
B 4

0 I I I I I I
25 50 100 200 400 800

Query length (bp - log scale)

Figure 6

Speedup of MUMmerGPU on the GPU over the
CPU. The decrease in speedup when processing error-free
synthetic reads as read length increases is due to a combina-
tion of thread divergence and poor cache hit rate.

Page 7 of 10

(page number not for citation purposes)

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_003997.3

BMC Bioinformatics 2007, 8:474

reducing the cache hit rate, and increasing the overall
average access time. In addition, even though queries are
the same length, the alignment kernel may not visit the
same number of nodes, nor spend the same amount of
time comparing to edges, because edges in suffix trees
have variable length. This creates divergence among the
threads processing queries, and the multiprocessor will be
forced to serialize their instruction streams. It is difficult to
quantify the relative contribution of these effects, but it is
likely that both are significant sources of performance
loss.

In addition to the test with synthetic data, we also aligned
reads from several recent sequencing projects against the
genomes from which the reads were generated. The
projects included Streptococcus suis sequenced with the
Solexa/Illumina sequencer [26], multiple strains of Liste-
ria monocytogenes sequenced using 454 pyrosequencing
(Genome GenBank ID: NC 003210.1, read TI numbers
1405533909 - 1405634798, 1406562010 -
1406781638, 1407073020 - 1411183505, 1413490052
- 1415592095, 1415816363 - 1415903784) and
Caenorhabditis briggsae sequenced with standard ABI
3730x] Sanger-type sequencing [27]. We aligned the reads
against both strands of the chromosomal DNA for L.
monocytogenes and S. suis, and against both strands of
chromosome II1 of C. briggsae. Little data from Solexa/Illu-
mina has been made public at the time of this writing, and
the public data set available had only a single lane's worth
of data. To represent the full set of reads from a full Sol-
exa/Illumina run, we concatenated 10 copies of a pub-
licly-available file containing 2,659,250 36 bp reads to
form the S. suis query set. The reference sequence and que-
ries in all three tests did not include ambiguous bases. For
these three tasks, Table 1 shows the runtime parameters
used and the overall speedup of MUMmerGPU over
mummer. Figure 7 shows the wall-clock time spent by
MUMmerGPU in the various phases of the algorithm,
including kernel execution and I/O between CPU and
GPU.

For each of the alignment tasks, MUMmerGPU was
between 3.47 and 3.79 times faster than mummer. For C.
briggsae, MUMmerGPU spent most of its time aligning
queries on the GPU. Because we aligned all of the reads

http://www.biomedcentral.com/1471-2105/8/474

from the sequence project against chromosome III of the
C. briggsae, many of the reads did not align anywhere in
the reference. As a result, a relatively short amount of time
was spent in writing alignment output to disk. For other
alignments, such as for the L. monocytogenes and S. suis test
sets, the output phase dominates the running time of
MUMmerGPU. For these tasks, printing the output in par-
allel with aligning a block of queries would provide sub-
stantial speedup, as it would hide much of the time spent
aligning queries on the card. We plan to adopt this strat-
egy in a future release of MUMmerGPU.

Despite the performance hazards experienced for longer
simulated reads, MUMmerGPU on the GPU consistently
outperforms mummer on real sequencing data by more
than a factor of three in wall-clock application running
time. Unlike the idealized simulated reads, these reads are
variable length and have sequencing error, which will
cause further divergence in the kernel executions. Further-
more, the C. briggsae alignment required the use of a seg-
mented suffix tree and associated data transfer overhead.
In general, MUMmerGPU confers significant speedup
over mummer on tasks in which many short queries are
aligned to a single long reference.

Conclusion

Operations on the suffix tree have extremely low arithme-
tic intensity - they consist mostly of following a series of
pointers. Thus, sequence alignment with a suffix tree
might be expected to be a poor candidate for a parallel
GPGPU application. However, our results show that a sig-
nificant speedup, as much as a 10-fold speedup, can be
achieved through the use of cached texture memory and
data reordering to improve access locality. This speedup is
realized only for large sets of short queries, but these read
characteristics are beginning to dominate the marketplace
for genome sequencing. For example Solexa/Illumina
sequencing machines create on the order of 20 million 50
bp reads in a single run. For a single human genotyping
application, reads from a few such runs need to be aligned
against the entire human reference genome. Thus our
application should perform extremely well on workloads
commonly found in the near future. The success of our
application is in large part the result of the first truly gen-
eral purpose GPU programming environment, CUDA,

Table I: Runtime parameters and speedup for MUMmerGPU test workloads. MUMmerGPU is consistently more than 3 times faster

than mummer for a variety of sequencing data.

Reference Reference length (bp) # of queries Query length Min alignment length () # of suffix trees (k) Speedup
mean * stdev.
C. briggsae Chr. lll (Sanger) 13,163,117 2,357,666 717.84 £ 159.44 100 2 3.71
L. monocytogenes (454) 2,944,528 6,620,471 200.54 £ 60.51 20 | 3.79
S. suis (Illumina/Solexa) 2,007,491 26,592,500 35.96 + 0.27 20 I 347
Page 8 of 10

(page number not for citation purposes)

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_003210.1

BMC Bioinformatics 2007, 8:474

Time spent by phase in MUMmerGPU

700 T T T
[Data transfer to GPU
600 [Suffix tree constructions H
[Print matches
[Read queries from disk
500 B Kernel
w 400 [-]
)
g
5 300 [0 7]
200 [~]
100 [~]
0 l
C. briggsae L. monocytogenes S. suis
Figure 7

Breakdown of MUMmerGPU processing time. The
stacked bar charts indicate the amount of time spent in each
phase of the MUMmerGPU for the three test sets. Given a
sufficiently large number of sequencing reads, the time spent
building the suffix tree is small compared to time spent align-
ing queries.

which allowed us to directly formulate and implement
our algorithm in terms of suffix tree navigation and not
geometric or graphics operations. This environment made
it possible to efficiently utilize the highly parallel and high
speed 8800 GTX. An 8800 GTX is similar in price to a sin-
gle 3.0 Ghz Xeon core, but offers up to 3.79x speedup in
total application runtime. Furthermore, in the near future,
a common commodity workstation is likely to contain a
CUDA compliant GPU that could be used without any
additional cost.

Even though MUMmerGPU is a low arithmetic memory
intensive program, and the size of the stream processor
cache on the G80 is limited, MUMmerGPU achieved a sig-
nificant speedup, in part, by reordering the nodes to
match the access patterns and fully use the cache. We
therefore expect with careful analysis of the access pattern,
essentially any highly parallel algorithm to perform
extremely well on a relatively inexpensive GPU, and antic-
ipate widespread use of GPGPU and other highly parallel
multicore technologies in the near future. We hope by
making MUMmerGPU available open source, it will act as
a roadmap for a wide class of bioinformatics algorithms
for multi-processor environments.

Availability and requirements
Project name: MUMmerGPU

http://www.biomedcentral.com/1471-2105/8/474

Project home page: http://mummergpu.sourceforge.net
Operating system(s): Linux, UNIX

Programming language: C, C++, CUDA

Other requirements: nVidia G80 GPU, CUDA 1.0
License: Artistic License

Restrictions to use by non-academics: none.

Authors' contributions

MS and CT developed the software and wrote the manu-
script together. AD and AV helped to draft and edit the
manuscript. All authors read and approved the final man-
uscript.

Acknowledgements

The authors would like to thank David Luebke from nVidia Research for
providing an early release of CUDA, Julian Parkhill from the Sanger Institute
for making the S. suis data available, Mihai Pop from CBCB for his assistance
obtaining data, and Steven Salzberg from CBCB for editing the manuscript.
This work was supported in part by National Institutes of Health grants
RO1-LM006845 and RO1-LM007938, and National Science Foundation CISE
RI grant CNS 04-03313.

References

l. Myers EW, Sutton GG, Delcher AL, Dew IM, Fasulo DP, Flanigan M),
Kravitz SA, Mobarry CM, Reinert KH, Remington KA, Anson EL,
Bolanos RA, Chou HH, Jordan CM, Halpern AL, Lonardi S, Beasley
EM, Brandon RC, Chen L, Dunn P}, Lai Z, Liang Y, Nusskern DR, Zhan
M, Zhang Q, Zheng X, Rubin GM, Adams MD, Venter |C: A Whole-
Genome Assembly of Drosophila. Science 2000,
287(5461):2196-2204.

2. Pop M, Phillippy A, Delcher AL, Salzberg SL: Comparative genome
assembly. Briefings in Bioinformatics 2004, 5(3):237-248.

3. Shaffer C: Next-generation sequencing outpaces expecta-
tions. Nat Biotechnol 2007, 25(2):149.

4. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu
C, Salzberg SL: Versatile and open software for comparing
large genomes. Genome Biol 2004, 5(2):R12.

5. Delcher AL, Kasif S, Fleischmann RD, Peterson |, White O, Salzberg
SL: Alignment of whole genomes. Nucleic Acids Res 1999,
27(11):2369-76.

6. Delcher AL, Phillippy A, Carlton }, Salzberg SL: Fast algorithms for
large-scale genome alignment and comparison. Nucleic Acids
Res 2002, 30(11):2478-2483.

7. Atschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local
alignment search tool. | Mol Biol 1990, 215:403-410.

8. Pearson W, Lipman D: Improved tools for biological sequence
comparison. Proc Natl Acad Sci USA 1988, 85:2444-2448.

9. Brudno M, Do C, Cooper G, Kim M, Davydov E, Green E, Sidow A,
Batzoglou S: LAGAN and Multi-LAGAN: efficient tools for
large-scale alignment of genomic DNA. Genome Res 2003,
13:721-731.

10. Hohl M, Kurtz S, Ohlebusch E: Efficient multiple genome align-
ment. Bioinformatics 2002, 18(Suppl 1):5312-5S320.

I'l. Kurtz S, Choudhuri], Ohlebusch E, Schleiermacher C, Stoye |, Gieg-
erich R: REPuter: the manifold applications of repeat analysis
on a genomic scale. Nucleic Acids Res 2001, 29:4633-4642.

12. Weiner P: Linear pattern matching algorithms. Proceedings of
the |4th IEEE Symposium on Switching and Automata Theory 1973:1-11.

13. Ukkonen E: On-line construction of suffix-trees. Algorithmica
1995, 14:249-260.

Page 9 of 10

(page number not for citation purposes)

http://mummergpu.sourceforge.net
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10731133
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10731133
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15383210
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15383210
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17287734
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17287734
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14759262
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14759262
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10325427
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12034836
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12034836
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2231712
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2231712
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3162770
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3162770
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12654723
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12654723
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12169561
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12169561
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11713313
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11713313

BMC Bioinformatics 2007, 8:474

20.
21.

22.

23.
24.

25.
26.

27.

Gusfield D: Algorithms on strings, trees, and sequences: computer science
and computational biology New York: Cambridge University Press;
1997.

Owens |D, Luebke D, Govindaraju N, Harris M, Kriiger], Lefohn AE,
Purcell T: A Survey of General-Purpose Computation on
Graphics Hardware. Computer Graphics Forum 2007, 26:80-1 13.
Govindaraju NK, Larsen S, Gray |, Manocha D: A memory model
for scientific algorithms on graphics processors. In SC'06: Pro-
ceedings of the 2006 ACMIIEEE conference on Supercomputing New
York, NY, USA: ACM Press; 2006:89.

Harris M), Coombe G, Scheuermann T, Lastra A: Physically-Based
Visual Simulation on Graphics Hardware. Proc 2002 SIG-
GRAPH/Eurographics Workshop on Graphics Hardware 2002.

Juekuan Y, Yujuan W, Yunfei C: GPU accelerated molecular
dynamics simulation of thermal conductivities. | Comput Phys
2007, 221(2):799-804.

Dally W], Labonte F, Das A, Hanrahan P, Ahn JH, Gummaraju J, Erez
M, Jayasena N, Buck I, Knight TJ, Kapasi UJ: Merrimac: Supercom-
puting with Streams. In SC'03: Proceedings of the 2003 ACM/IEEE
conference on Supercomputing Washington, DC, USA: IEEE Computer
Society; 2003:35.

Buck I: Taking the Plunge into GPU Computing. In GPU Gems
2 Edited by: Pharr M. Addison-Wesley; 2005:509-519.

Liu W, Schmidt B, Voss G, Schroder A, Muller-Wittig W: Bio-
Sequence Database Scanning on a GPU. 20th IEEE International
Parallel & Distributed Processing Symposium (IPDPS 2006) (HICOMB
Workshop), Rhode Island, Greece 2006.

Charalambous M, Trancoso P, Stamatakis A: Initial Experiences
Porting a Bioinformatics Application to a Graphics Proces-
sor. In Proceedings of the | 0th Panhellenic Conference on Informatics (PCI
2005) Volos, Greece: Springer LNCS; 2005:415-425.

nVidia: nVidia Compute Unified Device Architecture
(CUDA) Programming Guide, version 1.0. 2007.
Mellor-Crummey J, Whalley D, Kennedy K: Improving Memory
Hierarchy Performance for Irregular Applications Using
Data and Computation Reorderings. Int | Parallel Program 2001,
29(3):217-247.

Newegg.com [http://www.newegg.com]
Streptococcus suis sequencing
www.sanger.ac.uk/Projects/S suis/]

Stein LD, Bao Z, Blasiar D, Blumenthal T, Brent MR, Chen N, Chin-
walla A, Clarke L, Clee C, Coghlan A, Coulson A, D'Eustachiol P,
Fitch DHA, Fulton LA, Fulton RE, Griffiths-Jones S, Harris TW, Hillier
LW, Kamath R, Kuwabara PE, Mardis ER, Marra MA, Miner TL, Minx
P, Mullikin JC, Plumb RW, Rogers |, Schein JE, Sohrmann M, Spieth J,
Stajich JE, Wei C, Willey D, Wilson RK, Durbin R, Waterston RH:
The Genome Sequence of Caenorhabditis briggsae: A Plat-
form for Comparative Genomics. PLoS Biology 2003, 1(2):.

project [htep://

http://www.biomedcentral.com/1471-2105/8/474

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here: O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 10 of 10

(page number not for citation purposes)

http://www.newegg.com
http://www.sanger.ac.uk/Projects/S_suis/
http://www.sanger.ac.uk/Projects/S_suis/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14624247
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14624247
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14624247
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Sequence alignment
	GPGPU programming

	Implementation
	GPU Memory Layout
	Complexity of MUMmerGPU

	Results and Discussion
	Conclusion
	Availability and requirements
	Authors' contributions
	Acknowledgements
	References

