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Abstract

Background: Computational prediction methods are currently used to identify genes in
prokaryote genomes. However, identification of the correct translation initiation sites remains a
difficult task. Accurate translation initiation sites (TISs) are important not only for the annotation
of unknown proteins but also for the prediction of operons, promoters, and small non-coding RNA
genes, as this typically makes use of the intergenic distance. A further problem is that most existing
methods are optimized for Escherichia coli data sets; applying these methods to newly sequenced
bacterial genomes may not result in an equivalent level of accuracy.

Results: Based on a biological representation of the translation process, we applied Bayesian
statistics to create a score function for predicting translation initiation sites. In contrast to existing
programs, our combination of methods uses supervised learning to optimally use the set of known
translation initiation sites. We combined the Ribosome Binding Site (RBS) sequence, the distance
between the translation initiation site and the RBS sequence, the base composition of the start
codon, the nucleotide composition (A-rich sequences) following start codons, and the expected
distribution of the protein length in a Bayesian scoring function. To further increase the prediction
accuracy, we also took into account the operon orientation. The outcome of the procedure
achieved a prediction accuracy of 93.2% in 858 E. coli genes from the EcoGene data set and 92.7%
accuracy in a data set of 1243 Bacillus subtilis 'non-y' genes. We confirmed the performance in the
GC-rich  Gamma-Proteobacteria Herminiimonas arsenicoxydans, Pseudomonas aeruginosa, and
Burkholderia pseudomallei K96243.

Conclusion: Hon-yaku, being based on a careful choice of elements important in translation,
improved the prediction accuracy in B. subtilis data sets and other bacteria except for E. coli. We
believe that most remaining mispredictions are due to atypical ribosomal binding sequences used
in specific translation control processes, or likely errors in the training data sets.

Background location. The first task associated with genome annotation
Genome sequencing provides investigators with a plain  is therefore gene identification. In recent years, gene pre-
genome text, with no biological indication of the genes'  diction methods have been developed as part of many
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genome projects. Based on criteria strictly defined by pre-
viously known genes, the best computational gene identi-
fication methods for prokaryote genomes show
sensitivities of 98-99% or higher for proper identification
of the genes' reading frames [1]. However, based on the
widespread assumption that Open Reading Frames
(ORFs) and Coding DNA sequences (CDSs) label the
same objects, this level of prediction accuracy is calculated
using the 3' end location of each gene, not the actual gene
span. One of the most widely used methods, Glimmer [1],
tends to predict the CDS to be the longest possible ORF
displaying a particular nucleotide pattern based on
Markov chain analysis and starting with the first possible
translation initiation codon (ATG, TTG or GTG). The con-
ceptual basis of Glimmer rests on the original periodical
Markov Chain Analysis approach, GeneMark, which for
precise prediction of the gene's 5' end, also considers
sequence features located upstream of the translation ini-
tiation sites. The resulting accuracy is 5-30% lower than
the 3' end predictions [2]. GeneMark often succeeds better
in correct gene identification because it is based on dis-
crimination between typical protein coding states and
atypical protein coding states, which is assumed to be
populated with genes horizontally transferred into a given
microbial genome. This was illustrated, for example, with
identification of the cyaY gene in Escherichia coli [3] and
the secE gene in Helicobacter pylori [4].

A more accurate translation initiation site (TIS) prediction
is important not only for the annotation of unknown
CDSs but also for operon prediction [5] and promoter
prediction. Furthermore, in silico prediction of genes cod-
ing for small untranslated RNAs [6] also depends on the
correct identification of intergenic (inter CDS) distances.

Most existing tools use an unsupervised learning method,
using E. coli data sets for validation, due to the lack of
experimentally validated data sets in other organisms. In
the present work, we adopted a supervised machine learn-
ing method for the following reasons. First, we took into
account that in the current annotation situation, human
annotation is still more reliable than any computational
genome-wide predictions, suggesting that by trying to
mimic the human approach we might construct more reli-
able data sets. Second, supervised learning assumes that
we implement some knowledge of what we can consider
as the most important elements in the prediction method.
Furthermore, it is difficult to know the range of correct
applicability with unsupervised algorithms without deep
knowledge of the algorithms. For example, in a recent
comparison between the TiCo algorithm and MED-Start,
the latter showed surprisingly low accuracies (around 5%)
with high GC-content genomes, although it showed over
90% accuracy in the E. coli data set [7]. This is in line with
the general difficulty to identify translation start sites in
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GC-rich organisms where the lack of A or T nucleotides
results in long ORFs due to purely statistical reasons. To
construct an in silico model of translation initiation based
on biological knowledge, we take into account the follow-
ing elements.

First of all, the Ribosome Binding Site (RBS, also named
the Shine-Dalgarno sequence, after the name of the
authors who proposed that mRNA had to interact with the
16S RNA to permit initiation of translation [8]) is one of
the most important elements for translation initiation.
The RBS sequence is recognized by a sequence near the 3'
end of 16S rRNA in the 30S ribosomal subunit. After the
30S ribosomal subunit binds to mRNA by base pairing to
the RBS sequence, the fMet-tRNA identifies the initiation
codon and binds to the complex. Next, the 50S ribosomal
subunit binds to the complex and begins to elongate the
nascent polypeptide [9].

Compared to Bacillus subtilis, Escherichia coli has relatively
short or poorly conserved RBS sequences. To be able to
separate these weak RBS sequences from the noise, E. coli
has an S1 protein that plays an important role in the cor-
rect presentation of most mRNAs to the ribosome. The
recognition signal of the S1 protein for binding mRNA has
been studied in its molecular details but is not yet com-
pletely understood. The S1 protein binds to the leader
sequence of mRNAs, upstream of the RBS sequence. On
synthetic RNAs, S1 has no strict sequence specificity and
binds polyU, polyC, and polyA, as well as various hetero-
geneous RNAs. However, it has been shown to present
sequences possessing the GAGG sequence to the RegB
nuclease of bacteriophage T4 [10], indicating that it has
indeed a role in the recognition of the core sequence of
the RBS. In contrast, B. subtilis or A+T-rich Firmicutes do
not possess an S1 protein. (B. subtilis has a counterpart,
YpfD, but this protein is not involved in translation [11]).
Finally, both E. coli and B. subtilis are weakly AU-rich
upstream of the RBS sequence. A difficulty encountered
with GC-rich organisms is that long Gs stretches can easily
be mistaken for authentic RBSs. For an accurate prediction
of the TIS, we also need to consider translational reinitia-
tion when several cistrons belong to a common transcript.
Translational reinitiation frequently occurs if the initia-
tion codon is an AUG, a RBS sequence is present, and the
termination codon of the preceding CDS lies between the
RBS sequence and the AUG or overlaps the RBS. In this
case, the 70S ribosome does not need to be dissociated
into 50S and 30S ribosome subunits [9] to allow transla-
tion initiation. Therefore, translational reinitiation signals
may be different from canonical initiation.

The RBS sequence is usually located 3-8 nt upstream of
the start codon. The optimal spacing depends on exactly
which bases at the 3' end of 16S rRNA participate in the
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interaction. The start codon is preferably AUG. Weaker
base pairings with fMet-tRNA to initiation codons are less
efficient for translation initiation [12]. The preference for
alternative start codons varies between species. B. subtilis
prefers UUG rather than GUG, while the opposite is true
for E. coli (Table 1). The selection ratio of the primary
AUG in E. coli is higher than in B. subtilis, and this is one
of the reasons making that standard prediction accuracy
for B. subtilis is lower than for E. coli, in spite of the
"stronger" RBS sequence.

An A-rich sequence following the start codon is typically
found in both B. subtilis and E. coli [13]. Those A-rich (A/
U rich) sequences probably stimulate translation initia-
tion by excluding secondary RNA structures [14].

Furthermore, we also took into account the fact that biases
introduced by translation may affect the translation proc-
ess, discriminating between two types of intergenic dis-
tance distributions; head to head (< -- >) and tail to head
(- > - >) cases, for assuming the non-operon/operon struc-
tures.

For each of these biological considerations, we assessed to
what degree they can contribute to the TIS prediction
accuracy, as described in the Results. Based on this evalu-
ation, we selected six elements (see Methods) and com-
bined them into a single score function using Bayesian
statistics.

This Bayesian supervised learning method for TIS predic-
tion, which we named Hon-yaku ("translation" in Japa-
nese), showed a prediction accuracy of over 90% for both
E. coli and B. subtilis. We also applied this method to GC-
rich Gamma-Proteobacteria that do not have any experi-
mentally validated TIS data sets. Our Python scripts can be
downloaded [15]. After construction of a reference data
set based on core genome sequences, the scripts can be
used with some basic knowledge of Python to predict TISs
in newly sequenced bacterial genomes. To obtain training
data sets, we chose genes that have strong sequence simi-
larity to E. coli or B. subtilis data sets, retaining the genes
that display genome persistence [16]. Our algorithm also
performed well in P. aeruginosa, B. pseudomallei, and the

Table I: Frequency of translation initiation site code
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newly sequenced genome of the Beta-proteobacterium
Herminiimonas arsenicoxydans, which can metabolize
arsenic.

Results and discussion

RBS sequence motif comparison

Except for some special cases such as leaderless genes,
most genes have an RBS sequence around 3-8 bp
upstream from the TIS. We considered several RBS motif
categories that represent the gene essentiality, the position
of each operon, and the organism specificity.

The first gene of an operon typically has a longer inter-
genic space to the previous gene than subsequent genes.
By contrast, the RBS sequences of subsequent genes often
overlap with the coding region of the previous gene. In
these latter cases, the RBS sequence is influenced by the
coding sequence. We constructed a data set of overlapping
motifs and a data set of non-overlapping motifs to assess
the effect of codon usage on RBS sequence. We used the
sequenced 30 bp upstream and 20 bp downstream from
the TIS to calculate an information content (IC) score (Eq.
1). We constructed a data set of overlapping motifs and a
data set of non-overlapping motifs to assess the effect of
codon usage on RBS sequence. We used the sequenced 30
bp upstream and 20 bp downstream from the TIS to cal-
culate an information content (IC) score (Eq. 1). The IC
scores for RBS sequences overlapping CDSs (IC = 12.4)
were slightly smaller than for non-overlapping RBS motifs
(IC=12.9) (Table 2). The difference is not due to a varia-
tion in the RBS sequence itself but to a difference in the A
nucleotide content of the sequences upstream from the
RBS. The IC score of the RBS sequence (AGGAG) was
almost identical in both cases (IC = 4.7, and IC = 4.6,
respectively). The lack of conservation of A-rich sequences
when CDSs and RBSs overlap is likely due to constraints
specific to translation reinitiation [9]. In this case, the
mRNA is already bound to the ribosome, permitting to
relax the constraints needed for translation initiation site
selection, while allowing to accommodate overlap with
the protein reading frame.

Currently, essential genes are defined by in vivo experi-
ments in several species [17-19]. To investigate a possible

Organism Location ATG GTG TTG
E. coli True position 90.9% 7.2% 1.9%
Upstream 36.3% 26.1% 37.6%

Downstream 40.7% 43.4% 15.9%

B. subtilis True position 80.7% 8.6% 10.7%
Upstream 35.9% 31.6% 32.5%

Downstream 44.4% 30.9% 24.7%
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Table 2: Comparison of information content score in various data sets
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Organism Data set # of genes Score of IC Reference

E. coli EcoGene 858 12.9 Rudd K.E. [37]
Overlapping 120 12.4 Methods
Non-overlapping 205 12.9 Methods
Essential 153 12.3 Fang G. et al. [16]
Persistent 309 124 Fang G. et al. [16]

B. subtilis non-y 1243 16.3 Yada T. et al. [38]

contribution of gene essentiality to RBS sequence conser-
vation, we calculated the IC for essential genes and persist-
ent genes, which are strongly conserved in most bacterial
genomes [16]. Interestingly, we could not detect specific
RBS sequence features which would relate to gene essenti-
ality or persistence, thus validating the use of persistent
genes in the training set (as they would not introduce a
bias in TIS identification). The IC scores of these particular
sets were not larger than the EcoGene data set score, which
is the largest data set. We therefore decided to use the RBS
sequences extracted from the EcoGene data set.

By contrast, there are significant differences between
organisms: B. subtilis, which does not have a S1 protein,
shows the largest score of the three organisms (Table 2).
This is consistent with the role of protein S1 in the attach-
ment of the mRNA to the 16S rRNA in E. coli [20].

Accuracy of the method

Selecting the order of the Markov model

We used a Markov model to score the relevant DNA
sequences near the TIS. If the training data set is suffi-
ciently large, a higher order model may provide a better
description of the motif. We examined the accuracy for a
Oth, 1st, and 2nd order Markov model in a leave-one-out
cross validation analysis (Table 3). The Oth order Markov
model showed the highest accuracy in H. arsenicoxydans,
which has the smallest sample of training data, while the
1st order Markov model was best for E. coli and B. subtilis.
Moreover, although we had over 1200 instances in the
training data set of B. subtilis, the 1st order Markov model
gave a better accuracy than the 2nd order Markov model
due to many similar instances in the data set.

Table 3: Comparison of the accuracy of Nth order Markov model

Assimilation vs discrimination

To calculate the relevant Bayesian probability, we consid-
ered two alternative models (see Methods). In the first
model, an assimilation model, we assumed that base fre-
quencies of non-TIS sequences near a candidate start
codons are the same as in the genome-wide background
model (Eq. 8). In the second model, a discrimination
model, we learned the base frequencies near a non-TIS
from the negative data set (Eq. 9). This might have led to
an improvement of the outcome, similar to that using dis-
crimination in CDS identification, illustrated by the better
accuracy using GeneMark in gene identification [2]. How-
ever, the overall accuracy reported by each model was
exactly the same, although different genes were predicted
incorrectly by the two approaches. This comparison
shows that the differences between background and non-
RBS sequences are relatively small.

In this paper, we used the assimilation model, as it is sim-
pler than but achieves the same accuracy as the discrimi-
nation model.

Performance comparison

For E. coli, we correctly predicted 799/858 = 93.2% starts
for the EcoGene data set and 184/191 = 96.3% for the
Link data set [21]. For B. subtilis, 1152/1243 = 92.7% of
TIS sites in the 'non-y' data set and 184/191 = 96.3% in an
experimentally validated data set of 58 genes were pre-
dicted correctly. We compared the prediction of Hon-
yaku's accuracy with that of other approaches: TiCo [7],
MED-Start [22], and GS-Finder [23] (Table 4). To avoid
overestimating the accuracies, we used the longest ORFs
as input data instead of GenBank annotations, because

Organism # of genes I'st 2nd
E. coli 858 92.4% 93.2% 92.7%
B. subtilis 1243 91.8% 92.7% 91.6%
H. arsenicoxydans 162 92.6% 90.1% 76.5%
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Table 4: Comparison with the TiCo, MED-Start, GS-Finder, and RBSfinder TIS prediction programs

Organism (data set) # of genes GC content This method TiCoc MED-Start? GS-Finder? RBSfinder
E. coli (EcoGene) 858 50.8% 93.2% 95.2% 93.0% 91.1% (81.9%b)
E. coli (Link) 191 96.3% 96.9% 96.9% 93.7% (80.0%b)
B. subtilis (non-y) 1243 43.5% 92.7% 89.7% 91.2% 90.3% (78.5%b)
B. subtilis 58 96.6% 91.4% 96.6% 96.6% (82.8%")
P. aeruginosa 347 66.6% 92.8% 90.5% 67.1% 91.1% -
B. pseudomallei 238 68.1% 89.9% 86.6% 3.4% 87.8% -
H. arsenicoxydans 162 54.3% 92.6% - 87.7% 89.5% -

9We used the longest ORFs as input data.
bThe accuracies are from previously published results [22].

some of our data sets are made from GenBank annota-
tions with strong sequence homology to experimentally
validated TIS from E. coli or B. subtilis. Another well
known program, RBSfinder [24], appears to be extremely
sensitive to the input TIS positions and the parameter for
searching window size, making the comparison difficult.
We listed the accuracy from the previous publication [22]
for reference.

In contrast to a supervised learning method like Hon-
yaku, these tools are sensitive to the input TIS annotation.
TiCo and GS-Finder were more stable against the initial
position compared to MED-Start and RBS finder. On the
other hand, supervised methods depend on the quality
and the size of their training set. To ensure the correct
evaluation of our method, we also performed cross valida-
tion by randomly selecting 10% or 20% of the data sets as
the validation set and training the program with the
remainder, and repeated this procedure one thousand
times (see Methods). The difference was < 0.5% in E. coli
and B. subtilis, which have large data sets, and < 2% in
other organisms with small data sets (Table 5). Except in
the case of E. coli, we found a higher prediction accuracy
with Hon-yaku as compared to existing methods. Interest-
ingly, the accuracy in E. coli is higher than in B. subtilis,
even though B. subtilis has a strong RBS sequence motif.
This is presumably due to the widespread usage of trans-
lation initiation sites other than ATG in the latter. This
may point to an unknown factor in the translation initia-
tion machinery contributing to translation accuracy in Fir-
micutes, possibly related to the absence of an S1 protein
in these organisms.

Table 5: Comparison with validation methods

In Hon-yaku, the average distance between the true TIS
and the predicted site is 26.2 codons for the 58 false pre-
dictions in E. coli.

Estimation of the minimum required size of the training data set
The accuracy of supervised machine learning methods
depends on the size of the training data set. To estimate
the required minimum number of genes in the training
data set, we calculated the prediction accuracy for differ-
ent sizes of the training data set (Figure 1). When we
trained Hon-yaku using 200 genes, the accuracy decreased
by approximately three percent in both E. coli and B. sub-
tilis. However, with first-order Markov model the accuracy
decreased considerably when we trained with data sets
consisting of less than 100 genes. For the zeroth-order
Markov model, we found a small decrease.

Genes without a canonical RBS motif

We analyzed the incorrect predictions for 58 genes in the
data set of 858 E. coli genes. One main cause of incorrect
predictions is the presence of a non-canonical RBS motif
in the upstream sequence. To try and understand possible
translation processes when a canonical RBS motif is not
present, we considered the following three possibilities.

1. Split RBS motif, which would involve the S1 protein
translation mechanism [25].

A RBS-like sequence is located in two separate positions in
the upstream sequence of the S1 protein messenger RNA,
which can fold into three consecutive hairpins. It was pro-
posed that after a tertiary structure is created, both parts

Organism (data set) # of genes leave-one-out 10% cross validation 20% cross validation
E. coli (EcoGene) 858 93.2% 92.9% 92.7%
B. subtilis (non-y) 1243 92.7% 92.7% 92.4%
P. aeruginosa 347 92.8% 91.5% 90.8%
B. pseudomallei 238 89.8% 88.5% 88.0%
H. arsenicoxydans 162 92.6% 91.1% 91.0%
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Relationship between the size of training data set and
the accuracy. The x-axis shows the size of the training data
set. The leftmost data point corresponds to the leave-one-
out analysis based on the full data set of 857 genes in E. coli
and 1242 genes in B. subtilis. For the other data points, we
created the training data set of the given size by randomly
selecting genes from the full data set.

come next to each other and can act as a RBS sequence
motif [25]. Recently, however, Skorski et al. showed that
this was not the case, using ribosomes modified at the
3'end of their 16S RNA. They suggested that the GGA
motifs present in the structured mRNA leader are recog-
nized directly by the S1 protein and do not pair with the
16S RNA. S1 would then interact with the ribosome and
properly position the mRNA for translation initiation
[26]. Furthermore, for the 58 genes of interest, we pre-
dicted the secondary structure using Mfold [27]. Within
the data set, we could not find convincing examples sug-
gesting that they might generate a good RBS sequence
after folding.

2. Leaderless mRNAs

Another possibility to translate mRNAs without RBS
sequences is leaderless mRNA. Although computational
methods to predict leaderless mRNAs are limited, we
examined the assumption that a TIS is located at the very
beginning of the transcribed sequence without a RBS
sequence. We searched RNA polymerase recognition
sequences using a published weight matrix for the major
promoters in E. coli [28]. No clear motifs were detected in
the region located approximately 10 bp upstream from
the TIS. This supports the conjecture that leaderless mRNA
is rather uncommon in Gram-negative bacteria [29]. Fur-
ther experimental data are needed to explore whether this
hypothesis is correct.

http://www.biomedcentral.com/1471-2105/8/47

3. RBS-less translation supported by the S1 protein

In E. coli, the S1 protein assists in the unfolding of mRNA
secondary structures and presentation to the ribosome. In
contrast, B. subtilis, which does not have an S1 protein, is
much less able to tolerate secondary structures in the
translation initiation region. In vitro, S1 has no strict
sequence specificity and binds polyU, polyC, and polyA as
well as various heterogeneous RNAs, but it is involved in
presenting particular structures to a virus-mediated RNA
degradation pathway [30]. We therefore considered the
possible role of secondary structure in the leader sequence
of each mRNA coding for the unconventional CDSs. We
applied Mfold to predict possible secondary structures
and calculated the correlation with the strength of the RBS
motif sequence. The correlation coefficient was 0.0195,
showing that there was no correlation between the RBS
motif intensity and the secondary structure thus pre-
dicted.

4. Known unconventional mRNA binding to 16S RNA.
This has been demonstrated in the case of translation ini-
tiation factor IF3.

The TIS of infC, the structural gene for translational initia-
tion factor IF3, starts with the unusual AUU codon both
in E. coli [31] and B. subtilis, which are separated by 1.5
billion years of evolution.

The latest version of Colibri [32] contains four genes start-
ing with ATT. We tried to predict these four genes by
including a non-zero probability for an ATT start codon
(see Methods). Only infC had a strong enough SD
sequence to allow correct prediction against the small
probability of an ATT start codon. Colibri has 37 genes
with an atypical start codon, of which there are 28 kinds
(other than NTG or ATT). Most of these genes code for a
defective protein or are functionally unknown.

Presently Hon-yaku evaluates all ATG, GTIG, and TTG
codons in an ORF as candidate TISs. Hon-yaku can easily
be extended to include other possible start codons. How-
ever, due to the low prior probability for atypical start
codons, they can only be detected if preceded by a suffi-
ciently strong SD sequence. Finally, several cases of spuri-
ous CDSs are created by the presence of codons for the
21st and 22nd amino acids, selenocysteine and pyrroly-
sine, coded by TGA and TAG codons respectively [33].

Multi-TIS genes

The definition of a gene is notoriously difficult. In partic-
ular, it may happen that two different functional gene
products are coded from the same DNA sequence, differ-
ing only in their start site. This is the case for the B. subtilis
lysC gene, which codes for two proteins depending on two
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Table 6: Examples of candidate multi TISs predictions with a high Bayesian score

Bayesian probability

EG number Gene FP site* TP site™* length difference Pfam
EG10350 fucK 1.000 0.410 -10 -
EG10825 recC 0.932 0.866 -16 Exonuc_V_gamma
EG10106 atpl 0.851 0.099 +4 -
EG13547 ykfE 0.847 0.037 -9 -
EGI10491 iclR 0.766 0.319 +11 -
EG10421 guaB 0.745 0.237 +23 -
EGI11530 fadD 0.663 0.013 +I1 -
EG 10542 lon 0.621 0.471 -43 LON
EG10774 prs 0.522 0.011 +22 PsrA
EG10936 secA 0.515 0.073 -34 SecA

*FP: False positive predictions that have over 50% Bayesian probability.
**TP: True positive prediction with EcoGene data set.

in frame start sites, resulting in a heterotetrameric alpha2/
beta2 protein [34].

In the same way, both in E. coli and in B. subtilis, the gene
infB codes for the two forms of the translational initiation
factor IF2: IF2 alpha and IF2 beta. The lacZ::fused gene
expresses two different products corresponding to the
fused proteins IF2 alpha-beta-galactosidase and IF2 beta-
beta-galactosidase, which confirms in vivo that the IF2
forms differ at their N terminus [35].

We presumed that some of the "false" predictions with a
high Bayesian probability could be good candidates for
genes that have two TISs (Table 6). We also checked the
length difference and protein motifs for these cases to see
whether the protein function would change upon change
in start site. The Pfam [36] annotation did not point out
particular domain structures that could be related to the
difference in the TIS for any of the genes we identified.
Nevertheless, we think that they might be good candidates
for multiple authentic CDSs coded from a single ORF.

Among incorrectly predicted genes, the Bayesian proba-
bility of an incorrect site was largest for the fucK gene. A
BlastP search for counterparts in other genomes however
suggested that the predicted start site is actually correct.
Indeed, this putatively "false" TIS is annotated as the TIS
in Salmonella enterica serovar Typhimurium LT2, Yersinia
bercovieri, Yersinia frederiksenii, Sodalis glossindius, and
Shigella boydii. We therefore presume that the Hon-yaku
prediction is correct, and that the re-annotated fucK
sequence is probably, for some reason, erroneous. Similar
situations were uncovered in other genes, suggesting that
the identification of the N-terminus of the corresponding
proteins might not correspond to the primary translation
product, but to some maturation product. Alternatively,

those cases could suggest that some coding regions can
code for polypeptides of different length, although a Pfam
search did not reveal a salient functional difference
between them. Finally, genes may keep multiple TIS can-
didates to gain robustness against gene mutations in the
vicinity of the TIS.

Conclusion

In an attempt to improve translation initiation site predic-
tion and to make it applicable in a variety of bacterial
genomes, we introduced biological knowledge of the
translation process in the Hon-yaku algorithm. We con-
sidered the RBS sequence, the distance between the TIS
and the RBS sequence, the nature of the start codon, the
A-rich sequences following start codons, and the distribu-
tion of the protein length ratio to compute Bayesian joint
score function. Additionally, using the operon structure
predicted from the intergenic distances increases the accu-
racy by around 2%. Hon-yaku displays all these scores
together with the total Bayesian probability for every TIS
candidate as a means to improve the objectivity of human
annotation.

In addition to user-friendliness, the reason why most
existing programs adopt an unsupervised approach is the
absence of experimentally validated TIS data. Although a
supervised learning method requires more effort for the
creation of a training data set, it identifies organism-spe-
cific features and allows the user to produce a final
description of the best features relevant to a specific organ-
ism.

Hon-yaku uses a training set derived from models where
TISs have been experimentally established (E. coli and B.
subtilis), so strictly speaking, the extrapolating of our suc-
cessful identifications are limited to Gamma-Proteobacte-
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ria and Firmicutes. Further work with other distant clades
will be needed to see whether it can be generalised to the
whole Bacteria kingdom.

Methods
Motif information content
Information content of motif X is

L
I(X) = 2(2 + 2 P(x; 1 )loga P(x; ), (1)

where i is the position, L is the length of the motif, and n
is the each nucleotide A, C, G, and T. For the information
content calculation based on N data set sequences, we

added VN pseudocounts, using the background proba-
bility of each base frequency. We used the upstream 30 bp
and downstream 20 bp from TIS sites for the calculation.

Experimentally validated data set for translation initiation
sites

We used the EcoGene database [37] and Link data set [21]
as reliable data sets of translation initiation sites in E. coli.
The EcoGene database contains 862 proteins that were
confirmed by N-terminal protein sequence identification.
We removed from the data set a selenoprotein, release fac-
tor 2 (which is known to be synthesized by a + 1
frameshift), as well as two genes starting with ATT instead
of canonical start codons (ATG, GTG, and TTG),.

The Link data set contains 195 genes; four of these are not
consistent with the EcoGene data set. To construct a fully
reliable data set, we removed these four genes (hdeB, leuB,
lolA, and ydcG). For B. subtilis, we used a data set of 1248
'non-y' (i.e., experimentally characterized) genes [38] and
checked them using the new GenBank annotation
(NC_000964.2). Two genes had been removed in the new
GenBank annotation, and three codons previously identi-
fied as start codons were changed to ATC, ATT, and CTG.
We removed those data, leaving 1243 genes in the data
set. We also included the more reliable 58 sequences con-
firmed by comparison with homologous sequences of
Bacillus halodurans [38].

Constructing data set with sequence homology

When we apply Hon-yaku to a newly sequenced bacterial
genome such as H. arsenicoxydans, we need to construct a
reliable data set with strong sequence homology to exper-
imentally validated genes. Using the currently available
two data sets, the EcoGene data set and the B. subtilis non-
y data set, we defined presumably correct start sites for
genomes where experimental data on actual start sites is
missing by using the set of related persistent genes ([16],
this works for Proteobacteria and Firmicutes) aligning
them individually with counterparts in model organisms

http://www.biomedcentral.com/1471-2105/8/47

(E. coli and B. subtilis), and choosing manually the start
site.

We substantiated the procedure by comparison with
diverse E. coli and B. subtilis data sets as follows:

1. Pick up orthologous genes from the EcoGene data set or
B. subtilis non-y data set.

We defined orthologous genes when two proteins display
reciprocal best hit with at least 40% similarity in amino
acid sequence and 20% or less difference in protein length
[39]. We obtained 165 orthologous genes that belong to
both the EcoGene data set and the B. subtilis non-y data
set.

2. Remove genes that are not aligned in TIS vicinity or that
have two or more candidate TISs within 5 bp. With the
165 orthologous genes, we confirmed that 89% of the TIS
position differences are less than 5 bp. We removed genes
whose TISs is not located within 5 bp upstream or down-
stream from the experimentally validated TIS, and that
have no other candidate TIS within these 5 bp vicinity.
From these rules, we obtained a data set of 126 genes with
100% accuracy out of the 165 orthologous genes.

We applied this procedure to P. aeruginosa, B. pseudomallei,
and H. arsenicoxydans to construct the training data sets.

Modeling to predict translation initiation sites
To construct a suitable score function, we applied Baye-
sian statistics to combine the following five elements:

1. The motif sequence around the ribosomal binding site
(RBS), identifying the RBS region using a weight matrix
constructed from the reference data set

2. The empirically determined distance between the RBS
sequence and the start codon

3. The base composition of the start codon

4. The base composition of the beginning of the protein
coding sequence with a position specific scoring matrix

5. The empirically determined length of the protein

Additionally we took into account overlapping ORFs
using the empirically determined intergenic distance dis-
tributions. This methodology requires only the positions
of stop codons and evaluates all TIS candidates that are
located between the stop codon to the nearest upstream
stop codon. We used the annotation by running Gene-
Mark [2] on the genome of H. arsenicoxydans and by using
GenBank entries for the other organisms.
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Motif search around the RBS

One of the most important elements for TIS prediction is
the RBS, containing the RBS sequence AGGAG in E. coli
[8] and AAGGAGGU in B. subtilis [40].

Different tools adopted different methods to model the
RBS. Hannenhalli et al. used the RBS binding energy to
find the RBS motif [41]. The program RBSfinder considers
the number of hydrogen bonds to detect motifs comple-
mentary to the 3' end of the 16S rRNA [24]. GS-Finder
uses the "Z-curve" method [42], which considers differ-
ences of the cumulative occurrence numbers for three
kinds of base combinations [23]. GS-Finder considers the
A, C, G, T contexts in a window. Recently, because of the
remarkable progress in motif extraction tools and to avoid
having to calculate the binding energy between an organ-
ism-dependent 16S rRNA and the mRNA, position spe-
cific weight matrices (Oth order Markov Model) have been
applied for describing the RBS sequence motif (ex. MED-
Start [22]). In this paper, we also used a zeroth-order
Markov model, while, in addition, we explored higher-
order Markov models. To describe the motif sequences by
a 1st-order Markov model, we denote the transition prob-
ability of the double bases "mn" as a,,,, = P (x;= n|x, ; = m).
The probability that the motif sequence S, is generated by
this model is then:

P(Sy) = Pxyxp,xp)
= P(x | x0)P(xy | %1)-+-Pxp | 1) (2)
InP(Sy) = iln(“xi,lxi ),
i=1

where i is the position and L is the length of the motif.

The log-likelihood ratio that the sequence S, is created by
the model is

P[S), | motif] L
P = 2 NVIETRED L
[Sps | background]

i=1

where Wi is the weight matrix of 1st-order Markov
chain for a nucleotide n at position i to be followed by the
nucleotide m. We prepared one log-odds scoring matrix
Mg, to describe the conserved region around the ribos-
omal binding site, and another matrix M, to describe the
downstream adenine-rich region following the start
codon. Those motifs are defined by multiple alignments.
In this section, we described the 1st order Markov model.
When comparing the Oth, 1st, and 2nd order Markov
model in E. coli, B. subtilis, and Herminiimonas arsenicoxy-
dans, we found that a 1st-order Markov model yields more
accurate results in both E. coli and B. subtilis, whereas a

http://www.biomedcentral.com/1471-2105/8/47

zeroth-order model was most accurate for Herminiimonas
arsenicoxydans (Table 3).

The empirically determined distance from a RBS sequence to a start
codon

To describe the gap length between a RBS sequence and a
start codon, we estimated the probability density distribu-
tions fy;, (D;) of the distance D, from the RBS sequence to
the translation initiation site, measured in base pairs,
using a kernel density estimation based on Gaussian ker-
nels (Figure 2) [43]. The two Gram-negative bacteria, E.
coli and Herminiimonas arsenicoxydans, have similar distri-
butions of the length between the RBS sequence and the
TIS, while the Gram-positive bacterium B. subtilis has a
longer average distance between the RBS sequence and the
start codon. This agrees with the results of previous reports
[38,22].

Base composition of start codons

Table 1 shows the frequency of each start codon for the
three bacteria. We also calculated the frequency of ATG,
GTG, and TTG codons upstream and downstream of the
true TIS to create a negative TIS data set (Eq. 9).

Distribution of protein length ratio

62.6% of the EcoGene data set genes start with the first
possible translation initiation codon as the real CDS. We
also used the distribution of the ratio of the protein length
to the length of the longest ORF. The smallest ratio is
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Figure 2
Distance distribution from the end of RBS sequence to the
translation initiation sites.
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0.697 in the EcoGene data set, most genes show a ratio of
over 0.95 (Figure 3).

Combining features around TIS
The Bayesian posterior probability that a gene starts from
the translation initiation site TIS can be calculated as

P(Sporotein | TIS)Pprior (TIS)

P(TIS | S, Dpogein) = '
protein 2 P(s, Dprotein | TIS)Pprior (T1S)

(4)
where the prior probability P, (TIS) is calculated as the
frequency of start codon. P (S, D/ TIS) is the condi-
tional probability that the sequence S is generated around
a true translation initiation site, resulting in a protein cod-
ing region of length D,,,,...;,- The sequence S around the TIS
consists of the ribosomal binding site Sy, the start codon
S the sequence S, content downstream of the TIS, and
the remaining sequence S\Sgp Spis Spg: We can then
decompose P (S, D |TIS) into six parts:

protein

r (S, Dprotein|TIS)

=P(SSD|TIS) 'fdist (DSDstc)'P(SSTc|TIS)

“P (Sps|TIS) * faist (Dprotein) * P (S\Ssp Stis Sps|background),
(5)

P |
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Figure 3

Distribution of protein length ratio.
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faise (Dspastc) is the probability that Sy is generated at a
distance Dgp, ¢y from the transcription start site, and fy;
(D ) is the distribution of the protein length.

protein

Dividing by the background probability yields

P(S/ metein |TIS)
P(S, Dyrorein | background) (6)

M M
= ¢ faist (Dsp2stc )P(STC | TSS)e™™ fuist (Dprotein )

where Mg, and M4 are the value of the PSSM score for the
RBS sequence and downstream region around the transla-
tion initiation site and P (STC|TSS) is the base composi-
tion of start codon, as determined from the E. coli known
data set.

We define the score functions
score(TIS) = In Porior (TIS) + Mgp + In fyi5 (Dspastc)
+InP (STC|TSS) + MDS + lnfdist (Dprotein)' (7)

For the calculation of P (TIS|S, D,,y,;,), we can consider
either an assimilation method(Eq: 8) or a discrimination
method(Eq: 9). The assimilation method makes the
assumption that the base frequency around an ATG, GTG,
TTG codon that is not a start codon is the same as the
whole genome background model.

P(S| TIS)PpﬁOI(TIS)
z{lme,neg)P(S ‘ TIS)Pprior (TIS)
_ P(S| TIS)Pprior (T1S) ( 8)
P(S ‘ TIS)PpIior (TIS) + P(S ‘ n(mTIS)Pprior (nonTIS)
escore(TIS)

P(TIS | S)

score(TIS) Pprior (nonTIS)

where nonTIS represents an ATG, GTG, or TTG codon that
does not function as a start codon.

In the discrimination method, we need to make negative
data sets which explicitly model nonTIS features. In this
case, we made two models, which represent the upstream
(intergenic) region nonTIS,,, and the downstream (in cod-
ing region) nonTIS ,,,, to distinguish between protein cod-
ing features and non-coding features.

P(S | TIS)Pyior (TIS)

P(TIS|S) =
(S1$) P(S | TIS)Byior (TIS)

2 {true,neg,, meg joun}
escore(TIS)

(9)

score(T1S) | score(nonTlS,,) | score(nonTISp,,)

+

In Hon-yaku, we calculate score (TIS) and the Bayesian
posterior probability that a gene starts from the TIS for all
translation initiation sites in the ORF.
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Other contributing elements

To increase the prediction accuracy, we additionally con-
sidered the operon structure, and alternative candidate
start codons that are either adjacent or separated by one
codon.

If the two genes are arranged in a head-to-head configura-
tion and the intergenic distance is under 100 bp, we added
an empirically determined intergenic distance distribu-
tion In (fii, (Dheadionead)) to the score function (Eq. 7). If
the two genes have the same direction and the intergenic
distance is under 50 bp, we added an empirically deter-
mined intergenic distance distribution In  (fy,
(D yaitiohead_undersovp)) t0 the score function. Thus, we aimed
to reduce mispredictions leading to genes with long over-
lapping sequence regions. This function also improves the
prediction of genes with the start codon close to the previ-
ous stop codon, as often occurs in operons.

Another reason for incorrect predictions is that some
genes have two start codon candidates close to each other.
Especially when two candidates are contiguous, the dis-
tance function between the start codon and the RBS
sequence f;;, (Dgposrc) gives ambiguous results. In this
case, our algorithm chooses the TIS based on the distribu-
tion of the start codon location for MM and MXM amino
acid sequences. We constructed the species-specific distri-
bution in E. coli and B. subtilis and applied the E. coli dis-
tribution to other bacteria that have a small number of
data set genes.

Except for this two neighboring start codon case, which
had to be fixed as described above, we established the
value of all other parameters using the training data set.

Cross validation

In this paper, we calculated accuracies of Hon-yaku with a
leave-one-out cross validation analysis. To avoid showing
only the overoptimistic performance rates of the leave-
one-out measure, we also calculated the performance of
our method with other cross validations. We trained our
model with 90% or 80% of the true data set, while the ran-
domly chosen remaining 10% or 20% are retained for
subsequent use in evaluating our model. The procedure
was repeated one thousand times.
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