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Abstract
Background: Identification of DNA-binding proteins is one of the major challenges in the field of
genome annotation, as these proteins play a crucial role in gene-regulation. In this paper, we
developed various SVM modules for predicting DNA-binding domains and proteins. All models
were trained and tested on multiple datasets of non-redundant proteins.

Results: SVM models have been developed on DNAaset, which consists of 1153 DNA-binding and
equal number of non DNA-binding proteins, and achieved the maximum accuracy of 72.42% and
71.59% using amino acid and dipeptide compositions, respectively. The performance of SVM model
improved from 72.42% to 74.22%, when evolutionary information in form of PSSM profiles was
used as input instead of amino acid composition. In addition, SVM models have been developed on
DNAset, which consists of 146 DNA-binding and 250 non-binding chains/domains, and achieved
the maximum accuracy of 79.80% and 86.62% using amino acid composition and PSSM profiles. The
SVM models developed in this study perform better than existing methods on a blind dataset.

Conclusion: A highly accurate method has been developed for predicting DNA-binding proteins
using SVM and PSSM profiles. This is the first study in which evolutionary information in form of
PSSM profiles has been used successfully for predicting DNA-binding proteins. A web-server
DNAbinder has been developed for identifying DNA-binding proteins and domains from query
amino acid sequences http://www.imtech.res.in/raghava/dnabinder/.

Background
DNA-binding proteins (DNA-BPs) are very important
constituent of both eukaryotic and prokaryotic pro-
teomes. It has been reported that approximately 2–3% of
prokaryotic and 6–7% of eukaryotic proteins can bind to
DNA [1,2]. These proteins play important roles in DNA
packaging, replication, transcription regulation and other
activities associated with DNA. Hence proteins that target

specific DNA sequences can be a potential therapeutics for
genetic diseases and cancers. In the form of restriction
enzymes, DNA-BPs play a crucial role in prokaryotic host
defence. Due to different functions DNA-BPs are diverse
group of proteins both in terms of amino acid sequences
and three-dimensional structures. Hence, identification of
DNA-BPs can play a vital role in proteome annotation and
understanding an important class of proteins.
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In past, several methods have been developed for predict-
ing DNA-BPs. Broadly, these methods can be divided into
two categories i) prediction from protein structure and ii)
prediction from amino acid sequence. Structure based
prediction methods discriminate DNA-binding and non-
binding proteins with high accuracy on the basis of posi-
tively charged electrostatic patches [2], DNA-binding
structural motifs [3], protein sequence composition, sol-
vent accessibility and secondary structure [4], net charge,
dipole and quadrapole moments, [5] and size of largest
positive surface patch and amino acid composition [6].
Unfortunately, these methods can't be used in high
throughput annotation, as they require the structure of a
protein for prediction. Cai and Lin 2003, used pseudo-
amino acid composition as input for support vector
machine (SVM) to discriminate RNA, rRNA and DNA
binding proteins from non-binding proteins (NBPs) [7].
Recently Yu et al. (2006) [8] has developed a SVM based
method for prediction of rRNA, RNA and DNA binding
proteins. They used a feature vector of dimension 132,
which includes amino acid composition and composition
of physico-chemical properties.

In this work, a systematic attempt has been made to pre-
dict DNA-BPs from their amino acid sequences using var-
ious features of proteins, like amino acid composition.
First, we analyzed the amino acid composition of DNA-
binding proteins and based on the observation, SVM
models have been developed using amino acid, dipeptide
and four-part amino acid compositions of proteins.
Besides composition, we also developed SVM models
using PSSM profiles obtained from PSI-BLAST. We also
examined the performance of similarity search (BLAST
and PSI-BLAST) and motif-finding (MEME/MAST)
approaches. All models developed in this study were eval-
uated using five-fold cross validation technique.

Results
SVM models
Prediction of DNA-binding domains/chains
SVM models have been developed on DNAset or main
dataset, which has DNA-binding and non-binding chains
obtained from PDB. First, composition based SVM model
has been developed for predicting DNA-binding domains
and achieved the accuracy of 79.80% with MCC, 0.58

(Table 1). In order to understand the high success rate, we
compared the amino acid compositions of DNA-binding
and non-binding domains in DNAset (Figure 1). As
shown in Figure 1, few residues like Lys, Arg and Glu are
abundant in DNA-binding domains where as other resi-
dues like Gly are less frequent in DNA-binding domains.
Due to these significant compositional differences DNA-
binding domains can be predicted with high accuracy. In
general, SVM models based on dipeptides perform better
than amino acid composition based models. However, in
this study its performance was poor. In addition, earlier
studies showed that the performance of split-amino acid
composition was better than amino acid composition.
Hence, we developed SVM models using amino acid com-
position of four non-overlapping parts of a protein. As
shown in Table 1, SVM model developed with four-part
composition was not as efficient as amino acid composi-
tion based model. Further, it has been well documented
that evolutionary information in form of PSSM profiles
provides more information, which significantly improved
the accuracy of prediction in several studies, such as RNA
binding sites, subcellular localization, β-turns etc [9-13].
Thus, we developed SVM models using PSSM profiles and
achieved the overall accuracy of 86.62% with MCC, 0.72.
The performance of all SVM modules developed using
DNAset is shown in form of ROC plot in Figure 2. We also
performed self-consistency test and achieved very high
accuracy (See Additional file 1, Table S1).

Prediction on DNA-binding proteins
We developed SVM models on DNAaset, which consists
of 1153 DNA-binding proteins and equal number of non-
binding proteins. This dataset have full-length proteins
extracted from Swiss-Prot. As shown in Table 2, with
amino acid composition we achieved the accuracy of
72.42% with MCC, 0.45. The performance of SVM model
improved significantly using evolutionary information
obtained from PSSM profiles, which raised the accuracy
and MCC to 74.22% and 0.49, respectively. Performance
of all SVM modules in form of ROC plot is shown in Fig-
ure S1.

Quality of PSSM profiles
As shown in Table 1, the PSSM based SVM models per-
form better than other models. In order to examine the

Table 1: The performance of SVM models developed using different types of compositions. These models were trained and tested on 
DNAset, a dataset of DNA-binding and non-binding protein domains/chains.

Composition Type Threshold Sensitivity Specificity Accuracy MCC

Amino Acids 0.3 78.11 80.80 79.80 0.58
Dipeptides 0.0 73.35 77.60 76.01 0.50
4-parts amino acids 0.0 77.45 77.60 77.53 0.54
PSSM 0.1 86.32 86.80 86.62 0.72
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effect of PSSM quality on the performance of SVM model,
we generated PSSM profiles from our training dataset (4/
5 part of DNAset) instead of 'nr' protein database. The per-
formance of SVM model using PSSM decreased signifi-
cantly from 86.62% to 79.54% when PSSM generated
from DNAset instead of "nr" (See Additional file 1, Table
S2). We examined the reason for the poor performance

and found that a large number of query protein did not
have any PSI-BLAST hit when searched against DNAset.
Thus, we evaluated performance of SVM model on pro-
teins having PSI-BLAST hits (24 DNA-BPs and 56 non-
binding proteins at e-value 0.1) and proteins having no
PSI-BLAST hits (122 DNA-BPs and 194 non-binding pro-
teins). We achieved the accuracy of 83.75% for proteins
having PSI-BLAST hits and accuracy of 78.48% for pro-
teins having no PSI-BLAST hits (Table 3). The PSSM based
SVM model performed worse than SVM model based on
amino acid composition on proteins having no PSI-
BLAST hit. The SVM model based on PSSM generated
from "nr" database performed better than that generated
with our dataset (even if there were PSI-BLAST hits). This
demonstrates that performance of PSSM based SVM
model is affected by quality of PSSM and performs better
if PSSM is generated from similar sequences. In the
absence of similarity its performance will be poor (See
Figure S2).

Performance on blind dataset
It is important to examine the performance of the newly
developed model on an independent dataset. In this
study, we evaluated the performance of our SVM models
(trained on DNAset) on independent dataset called
DNAiset, which consists of 100 NBPs (BindN_testsp) and
92 DNA-BPs (BindN_testpdb) obtained from Wang and
Brown (2006) [14]. At default threshold of 0.1, our PSSM
based SVM model correctly predicted 70 out of 92 DNA-
BPs and 89 out of 100 NBPs (See Additional file 1, Table

Performance of SVM models on DNAset dataset (146 DNA-binding and 250 non-binding proteins) in the form of ROC plotFigure 2
Performance of SVM models on DNAset dataset (146 DNA-binding and 250 non-binding proteins) in the form of ROC plot.

Percentage composition of DNA-binding and non-binding proteins in main dataset (DNAset)Figure 1
Percentage composition of DNA-binding and non-binding 
proteins in main dataset (DNAset).
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S3). This demonstrates that our SVM model performs
equally well on independent dataset.

Performance on realistic dataset
In real life, the number of non-binding proteins is signifi-
cantly higher than DNA-BPs. Thus, it is important to build
and evaluate SVM models on more realistic data rather
than equal number of DNA-BPs and NBPs. Hence, we
developed a realistic dataset (DNArset), which has 146
DNA-binding domains and 1500 NBPs. First, we devel-
oped SVM model using amino acid composition on
DNArset and achieved the maximum MCC of 0.40 with
accuracy, 89.31%. Then we developed PSSM based SVM
model and achieved the maximum MCC of 0.57 with
accuracy, 92.59%. As shown in Table 4, PSSM based
model performed better than composition-based model
both in terms of sensitivity and specificity. These results
further confirmed the importance of evolutionary infor-
mation in predicting the DNA-BPs.

Comparison with existing methods
It is important to compare the performance of newly
developed method with existing methods in order to
demonstrate its capabilities. We compared the perform-
ance of above SVM models with similarity and motif-
based approaches, which are commonly used for func-
tional annotation of proteomes. As shown in Additional
file 1, Table S4, the sensitivity of both modules DNA-
BLAST [15] and DNA-PSIBLAST [16] was about 10% at e-
value of 0.1, when evaluated on DNAset using five fold
cross-validation technique. We also evaluated the per-
formance of MEME/MAST on DNAset and observed poor
performance, where only 15 domains showed motif at e-
value cut-off of 1. These results demonstrated that our
SVM models perform better than commonly used tech-
niques like BLAST, MEME/MAST.

Most of the existing methods predict DNA binding pro-
teins from proteins structures. These structure based pre-
diction methods are not suitable for high throughput
genome annotation, as they require the structure of a pro-
tein. Best of authors knowledge, three methods have been
developed in the past for predicting DNA-BPs from their
amino acid sequences. Ahmad et al. (2004) [4] developed
a neural network based method using amino acid compo-
sition and reported the accuracy of 64.5%. They used
small but clean and non-redundant dataset, which con-
sists of 62 DNA-BPs obtained from PDB and 915 non-
binding proteins obtained from Swiss-Prot. Their dataset
was similar to our main dataset (DNAset), where we
achieved the maximum accuracy of 79.80% using amino
acid composition and 86.62% using PSSM profiles. Cai
and Lin (2003) [7] developed a SVM based method using
pseudo-amino acid composition and obtained the aver-
age accuracy of 81%. Although they compiled a large data-
set, it was neither non-redundant nor clean because it
contained all proteins including probable DNA-BPs. Yu et
al. (2006) [8] developed a SVM based method using vari-
ous physical-chemical properties and showed an average
accuracy of 71.64%. They collected binding and non-
binding proteins as proposed by Cai and Lin (2003) [7]
from Swiss-Prot and created a non-redundant dataset of
1153 DNA-BPs and 1153 non-binding proteins. On alter-
nate dataset (DNAaset) which was identical to Yu et. al.
(2006) [8], we achieved an accuracy of 74.22% using
PSSM based SVM model. This demonstrates that our

Table 3: The performance of PSSM based SVM models on 
proteins with and without PSI-BLAST hits at e-value 0.1 against 
DNAset. These models were trained and tested on DNAset.

Threshold With PSI-BLAST hit Without PSI-BLAST hit

Sensitivity Specificity Sensitivity Specificity

-1 95.83 48.21 97.54 42.78
-0.9 95.83 53.57 96.72 44.33
-0.8 95.83 53.57 96.72 45.88
-0.7 95.83 57.14 95.90 48.97
-0.6 91.67 62.50 95.90 51.55
-0.5 91.67 64.29 95.08 54.12
-0.4 91.67 66.07 93.44 57.73
-0.3 87.50 66.07 92.62 60.31
-0.2 83.33 69.64 91.80 63.40
-0.1 83.33 73.21 89.34 66.49
0 83.33 76.79 86.89 69.07

0.1 83.33 82.14 83.61 71.65
0.2 83.33 83.93 80.33 75.77
0.3 83.33 83.93 77.87 78.87
0.4 75.00 85.71 73.77 81.44
0.5 75.00 85.71 69.67 82.99
0.6 75.00 89.29 64.75 85.05
0.7 75.00 92.86 60.66 88.66
0.8 62.50 94.64 56.56 89.69
0.9 62.50 96.43 50.00 91.75
1 54.17 96.43 45.08 93.30

Table 2: The performance of SVM models developed on DNAaset and evaluated using five-fold cross-validation technique.

Composition Type Threshold Sensitivity Specificity Accuracy MCC

Amino Acids 0.2 72.51 72.33 72.42 0.45
Dipeptides 0.1 72.59 70.59 71.59 0.43
4-parts amino acids 0.0 70.85 70.24 70.55 0.41
PSSM -0.3 73.53 74.92 74.22 0.49
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method performs better than other existing methods. The
usage of SVM, which performs better than ANN, particu-
larly on small dataset and evolutionary information in the
form of PSSM profiles, improved the performance of the
present method.

Prediction of DNA-binding domains vs proteins
In this study, we developed modules for predicting DNA
binding proteins using two types of datasets; i) DNAset
consists of partial sequences (binding regions) or DNA
binding domains, and ii) DNAaset consists of full-length
DNA-binding proteins. The question arises whether mod-
ules trained on DNAset (domains or partial sequences)
will be applicable for predicting full DNA-binding protein
or vice versa. We predicted the proteins in DNAaset using
amino acid composition based SVM module trained on
DNAset and achieved the accuracy of about 55%. Simi-
larly, we predicted proteins in DNAset using amino acid
composition based SVM module trained on DNAaset and
achieved the accuracy of about 63%. This revealed that the
model trained on partial sequences or domains is not
valid for predicting full DNA binding proteins and vice
versa. In order to understand the reason of failure, we
computed and compared amino acid compositions of
DNA binding and non-binding proteins in DNAaset (Fig-
ure S3). The DNA-binding and non DNA-binding pro-
teins have significantly different amino acid compositions
in DNAset whereas such a trend is not observed in DNAa-
set (Figure 1 & S3). It is due to the fact that DNAaset has
full length DNA-binding proteins, which may also have
other domains including non DNA-binding domains.
Thus, prediction performance of methods trained and
tested on DNAset are more accurate than on DNAaset. It
also explains the reasons for the failure of methods
trained on full proteins (DNAaset) and tested with
domain dataset (DNAset), and vice versa. This shows that
separate methods are necessary for predicting DNA-bind-
ing domains and DNA-binding proteins.

It is also possible that our models were over trained. In
order to rule-out this possibility, we evaluated the per-
formance with other existing methods. We found two
methods available for public: (i) DBS-PRED developed on
DNA-binding domains [4] and (ii) SVM-Prot developed
on full DNA-binding proteins [17]. The performance of
DBS-PRED was evaluated on a dataset of 100 DNA bind-
ing and 100 non-binding proteins extracted from Swiss-
Prot. As shown in Additional file 1, Table S5, we achieved
the maximum performance of 63% at 30% probability
threshold. This means that the performance on DBS-
PRED is also poor on full proteins. Similarly, the perform-
ance of SVM-Prot was evaluated on DNAset; SVM-Prot
predicted 49 out of 146 DNA-binding proteins and 203
out of 250 non-binding proteins when all hits are consid-
ered for evaluation; if only top hit was considered SVM-

Prot was able to identify13 out of 146 sequences (DNA
binding domains/regions) as DNA-binding proteins. This
analysis showed that SVM-Prot developed on full protein
is not suitable for partial or domain sequences.

Webserver
The prediction method described in this paper is imple-
mented in the form of a web-server DNAbinder (for detail
descriptions please see section Availability and Require-
ments). The common gateway interface script of DNAb-
inder is written using PERL version 5.03. DNAbinder
server is installed on a Sun Server (420E) under UNIX
(Solaris 7) environment. This server allows users to pre-
dict DNA-binding proteins using amino acid composition
and PSSM based SVM models trained on DNAset,
DNArset and DNAaset. Models trained on DNAset or
DNArset are suitable for predicting DNA-binding
domains/chains, whereas models trained on DNAset are
suitable for predicting DNA-binding full length proteins.
Server allows submission of multiple sequences for pre-
diction in case of composition based model and submis-
sion of one sequence at a time in case of PSSM based
model. In case of PSSM based model, we use this model if
PSI-BLAST finds significant hits for query sequence; other-
wise only simple composition based model is used for
prediction.

Discussion
DNA-binding proteins are one of the major classes of pro-
teins playing a central role in cellular metabolism. Due to
their importance in the regulation of gene-expression and
other processes, several methods have been developed for
predicting DNA-BPs. Most of them predict DNA-BPs
using their structural information. These methods have
limited scope because the structures are unknown for
most of the proteins. In this paper, we developed a highly
accurate method for predicting DNA-BPs from their
amino acid sequences. The reliability of any prediction
method mainly depends on clean and valid dataset. In
past, two types of datasets have been used: (i) small and
clean dataset with experimentally validated DNA-BPs
obtained from PDB [4] and (ii) large dataset, where
sequences were obtained from Swiss-Prot [7,8]. In this
study we developed our models on two datasets called
DNAset or main dataset and DNAaset or alternate dataset
in order to benchmark our newly developed method with
existing methods. Most of our study was based on DNAset
because it has clean and experimentally validated DNA-
BPs where as DNAaset may also include fragments and
putative proteins.

In any functional annotation, the primary step is to search
a query protein against database of annotated proteins
(e.g. Swiss-Prot) and assign the function if query protein
has significant similarity with target proteins. Similarity
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based annotation is highly accurate if an experimentally
annotated homologous protein is found. But the major
challenge is to predict function of a protein in absence of
significant similarity. Thus, we developed a method using
non-redundant dataset, where similarity between proteins
in test and training datasets is very low. We applied simi-
larity search and motif finding techniques on our dataset
and found poor performance, as expected. Hence, we have
developed ANN and SVM models on DNAset using amino
acid and dipeptide compositions for predicting DNA-BPs.
We achieved an accuracy of 68.46% from ANN model
using amino acid composition, which is slightly better
than Ahmad et al., 2004 [4] (See Additional file 1, Table
S6). It may be due to the increase in the number of DNA-
BPs in DNAset. It is interesting to note that the perform-
ance of SVM was significantly better than ANN. Thus, we
developed rest of the models using SVM. We achieved sig-
nificantly high accuracy of 79.80% using SVM model
based on simple amino acid composition. This demon-
strates the importance of machine learning techniques in
prediction of DNA-BPs. In order to enhance the perform-
ance further, SVM models have been developed using
dipeptide and four-part compositions. Unexpectedly, the
performance of dipeptides and four-part composition
based SVM models is poorer than composition-based
SVM model. The standard techniques like BLAST, PSI-
BLAST and MEME/MAST failed to predict DNA-BPs when

tested on DNAset due to low similarity among domains/
chains in DNAset.

This is the first study that used evolutionary information
to discriminate DNA-BPs from non-binding proteins. We
extracted evolutionary information of a protein from
PSSM profiles obtained form PSI-BLAST search against
"nr". The accuracy of the method improved significantly
from 79.80% to 86.62% using PSSM profiles, when eval-
uated on DNAset. The quality of PSSM profiles, of a query
sequence depends on similar sequences in a target data-
base. As shown in Table 3, performance of SVM based
model decreases significantly when PSSM generated from
DNAset instead of "nr" dataset. This is due to fact that "nr"
is a very large database in comparison to DNAset and
hence the chances of getting similar sequences are very
high when a sequence is searched against "nr" database.
Thus, quality of PSSM profiles will be superior in case of
"nr". We also examined PSI-BLAST hits and observed that
each protein in DNAset has BLAST hits when searched
against "nr" database. We also demonstrate that PSSM
based models perform better, if there is significant BLAST
hits (Table 3). As database of "nr" is growing exponen-
tially due to number of sequencing projects the quality of
PSSM profiles will improve over the times, which eventu-
ally improve the performance of PSSM based models. In
DNAbinder server, first we examine whether a query
sequence has any BLAST hit in "nr"; if yes, PSSM based

Table 4: The Performance of SVM models using amino acid and PSSM profiles on a realistic dataset (DNArset).

Threshold Amino acid composition based model PSSM based model

Sn* Sp Acc MCC Sn Sp Acc MCC

-1.00 80.21 63.67 65.13 0.26 91.75 77.47 78.73 0.44
-0.90 77.47 67.00 67.92 0.26 89.70 78.60 79.58 0.44
-0.80 76.78 70.67 71.20 0.29 87.66 80.20 80.86 0.45
-0.70 74.74 74.40 74.43 0.31 85.61 81.60 81.95 0.45
-0.60 74.05 77.07 76.79 0.33 84.23 83.20 83.29 0.46
-0.50 71.98 79.27 78.62 0.34 78.73 84.20 83.72 0.44
-0.40 69.91 81.13 80.13 0.34 78.05 85.67 84.99 0.46
-0.30 69.22 83.60 82.32 0.37 74.60 87.27 86.15 0.46
-0.20 65.79 85.73 83.96 0.38 73.22 89.07 87.66 0.48
-0.10 60.99 87.40 85.06 0.37 71.15 91.00 89.24 0.51
0.00 58.23 89.13 86.39 0.38 70.46 92.27 90.34 0.53
0.10 53.40 90.40 87.12 0.37 68.41 93.60 91.37 0.55
0.20 50.02 92.20 88.46 0.38 65.68 94.60 92.04 0.56
0.30 47.95 93.33 89.31 0.40 63.61 95.40 92.59 0.57
0.40 44.53 93.93 89.55 0.38 60.16 95.87 92.71 0.56
0.50 41.79 94.60 89.91 0.38 53.31 96.60 92.77 0.53
0.60 37.70 95.13 90.04 0.35 51.29 97.07 93.01 0.54
0.70 32.90 95.73 90.16 0.33 47.86 97.53 93.13 0.52
0.80 30.83 96.40 90.58 0.33 42.39 97.87 92.95 0.49
0.90 30.16 97.00 91.07 0.35 38.30 98.40 93.07 0.48
1.00 28.78 97.33 91.25 0.35 34.87 98.67 93.01 0.47

* Sn: Sensitivity; Sp: Specificity; Acc: Accuracy
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model will be used and otherwise amino acid composi-
tion based SVM model will be used for prediction.

It is well known that similarity/motif based methods per-
form better than ab-initio classifiers if a query protein has
significant similarity with target proteins. The major chal-
lenge is to develop a method, which can identify a novel
DNA binding protein even if it has no sequence similarity
with any of the known DNA-BPs. Hence, we took non-
redundant proteins in our main dataset. If we have taken
redundant proteins then similarity based method would
have performed better than other methods. Our SVM
model based on amino acid composition performed well
on a dataset where similarity based method failed to
detect DNA-BPs. This demonstrates that models devel-
oped in this study are capable to identify novel DNA-BPs.
The SVM model based on PSSM further improved the
accuracy by 6–7%. The question arises why we generate
PSSM from 'nr' protein database instead of our own data-
set whereas we are assessing BLAST/PSI-BLAST and
MEME/MAST on DNAset. There is a fundamental differ-
ence between BLAST/PSI-BLAST searching and SVM
model using PSSM profiles. In case of BLAST/PSI-BLAST
one need to search only against well annotated proteins
because we have to assign the same function to query pro-
tein if it has similarity with target protein. In case of PSSM
it is not important to search a query sequence against the
annotated proteins only because we do not assign func-
tion based on similarity. It is not important whether query
sequence has similarity with DNA-BPs, NBPs or un-anno-
tated proteins for generating PSSM profiles. Thus, one
may create PSSM from any database like "nr" in contrast
to similarity-based methods, where we need to search
against well-annotated proteins only.

The main objective of this study is to develop a prediction
method for identification of new DNA-binding proteins
and particularly annotating the newly sequenced
genomes. Most of the existing methods developed in past
have been trained on experimentally annotated DNA-
binding protein chains/domains obtained from PDB. The
models developed on dataset of protein chains like DNA-
set are suitable for predicting DNA binding domains but
not for predicting DNA-BPs. In order to develop method
for predicting DNA-binding proteins, we also developed
SVM model using DNAaset, consists of full-length DNA-
binding and non-binding proteins. Thus, models devel-
oped on DNAaset will be suitable for predicting DNA-BPs.
The performance of our SVM model was slightly better
than SVM model of Yu et al, 2006 [8], using amino acid
composition on same dataset. The difference in the per-
formance of SVM may be due to optimization of learning
parameters as Yu et al., 2006 [8] used the default parame-
ters of SVM_light where as we used optimized parameters.
Our SVM model using PSSM profiles performs better than

the SVM model of Yu et al. 2006 [8], based on physico-
chemical properties by 3%. These results suggest that evo-
lutionary information is important for predicting DNA-
binding proteins.

Conclusion
We developed a highly accurate method for predicting
DNA-BPs using the machine learning technique, SVM. For
the first time, evolutionary information has been used to
predict DNA-binding proteins. It has been observed that
PSSM based models perform better than any other models
by 3–7% on all the datasets including independent and
realistic datasets. The SVM models developed in this study
perform better than other existing methods. One of the
major features of this study is that we developed a publicly
available web server and stand-alone software, which
allows users to identify the DNA-BPs in their dataset of
proteins. It was observed that models trained on DNA
domains or partial sequences are not suitable for predict-
ing DNA binding proteins and vice versa. Our server,
DNAbinder allows users to identify DNA binding
domains using the model trained on DNAset and predic-
tion of DNA binding proteins using the model trained on
DNAaset. We hope this study will assist the biologist in
annotation of genomes.

Methods
Datasets
In this study, we used the following datasets to develop
various models for predicting DNA-BPs and for evaluating
SVM models.

DNAset
We extracted 2435 DNA-BPs from Protein Data Bank
(PDB) [18] using the keywords, "Protein-DNA complex",
"DNA binding" and "DNA binding proteins". All proteins
having no DNA chain or having high similarity with other
proteins were filtered. Finally, we got 146 non-redundant
DNA-BPs in which no two proteins have the sequence
identity of more than 25%. A non-redundant set of 250
non-binding proteins was obtained from Stawiski et al.
(2003) [2]. They used following criteria: i) no two protein
chains have similarity more than 25% and (ii) the approx-
imate size and electrostatics are similar to DNA-BPs. Final
dataset called DNAset or main dataset or domain dataset,
consists of 146 DNA-binding and 250 non-binding pro-
tein chains or domains. We called proteins chains as
domains for our convenience, in order to discriminate
these PDB chains from full-length DNA-binding proteins
obtained from Swiss-Prot.

DNAaset
In addition to main dataset (DNAset), we also created an
alternate dataset called DNAaset. This dataset consists of
1153 DNA-BPs and 1153 NBPs extracted from Yu et al
Page 7 of 10
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(2006) [8]. The parent dataset have 88 rRNA-BPs, 377
RNA-BPs, 1153 DNA-BPs and 17779 non-binding pro-
teins. We randomly picked 1153 NBPs and all 1153 DNA-
BPs to constitute the alternate dataset (DNAaset). This is
non-redundant dataset where no two proteins have more
than 25% similarity.

DNAiset
In order to evaluate performance of our models on dataset
not used for training or testing, we created an independ-
ent dataset called DNAiset. This dataset has 92 DNA-bind-
ing protein chains obtained from PDB and 100 non-
binding proteins picked from Swiss-Prot. These proteins
were obtained from BindN server [14].

DNArset
Equal number of negative and positives examples is
important for developing an efficient classifier. They are
also important for evaluating any prediction model where
one can simply calculate accuracy for measuring perform-
ance. All above datasets have nearly equal number of
DNA-binding and non-binding proteins. However, in real
life DNA-BPs are significantly less than non-binding pro-
teins. This raises question whether models developed on
equal numbers will be effective in real life. Thus, we cre-
ated a more realistic dataset called DNArset. This dataset
has 146 DNA-BPs used in DNAset and 1500 NBPs. These
1500 NBPs were extracted from 17779 non-binding pro-
teins used by Yu et al., 2006 [8] after removing the pro-
teins, whose DNA binding property is not experimentally
validated.

Evaluation of models
We have adopted five fold cross-validation approach to
evaluate the performance of all models developed in this
study. In this procedure, the whole dataset is randomly
divided into five equal parts. Four sets are used for train-
ing and remaining one for testing. The procedure is
repeated five times in such a way that each set is tested
once. This type of sub-sampling test (e.g., 5 or 7-fold
cross-validation) is often used to validate the prediction
performance of statistical methods. On the other hand,
jack-knife test is deemed the most rigorous and objective
as analyzed by a comprehensive review [19] and has been
increasingly adopted by investigators to test the power of
various prediction methods (see, e.g., [20-28]). In order to
assess the performance of a model, we computed different
parameters: sensitivity, specificity, accuracy and Matthews
correlation coefficient (MCC) [29].

DNA-BLAST and DNA-PSI-BLAST search
In order to assess the performance of similarity search
approaches, we evaluated the performance of BLAST [15]
and PSI-BLAST [16] on DNAset. We searched proteins of
test set against training set proteins using BLAST/PSI-

BLAST and assigned a query protein as DNA-binding or
non-binding if the first hit was a DNA-BPs or NBPs respec-
tively. We assigned a protein "unknown" if it has no sig-
nificant similarity with any target protein.

Support vector machine (SVM)
In this study SVM_light, a freely available software pack-
age, has been used to implement SVM. The SVM is a super-
vised machine-learning method based on the structural
risk minimization principle from statistical learning the-
ory. It takes a set of feature vectors as input, along with
their output, which is used for training of model. After
training, learned model can be used for prediction of
unknown examples [30,31]. Detailed description of SVM
can be found at Vapnik (1995) [32]. In this work, the SVM
training has been carried out by the optimization of vari-
ous kernel function parameters and the value of the regu-
larization parameter C.

Protein features and vector encoding
Amino acid and dipeptide compositions
The aim of calculating composition of proteins is to trans-
form the variable length of protein sequence to fixed
length feature vectors. This is an important and most cru-
cial step during classification of proteins using machine-
learning techniques because they require fixed length pat-
tern. The conversion of protein sequence to a vector of 20
dimensions using amino acid composition will encapsu-
late the properties of a protein into it. In addition to
amino acid composition, dipeptide composition was also
used for classification that gave a fixed pattern length of
400. The advantage of dipeptide composition over amino
acid composition is that it encapsulates information
about the fraction of amino acids as well as their local
order. The amino acid as well as dipeptide composition
was calculated as described below.

Where comp(i) is the percent composition of a residue of
type i. Ri and N are number of residues of type i, and total
the number of residues in protein i (length of protein)
respectively.

Where dpep(i) is fraction or composition of dipeptide
type i. Di and N are number of dipeptide of type i and
number of overlapping peptides in protein i, respectively.

Evolutionary information
In past evolutionary information in form of position spe-
cific scoring matrix (PSSM) has been used for prediction

comp i
Ri
N

( ) = ×100

dpep i
Di
N

( ) = ×  100
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of protein secondary structure [33-35]. Recently evolu-
tionary information has been used for predicting subcel-
lular localization of proteins [12,13]. In this study PSSM
has been used for predicting DNA-binding proteins. The
PSSM for each sequence was generated by PSI-BLAST
search against 'nr' database using three iterations with e-
value cut off 0.001. The PSSM contains probability of
occurrence of each type of amino acid at each residue
position of protein sequence. The evolutionary informa-
tion in PSSM is presented by a matrix of dimension L × 21
(L rows and 21 columns) for a protein of length L where
21 columns represents occurrence/substitution of each
type of 20 amino acids and dummy residue 'X' for inser-
tion/deletion. We generated three vectors of dimension
21, 420 and 400, called PSSM-21, PSSM-420 and PSSM-
400 respectively, from PSSM matrix. PSSM-21 is simple
composition of occurrence of each type of amino acid, cal-
culated by summing each column of PSSM. PSSM-420 is
composition of occurrences of each type of amino acid
corresponding to each type of amino acids in protein
sequence; it means for each column we will have 20 val-
ues instead of one. Hence, we will have vector of dimen-
sion 20 × 21 for PSSM matrix. PSSM-400 is similar to
PSSM-420 except dummy residue 'X' is ignored. It means
dimension will be reduced to 20 × 20. We normalize the
values of PSSM in range of 0–1 by using formula (Value-
minimum)/(maximum-minimum) before computing
vector PSSM-400 and PSSM-420. The process of convert-
ing L × 21 size matrix into PSSM-400 is diagrammatically
shown in Figure 3. In this study we used mainly PSSM-400
(or PSSM) for developing models.

Four-part amino acid compositions
Protein sequence was divided into four non-overlapping
equal length sub-sequences. Then amino acid composi-
tion of each sub-sequence was computed. Composition of
each sub-sequence was concatenated together to make
final input vector of dimension 80.

Availability and Requirements
Project name: DNA-binding proteins prediction;

Project home page: http://www.imtech.res.in/raghava/
dnabinder/;

Operating system(s): Platform independent;

Programming language: None;

Licence: No restriction;

Any restriction to use by non-academics: No restriction. Schematic representation of algorithm used to convert 21*N dimensional PSSM into PSSM-400Figure 3
Schematic representation of algorithm used to convert 21*N 
dimensional PSSM into PSSM-400.
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