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Abstract
Background: Affymetrix SNP arrays can interrogate thousands of SNPs at the same time. This
allows us to look at the genomic content of cancer cells and to investigate the underlying events
leading to cancer. Genomic copy-numbers are today routinely derived from SNP array data, but
the proposed algorithms for this task most often disregard the genotype information available from
germline cells in paired germline-tumour samples. Including this information may deepen our
understanding of the "true" biological situation e.g. by enabling analysis of allele specific copy-
numbers. Here we rely on matched germline-tumour samples and have developed a Hidden
Markov Model (HMM) to estimate allelic copy-number changes in tumour cells. Further with this
approach we are able to estimate the proportion of normal cells in the tumour (mixture
proportion).

Results: We show that our method is able to recover the underlying copy-number changes in
simulated data sets with high accuracy (above 97.71%). Moreover, although the known copy-
numbers could be well recovered in simulated cancer samples with more than 70% cancer cells
(and less than 30% normal cells), we demonstrate that including the mixture proportion in the
HMM increases the accuracy of the method. Finally, the method is tested on HapMap samples and
on bladder and prostate cancer samples.

Conclusion: The HMM method developed here uses the genotype calls of germline DNA and the
allelic SNP intensities from the tumour DNA to estimate allelic copy-numbers (including changes)
in the tumour. It differentiates between different events like uniparental disomy and allelic
imbalances. Moreover, the HMM can estimate the mixture proportion, and thus inform about the
purity of the tumour sample.

Background
Chromosomal abnormalities such as loss-of-heterozygos-
ity (LOH) or genomic copy-number changes are frequent

in tumour cells. LOH occurs when a heterozygous marker
in germline DNA of an individual becomes homozygous
in cancer DNA of the same individual. This event is the
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result of losing one allele of a chromosomal region while
the other allele is retained, duplicated (uniparental dison-
omy), or multiplicated (uniparental polysomy). In the
same way, chromosomal amplifications can be unbal-
anced (if only one allele of a chromosomal region is mul-
tiplicated) or balanced (if both alleles are multiplicated).
Detecting chromosomal abnormalities is important in
cancer research as it allows the discovery of chromosomal
regions possibly harbouring cancer-related genes such as
tumour suppressor genes or oncogenes. It may also be
used to identify genomic markers (i.e. chromosomal
abnormalities) that may distinguish between clinically
important stages in the disease course, e.g. markers of
metastasis or markers of treatment response.

Single nucleotide polymorphisms (SNPs) account for
most of the genetic variation in the human genome. They
occur every 100 to 300 bases along the 3-billion-base
human genome [1]. Different techniques (e.g. Illumina
[2], Affymetrix [3], Perlegen [4]) have been developed in
order to genotype thousands of SNPs distributed all over
the genome at the same time. In this paper, we focus on
Affymetrix SNP-arrays, but note that the method we have
developed can be applied to data obtained from other
experimental platforms as well.

The Affymetrix technique is based on genomic hybridiza-
tion to synthetic high-density oligonucleotide microar-
rays. Each of the two alleles of a SNP is represented by 10
oligonucleotides (together called a probeset) and hybrid-
ization (probe) intensities are measured for all probes in
the probeset [3]. Different algorithms [5-8], have been
developed to genotype correctly SNPs from the Affymetrix
intensities. A very high accuracy and concordance of gen-
otype calls is observed for normal samples as the ploidy is
always two. However, it is much more diffcult to genotype
cancer samples due to genomic alterations that might
change the ploidy number.

Hidden Markov Models (HMMs) have been used exten-
sively to recover unobserved underlying states that give
rise to an observed sequence of data. In relation to LOH
analyses HMMs have been used to infer whether an allele
is lost or retained (i.e. two hidden states) from genotype
data [9-11]. Lin et al. [10] and Koed et al. [9] developed
HMM methods that score the presence of allelic imbal-
ance mainly based on converted SNPs (when AB call
becomes AA or BB in the cancer sample). In [11], Ber-
oukhim et al. describes a HMM-based method to identify
LOH from unpaired tumour samples. They use the geno-
type calls to identify whether a SNP marker is in a reten-
tion state or in a LOH state. By integrating copy-number
analysis into the analysis, they can distinguish LOH from
allelic imbalance. However, the LOH analysis and the
copy-number analysis are performed separately. Besides,

the LOH analysis is highly dependent on the genotype
calls even if the possibility of genotyping errors is taken
into account.

HMMs have also been used for copy-number analysis. In
[12], Fridlyand et al. developed a HMM to analyse micro-
array-based comparative genomic hybridization (array
CGH) data. In [13], Zhao et al. developed a method to
infer DNA copy-numbers using Affymetrix SNP-arrays.
They combined probeset intensities for each SNP into a
single value and used the values as an observed sequence
of data in their HMM. These methods are not allele spe-
cific and thus cannot distinguish e.g. retention (keeping
both alleles) from uniparental disomy (losing one allele
and duplicating the other one), which appears to be very
important and wide-spread in certain cancers [14].

More recently, methods to infer allele specific copy-num-
bers have been published [15,16]. Laframboise et al. [15]
used a circular binary segmentation (CBS) algorithm
which originally was used for array CGH [17]. Huang et
al. [16] used a kernel smoothing method to estimate
allelic copy-number changes. In [18], Nannya et al.
describes a HMM to infer allelic copy-numbers that is
based on the observed sequence of SNPs intensities ratios
for which the corresponding normal SNP markers are het-
erozygous.

In this study, we developed a HMM method to infer allele
specific copy-numbers using Affymetrix SNP arrays. In a
sense the method works on paired normal-tumour sam-
ples. It takes as input the genotype calls of the normal
sample, the allelic specific intensities of the tumour sam-
ple and outputs the estimated copy-number states of each
allele for each SNP. To limit the state space of the under-
lying Markov Chain, we restricted the possible copy-num-
bers of each allele to 0, 1, 2 and > 2. Many tumour samples
contain a large fraction of normal cells and this poten-
tially affects the performance of the method. We therefore
included the possibility to estimate the population mix-
ture (proportion of cancer cells; henceforth called mixture
proportion) from the data and used this in the analysis.
We did this in a way similar to Fridlyand et al.'s method
for array CGH [12]. We tested our HMM model on simu-
lated data sets, normal samples from the HapMap project
and on bladder and prostate tumour samples.

Results and Discussion
We first normalized the 90 HapMap arrays and the 134
cancer arrays and transformed the allele intensities as
described in Methods. We then selected SNPs for each of
the three groups of arrays: the HapMap, bladder and pros-
tate groups. The selection was done using only the normal
samples from each group as described in Methods. After
selection, we had 17,198 SNPs selected for the HapMap
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group, 15,237 SNPs for the bladder group and 17,541
SNPs for the prostate group.

The normalized allele intensities and the genotypes of the
germline DNA were used as input in our HMM. The HMM
outputs for each selected SNP the allelic copy-number. To
limit the number of states of the HMM, we defined six cat-
egories corresponding to different events: germline state
or normal state, heterozygous deletion state, homozygous
deletion state, uniparental disomy or uniparental polys-
omy state, unbalanced amplification state and balanced
amplification state (Figures 1A and 1B). The transition
probabilities (probabilities to move from one state to
another when considering two consecutive SNPs) are
defined using three parameters: two variable parameters,
p and r and one fixed parameter, ε (see Methods and Fig-
ures 1C and 1D). The p parameter corresponds to jumping

from the normal state to an abnormal state, the r parame-
ter corresponds to jumping between two abnormal states
and the ε parameter corresponds to jumping between two
states involving double events. Here ε is fixed to 0.00001.

Estimating the parameters
We simulated data sets with known transition parameters
and investigated how the true parameters and true states
were recovered. Six samples were created for each combi-
nation of transition parameters. The parameters varied
between 0.001 and 0.1. A value of 0.001 means that a
change of states occurs every 1000 SNPs on average. We
observed that our method is able to recover the true values
of the transition parameters with a good accuracy. There is
however a tendency to slightly underestimate the param-
eters when they are high. Moreover, the method is able to
recover the hidden states with a very good accuracy (from

States and transition matrix of the HMMFigure 1
States and transition matrix of the HMM. A. This figure shows the definition of the states in the HMM. The genotype call 
for the germline DNA is given by the letter N = AB, AA or BB. For each state, the total DNA copy-number and the allelic 
copy-numbers are given. State 0 is the germline state also called the normal state; state 1 corresponds to a heterozygous dele-
tion (loss of one allele); state 2 corresponds to a homozygous deletion (loss of two alleles); state 3 corresponds to uniparental 
di/polysomy (loss of one allele and duplication or multiplication of the other allele); state 4 corresponds to unbalanced amplifi-
cation (duplication or multiplication of only one allele); state 5 corresponds to balanced amplification (duplication or multiplica-
tion of both alleles). Notice that when the SNP marker in the germline DNA is homozygous, states 3, 4 and 5 are very similar 
and states 0 and 3 cannot be differentiated in case of uniparental disomy. B. Visual interpretation of the states. C. Transition 
matrix. The transition probabilities are the probabilities to move from one state for a SNP to another state for the next SNP. 
The rest of the matrix is given by the detailed balance equation and symmetry. D. Visual interpretation of the transition param-
eters. The figure represents two consecutive SNPs in the sample.

A C
DNA (A,B)(A,B) (A,B) (A,B)

State copy−number N=AB N=AA N=BB

0 2 (1,1) (2,0) (0,2)

1 1 (0,1) or (1,0) (1,0) (0,1)

2 0 (0,0) (0,0) (0,0)

3 2+ (0,2+) or (2+,0) (2+,0) (0,2+)

4 3+ (1,2+) or (2+,1) (3+,0) (0,3+)

5 4+ (2+,2+) (4+,0) (0,4+)

State 1 2 3 4 5

0 p p εε p p

1 r r εε εε

2 εε εε εε

3 r r

4 r

B

STATE 0

STATE 1

STATE 2

STATE 3

STATE 4

STATE 5

D

p :: 0 →→ 1

r :: 1 →→ 2

εε :: 0 →→ 3

0 →→ 5

3 →→ 4

2 →→ 4
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97.71% to 99.97%). The worst case is seen when both
transition parameters are high, i.e., when there are many
copy-number changes (Table 1).

Next, we applied the method to 18 HapMap samples and
to the bladder and prostate samples (Figure 2). The tran-
sition parameters which are assumed to be the same for all
chromosomes in a sample were estimated for each sam-
ple. The results show that the estimated transition param-
eters are within the range where the method obtains a very
good accuracy in the simulated data sets. The median for
the estimated p is 0.00036 in the normal samples and
0.02188 for the tumour samples. Similarly, the median is
0.00956 for the estimated r in the normal samples and
0.02764 for the tumour samples. Besides, the average per-
centage of SNPs being in normal state (state 0) was 99.44
for the HapMap samples, 96.93 for the bladder normal
samples and 96.57 for the prostate normal samples.
Moreover, the normal samples with the lowest percent-
ages of SNPs in state 0 are the ones flagged as bad arrays
(high percentage of outliers) by the dChip software. Three
normal samples from the bladder group were flagged as
bad arrays. Figure 3 shows the results of our method on
one bladder cancer sample.

Accuracy of the method when the sample is a population 
mixture
Using different values for the transition parameters, we
simulated data sets where the sample was a mixture of
normal cells and cancer cells. The percentage of cancer
cells was chosen between 55% and 100%. The accuracy of
the method was estimated assuming the sample was not a
mixture (Figure 4). It is observed that if the mixture level

is over 70%, then the true hidden states are recovered with
high accuracy (above 94%).

In the simulated data, amplification of an allele always
implies that the copy-number increases by one; e.g. if the
SNP is heterozygous then amplification of the A allele
results in two A alleles. In real data, this is not always true:
amplification may increase the allelic copy-number by
more than one. Thus it is easier for the method to recover
the true hidden states in the simulated data than in real
data.

Estimating the population mixture
We simulated data sets based on the results from the anal-
ysis of the bladder and prostate tumours. Using the esti-
mated hidden states, data sets with known population
mixture were created by adding a percentage of normal
cells. Subsequently the mixture proportion was estimated.
This was done on the 29 bladder samples for different
mixture levels (60, 70, 80 and 90%) (Table 2).

Reliable information about mixture is only available if the
sample contains SNPs with different copy-number altera-
tions. For example, if the observed copy-number of a SNP
is 4.7, then it is not possible to distinguish between a mix-
ture of 1) 90% tumour cells with 5 copies and 10% nor-
mal cells (2 copies) and 2) 54% tumour cells with 7 copies
and 46% normal cells. However, if SNPs exist in several
different states, then it becomes possible to distinguish
between different mixtures. In case 1), a SNP in state 1 will
have an observed copy-number of 1.1 and in case 2), the
observed copy-number will be 1.46.

Table 1: Estimation the transition parameters and the states

True r
True p Estimation 0.001 0.01 0.05 0.1

p 0.00115 0.00104 0.00101 0.00107
0.001 r 0.00108 0.01028 0.04889 0.09462

Accuracy 0.99965 0.99893 0.99487 0.99227

p 0.00959 0.00994 0.00934 0.01006
0.01 r 0.00112 0.01057 0.04931 0.09588

Accuracy 0.99725 0.99622 0.99303 0.98850

p 0.04861 0.04831 0.04794 0.04849
0.05 r 0.00109 0.01034 0.04812 0.09402

Accuracy 0.99180 0.99000 0.98517 0.98018

p 0.09551 0.09356 0.09603 0.09300
0.1 r 0.00140 0.01006 0.04857 0.09480

Accuracy 0.99233 0.98980 0.98269 0.97708

For each pair of true p and r parameters, we simulated six samples where all SNPs were given a heterozygous call in the germline DNA. Here we 
report the average of the estimation for p and r and how often the true copy-number state is recovered.
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Knowledge of the mixture level helps to get a more accu-
rate recovery of the hidden states. When the mixture level
is about 60%, the accuracy rises from about 90% to 95%
(Table 2). We also estimated the mixture proportion on
the real bladder and prostate data sets. As all the prostate
samples were microdissected and all the bladder samples
were macrodissected, we expected the samples to be
almost pure cancer cells (Table 3). We observed that most
of our samples showed no evidence of being a mixture.

However, 6 bladder samples (out of 18) and 4 prostate
samples (out of 25) presented some mixture level. As all
samples were microdissected or macrodissected, the esti-
mated mixture level may not reflect a true mixture of can-
cer/normal cells. Instead it may reflect heterogeneity in
the cancer cells which is supported by findings in the lit-
erature. In bladder cancer, cells with different genomic
alterations have been found in the same tumour [19]. In
prostate cancer, genomic heterogeneity has been reported

Estimation of the transition parameters and percentage of SNPs in state 0 in the real dataFigure 2
Estimation of the transition parameters and percentage of SNPs in state 0 in the real data. A. Boxplots for the p-
parameter. B. Boxplots for the r-parameter. C. Boxplots for the percentage of estimated SNPs in state 0 (normal state). BN: 
Bladder Normal samples; HN: Hapmap Normal samples; PN: Prostate Normal samples; BT: Bladder Tumour samples; PT: 
Prostate Tumour samples.
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Chromosome 2 in a bladder tumour sampleFigure 3
Chromosome 2 in a bladder tumour sample. In this chromosome, we can distinguish two events: an unbalanced amplifi-
cation coloured in orange (only one allele is duplicated) and a heterozygous deletion of the q-arm coloured in blue. A. For each 
SNP heterozygous in the germline DNA, the normalized intensities (as defined in Methods equation 4) of each allele are plot-
ted. The colours represent the estimated state of the SNP: black for state 0 (germline state), blue for state 1 (heterozygous 
deletion: loss of one allele), green for state 2 (homozygous deletion: loss of both alleles), purple for state 3 (uniparental di/poly-
somy: loss of one allele and multiplication of the other one), orange for state 4 (unbalanced amplification: multiplication of one 
allele) and red for state 5 (balanced amplification: multiplication of the two alleles). B. Shown is the region of LOH. C. For each 
SNP homozygous in the germline DNA, the normalized intensities (as defined in Methods equation 4) of each allele are plotted. 
The absent allele is coloured in grey. D. Shown is the estimated sequence of hidden states. The colours indicate the posterior 
probabilities of the states: blue > 0.99, green > 0.95, orange > 0.9 and red < 0.9.
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Accuracy of our method on simulated dataFigure 4
Accuracy of our method on simulated data. The percentage of agreement between the recovered state and the original 
state in the simulated data sets is plotted as a function of the population mixture (percentage of tumour cells in the sample). 
The simulation were done using different combinations of transition parameters.
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Table 2: Estimation of the mixture proportion

Estimated mixture Accuracy (%)
True mixture Average Stdev Without mixture With mixture

0.60 0.603 0.012 90.31 95.45
0.70 0.719 0.069 94.43 96.16
0.80 0.803 0.009 96.87 97.52
0.90 0.902 0.014 98.16 98.25

Simulated data sets were created based on the analyses of the bladder tumour samples. Here the average is calculated for all samples where the 
amount of informative SNPs (states 1 to 5) was suffciently high (> 5%, see Methods). The number of correctly identified states is shown with and 
without estimation of the mixture proportion.
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in several papers; e.g. [20,21]. However, it is not straight-
forward to modify the HMM to operate on mixtures of
cancer cells.

Varying the transition parameters across the chromosomes
Until now, the transition parameters were estimated for
each sample and were chromosome independent. How-
ever, it is known that for a given cancer type certain chro-
mosomes are more prone to abnormalities than others. In
order to take this into account, we simulated 40 samples
where the transition parameters differed for each chromo-
some, but were similar for each sample (see Methods).
The transition parameters were randomly chosen between
0.001 and 0.05. We then analysed the samples and esti-
mated the accuracy of the method (Table 4). The simu-
lated samples were divided into two categories: one where
the germline genotype calls are only heterozygous and
one where the germline genotype calls have the same dis-
tribution as in a normal sample (30% of the SNP markers
are heterozygous). This partition of the samples showed
that the addition of homozygous SNP markers decreased
the accuracy of the method slightly (from 99.50% to
98.55%).

In order to account for the similarities between different
samples from the same cancer type, we also estimated the
transition parameters for each chromosome across all
samples of a group. This modified version allows the

chromosomes to be ranked according to the frequency of
changes occurring as reflected in the estimated transition
parameters. We ran the modified version on the same 40
simulated samples (Table 4). As expected, we achieved a
slightly better accuracy in recovering the hidden states.
The two methods agreed on 99.70% of the recovered
states when we put no restrictions on the genotypes and
on 99.86% of the recovered states when all SNPs were
assumed to be heterozygous.

We applied our all-array method to the set of bladder and
prostate tumours and compared the results obtained ana-
lysing one sample at a time. The two methods agreed on
95.71% of the states for the bladder group and on 96.24%
of the states for the prostate group. From the results of the
all-array method, we were also able to classify chromo-
somes according to how often a change in copy-number
occurs. For the bladder group, copy-number changes
occurred most often in chromosomes 8 and 9. These two
chromosomes are known to be frequently abnormal in
bladder tumours [22,23]. For the prostate group, copy-
number changes occurred most often in chromosomes 3,
7, 8 and 16. A combined analysis of published CGH stud-
ies [24] and a study based on SNP arrays [25] showed that
these chromosomes are frequently abnormal in prostate
tumours.

Table 4: Compararison of two estimation methods on 40 simulated samples

Accuracy in % Average posterior probability
Method Number of samples Average stdev True state False state

One-array
- only normal 
heterozygous calls

20 99.495 0.058 0.997 0.812

- all calls 20 98.548 0.147 0.992 0.845
All-array
- only normal 
heterozygous calls

20 99.552 0.042 0.997 0.806

- all calls 20 98.653 0.150 0.992 0.830

Here the one-array method (transition parameters are estimated for each sample and are the same for all chromosomes) and the all-array method 
(transition parameters are the same for each chromosome across all samples) were compared. For each method, the accuracy of the HMM on 
samples where all SNPs are heterozygous in the normal sample and the accuracy of the HMM on samples where the call distribution is the same as 
a HapMap sample (all calls) were also compared. Moreover, an average of the posterior probability for all SNPs correctly recovered or not is given.

Table 3: Estimation of the mixture proportion (m) in the bladder and the prostate groups

M < 1
Cancer type Number of samples Number of samples with m 

= 1
Average Stdev

Bladder 18 12 0.793 0.193
Prostate 25 21 0.93 0.055

For all bladder and prostate tumour samples, the mixture proportion was estimated. The averages and standard deviations are only calculated for 
the tumour samples whose estimates of mixture proportion, m, were not 1 (100% cancer cells).
Page 8 of 14
(page number not for citation purposes)



BMC Bioinformatics 2007, 8:434 http://www.biomedcentral.com/1471-2105/8/434
Uniparental disomy
Uniparental disomy occurs when one allele of a chromo-
somal region is lost and the remaining allele is duplicated.
In a sample this means that SNPs in such a region will lose
their heterozygosity while the copy-number will remain
normal (2 copies) or higher. Andersen et al. [14] and
Raghavan et al. [26] showed that uniparental disomy is
frequent in colorectal cancer and in acute myeloid leuke-
mias, respectively. In bladder and prostate cancer, we also
found some examples of uniparental disomy. Figure 5
shows an example of uniparental disomy in chromosome
13 of a bladder sample, demonstrating that the HMM suc-
cessfully can find cases of uniparental disomy.

Using the homozygous SNPs to estimate allelic copy-
number changes
In our HMM approach, there are two ways to estimate
allelic copy-number changes. One can choose to use only
the SNPs which are heterozygous in the germline sample
or to use all SNPs including the homozygous SNPs. Both
ways have been tested here. Using only the SNPs which
are heterozygous in the germline sample is the best way to
obtain good estimates of the underlying states because all
states of the HMM are differentiable. In this paper, we
obtained a high rate of recovery (above 99.40%, Table 4)
when the simulated samples had only heterozygous calls.
However, the average heterozygosity in the Affymetrix
Genechip 100 k SNP arrays is only around 0.3 [27]. This
implies that less than one third of the SNPs are hetero-
zygous in a normal sample. Therefore, including SNPs
with homozygous calls in the germline sample may
improve the resolution of the map of allelic copy-number
changes. When we included all genotype calls in the anal-
ysis, we still obtained a high rate of recovery (above
98.50%, Table 4). SNPs with homozygous genotypes in
the germline sample can also differentiate different states
based on their different copy-numbers. However, some
states are very similar: states 0 and 3 or states 3, 4 and 5.
The presence of heterozygous SNPs helps in differentiat-
ing these states. Oppositely the presence of homozygous
SNPs might help in differentiating between heterozygous
states (e.g. states 0 and 4; see Figure 1); for example, if
noise is corrupting the signal from a heterozygous SNP
with homozygous neighbours, then the copy numbers of
the neighbours can point to whether the heterozygous
SNP is in state 0 or 4.

Comparison with PLASQ
PLASQ [15] was run on 10 of the real samples (6 prostate
and 4 bladder samples). The states estimated by PLASQ
were converted into the corresponding states in our model
and the results were compared. Agreement between the
two methods was on average 90.47% (ranging from
77.05% to 98.11%). Generally, our method detects more
abnormalities than PLASQ. This is concordant with previ-

ous observations concerning PLASQ, where it has been
found that PLASQ is conservative [28]; i.e. PLASQ has a
tendency to prefer the normal state. In order to be more
conservative, we ran our HMM with a higher standard
deviation in the emission density for the normal state. As
expected, agreement between the two methods increased
to an average of 95.02% (ranging from 88.86% to
99.38%). Additionally we calculated the average posterior
probabilities of the states when both methods agree or
disagree. As expected, when both methods agree, the aver-
age is higher than when they disagree (0.983 against
0.909).

Conclusion
In this study, we described a HMM-based method to esti-
mate allelic SNP copy-number changes, LOH and allelic
imbalance using Affymetrix GeneChip SNP arrays. The
method takes as input the genotype call of the germline
sample and the allelic SNP intensities of the tumour sam-
ple and outputs the estimated copy-number states for
each SNP. The different hidden states estimated by the
HMM correspond to different events occurring in the can-
cer cell. A chromosomal region may remain unchanged in
a cancer cell, may lose one allele (LOH event) or both alle-
les (homozygous deletion), may lose one allele and mul-
tiplicate the other one (LOH+uniparental disomy), may
multiplicate one allele (allelic imbalance) or both alleles
(see Figure 1). Our method is able to reliably differentiate
between these events.

When samples are taken from tumour tissue, they often
contain a mixture of normal and cancer cells. Different
techniques such as microdissection can help keep the per-
centage of normal cells low but this is a procedure that
cannot be done automatically and is not always done. In
this study, we showed that it is possible to estimate the
true mixture proportion of a sample. We also showed that
knowledge of the mixture proportion improves estima-
tion of the allelic copy-numbers. In fact, the SNP intensity
reflects the average copy-number of that particular SNP in
the different cells in the sample. However, population
mixture of normal and cancer cells might be confused
with tumour heterogeneity. Multiclonality has been
shown to occur in bladder cancer as well as in prostate
cancer and this could also lead to non-integer copy-num-
bers, i.e. the average over all cells is not an integer. It
would be interesting to tackle this issue in future work.

Finally, we discussed the utility of using SNPs which are
homozygous in the germline samples in the estimation of
allelic copy-number changes. We showed that despite the
fact that they cannot really differentiate between events by
themselves, e.g. normal state and uniparental disomy
with a single duplication, they are useful in getting a finer
map of copy-number changes in the cancer.
Page 9 of 14
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An example of uniparental disomy in chromosome 13 in a bladder tumour sampleFigure 5
An example of uniparental disomy in chromosome 13 in a bladder tumour sample. In this chromosome, we can 
distinguish uniparental disomy coloured in purple in a region of approximatively 20 Mb and an unbalance amplification in the 
rest of the q-arm coloured in orange and red. A. For each SNP heterozygous in the germline DNA, the normalized intensities 
(as defined in Methods equation 4) of each allele are plotted. The colours represent the estimated state of the SNP: black for 
state 0, blue for state 1, green for state 2, purple for state 3, orange for state 4 and red for state 5. B. Shown is the region of 
LOH. C. For each SNP homozygous in the germline DNA, the normalized intensities (as defined in Methods equation 4) of 
each allele are plotted. The absent allele is coloured in grey. D. Shown is the estimated sequence of hidden states. The colour 
indicates the posterior probabilities of the states: blue > 0.99, green > 0.95, orange > 0.9 and red < 0.9.
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Methods
Materials
We used tumour and blood samples from 38 patients
diagnosed with prostate cancer and 29 patients diagnosed
with bladder cancer. All the bladder tumour samples were
macrodissected. This implies that any connective tissue
and muscle tissue were scraped away with a scalpel while
looking at the tumour section in a microscope [29]. All
the prostate samples were laser microdissected [30]. The
GeneChipMapping 100 K array was applied to all sam-
ples. Only the array probes for Xba I cleaved DNA were
used. We also downloaded the 100 K Affymetrix SNP
arrays from the 30 CEPH trios (90 samples) used in the
international Hapmap project [31]. Only the Xba arrays
were used.

Normalization and allele copy-numbers of SNPs
The probe set intensities of all arrays were normalized
using the dChip software (Invariant Set ormalization)
[10]. Subsequently, the intensities were combined into
two values (intensities of A and B alleles) by taking the
logarithm of the average over all Perfect Match (PM)
probes for the α allele, α = A or B, i.e.

where PMij(α) is the intensity of the j-th probe of allele α
for SNP i. Here j runs over j = 1,...,p, where p = 10, i = 1,...,
57290. p is the number of probe in a probeset interrogat-
ing one allele and i is the total number of SNPs.

Based on the observation and model described in [8], we
have for each SNP i:

where α is allele A or B,  is the mean intensity for

allele α in samples with two copies of α,  is the

mean intensity for allele α in samples with one copy of α
and c1 and c2 are SNP-independent parameters. (see addi-

tional file 1 as an illustration). Note that the means are
SNP-dependent. Assuming that the logarithm of the copy-
number of a SNP allele is proportional to the logarithm of

its intensity, see e.g. [32], we have for Ci(α) > 0:

where Ci(α) and  are the copy-number and inten-

sity of allele α in SNP i, respectively. The parameters αi

and bi are SNP-specific. Here we allow Ci(α) to be an arbi-

trary number to allow for mixed samples.

From equations 2 and 3, we derive Ci(α), the allelic copy-

number, given  and :

Ci(α) > 0. This equation remains true if Ci(α) is not an
integer.

As we have only Ii(α), an estimate of , we can only

obtain , an estimate of log2(Ci(α)). We assume that

 is normally distributed around log2(Ci(α)) with

standard deviation σc.

The parameters , c1, c2, σ1, σ2 were estimated using

the HapMap data set based on the knowledge of the allelic
copy-numbers of each SNP; i.e. 0, 1, or 2 depending on
whether the SNP is heterozygous or homozygous. Here c1

= -0.38, c2 = 1.08, σ1 = 0.3 and σ2 = 0.35. We assume that

σc = σ2 for c > 2. When the copy-number is 0, we can still

use equation 4 with  being distributed as a normal

distribution with mean -2 and σ0 = 0.55 (empirical obser-

vation; see additional file 2). A level of -2 corresponds to
0.25 copies, and not to 0 copies. This slightly elevated
level can be explained by cross-hybridization and back-
ground noise. Those values were also obtained using the
HapMap data set.

Selection of SNPs
We selected only the SNPs that conformed well to the
model. Those that do not conform to the model are less
likely to be useful for copy-number analysis [8]. The selec-
tion is based on the normal samples from each group: the
90 HapMap samples, the 38 normal samples from the
prostate group and the 29 normal samples from the blad-
der group. A SNP is selected if it has a high call rate (above
90%) (Affymetrix genotype call) and if there is a high cor-
respondence between the inferred allelic copy-number
given by equation 4 and the true allelic copy-number
given by the genotype (see [8] for more details).
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A Hidden Markov Model (HMM) to estimate the allelic 
copy-number
The model
We used a HMM to estimate the allelic copy-number of
the selected SNPs. Our HMM has six states (Figures 1A,
1B) corresponding to the germline state (state 0) and five
chromosomal abnormalities: heterozygous deletion (state
1), homozygous deletion (state 2), uniparental di/polys-
omy (state 3), unbalanced amplification (state 4) and bal-
anced amplification (state 5).

We defined the transition matrix using 3 parameters (Fig-
ure 1c). The transition probabilities are the probabilities
of moving from one state to another state, when moving
from one SNP to its neighbour SNP. The p-parameter is
the probability of moving from the germline state (state
0) to an abnormal state (states 1 to 5). The r-parameter is
the probability of moving from one abnormal state to
another different abnormal state and the ε-parameter is
the probability of what is considered an improbable tran-
sition (Figure 1d). We considered a transition improbable
if the transition implies two breakpoints between two
consecutive SNPs. For example, the transition between the
germline state (state 0) and the uniparental di/polysomy
state (state 3) is improbable as it implies one breakpoint
to lose one allele and a second breakpoint to multiplicate
the other allele.

For each state, the emission density is defined as a bivari-
ate normal distribution where the mean is the logarithm
of the allelic copy-numbers and the covariance matrix

(including σc) is estimated from the normal samples. For

the states with copy-numbers 2+, 3+ or 4+, we take the
mean to be the logarithm of 2, 3 or 4 copies, respectively.
Looking at the HapMap data set, we could estimate the

mean of . When a SNP marker was homozygous in the

germline DNA, we defined the emission densities as a nor-
mal density as only one allele could be present in the can-
cer cells.

The Viterbi algorithm is used to recover the hidden states
and a modified version of the Baum-Welch algorithm is
used to estimate the p and r-parameters. The ε-parameter
is set to an arbitrary but small value. Here ε = 0.00001.

Simulation of data sets

In order to test if the method can recover known transi-
tion parameters and known states, we simulated data sets
with different transition parameters. For the simulation,
we used 18 arrays from the international HapMap project
in order to estimate the noise corresponding to 0, 1 or 2
copies of an allele. The noise was defined as the difference

between the observed log copy-number  and the

true log copy-number, log2(Ci(α)). To estimate the noise

corresponding to 0 copies, we used a log copy-number
equal to -2; as described previously. Then, we used one
HapMap sample and replaced the normalized intensity
for each SNP and allele by a simulated value correspond-
ing to a known state with noise estimated from the Hap-
Map sample. The states were determined randomly using
the HMM model. Here, all the SNPs were given a hetero-
zygous call.

Further, we simulated a mixture of cancer and normal
cells. Here we determined the observed values by adding
noise obtained from the Hapmap data set to the allelic
copy-number defined as follows:

CO = (1 - m)CN + mCT (5)

where CO is the allelic copy-number (i.e. the average copy-
number in the mixture population), CN and CT are the
allelic copy-numbers in the normal and the cancer cells
and m is the percentage of cancer cells present in the mix-
ture.

Including the mixture proportion
The mixture model
We modified the HMM defined above in order to account
for a mixture of normal and cancer cells. This was done in
the emission probabilities where the allelic copy-number
was considered a weighted sum of the copy-numbers from
the normal and the abnormal cells (see equation 5). Then
we used an iterative procedure to estimate the mixture
proportion, m, in a sample (m is the proportion of cancer
cells).

• Initialisation: we ran the method on the sample consid-
ering there is no mixture (m = 100%) and obtained a
sequence of hidden states corresponding to the sample.

• Update 1: Assuming the sequence of hidden states, we
used a least-square method to fit the optimal mixture
value m.

• Update 2: Assuming m, we applied the method with the
mean intensity given as in equation 5. A new sequence of
hidden states was obtained.

• Iteration step: We repeated Update 1 and Update 2 until
the mixture m did not change.

As only SNPs (or alleles) in abnormal states can help in
obtaining an estimate of the mixture level, we need to
have a minimum of changes in copy-numbers occurring

Xi
0

Xi
c( )α
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in order to obtain a reasonable estimate. The iterative pro-
cedure was applied only to samples containing more than
5% of abnormal states after the initialisation.

Simulation of data sets
In order to test the iterative procedure on more realistic
simulated samples, we designed the simulations in a dif-
ferent way. We first ran the HMM on the real bladder and
prostate tumour samples, then we used the sequence of
hidden states recovered to produce new simulated sam-
ples with known population mixture. The observed allelic
copy-numbers were determined as in equation 5.

The all-array method
Until now, the transition parameters were estimated for
each sample but were the same for all chromosomes.
Here, we modified the method to allow different transi-
tion parameters for each chromosome.

Simulation of data sets
We simulated two data sets of 20 samples where the tran-
sition parameters were randomly chosen between 0.001
and 0.05 on the logarithmic scale. For each of the 40 sam-
ples, a sequence of hidden states was determined accord-
ing to the HMM. Each chromosome had its own
transition parameters across all samples. In the first data
set of 20 samples, only heterozygous SNP intensities were
simulated. Each sample had the same number of SNPs
and the same positions in the genome as the HapMap
samples. In the second data set of 20 samples, each sam-
ple had the same number of SNPs, the same positions in
the genome and the same genotype calls as one randomly
chosen HapMap sample. SNP intensities were simulated
according to the genotype call and to the hidden state
determined previously for this SNP.
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Additional File 1
Linear relationship between mean intensities. The figure shows the aver-
age intensities for 1 copy of an allele (blue) and the average intensities for 
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for 1 copy, using the model described in [8]. The parameter c1 is the inter-
cept of the top line and c2 is the slope, see equation 2. The slope of the bot-
tom line is 1 and the intercept 0.
Click here for file
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Additional File 2
Histograms of allelic intensities for the HapMap data. The figure shows 
the histograms of the normalized intensities corresponding to 0, 1 or 2 cop-
ies.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-434-S2.pdf]
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